Annals of Forest Science

, Volume 66, Issue 6, pp 603–603 | Cite as

Ecology of Armillaria species on silver fir (Abies alba) in the Spanish Pyrenees

Original Article

Abstract

  • • We describe the distribution and the ecology of three Armillaria species observed in silver fir (Abies alba) forests of the Pyrenees.

  • • We surveyed the presence and abundance of Armillaria above and belowground in 29 stands. Isolates were identified by the PCR-RFLP pattern of the IGS-1 region of their ribosomal DNA. We measured several ecological and management parameters of each stand in order to describe Armillaria infected sites.

  • Armillaria cepistipes was the most abundant of three species observed. Armillaria gallica was dominant in soils with a higher pH and at lower elevations. Armillaria ostoyae seemed to be more frequent in stands where A. alba recently increased its dominance relative to other forest tree species. Thinning activities correlated with an increased abundance of Armillaria belowground. In 83% of the stands the same Armillaria species was observed above and belowground.

  • • It seems that in a conifer forest, A. cepistipes can be more frequent than A. ostoyae, a virulent conifer pathogen. Since logging is related to a higher abundance of Armillaria in the soil, the particular Armillaria species present in a given stand could be considered an additional site factor when making management decisions.

Keywords

forest decline root rot disease forest dynamics mountain forest Armillaria ostoyae Armillaria cepistipes 

Écologie des espèces d’Armillaria du sapin blanc (Abies alba) dans les Pyrénées espagnoles

Résumé

  • • Nous décrivons la distribution et l’écologie de trois espèces d’Armillaria sur le sapin blanc (Abies alba) dans les forêts pyrénéennes

  • • Nous avons recherché la présence d’Armillaire au dessus du sol et dans le sol dans 29 peuplements. Les isolats ont été identifiés par RFLP-PCR de la région IGS-1 de leur ADN ribosomal. Plusieurs paramètres écologiques et de gestion ont été mesurés dans chacun des peuplements, pour caractériser les sites infestés.

  • Armillaria cepistipes était la plus abondante des trois espèces observées. Armillaria gallica dominait dans les sols de basse altitude et à pH élevé. Armillaria ostoyae a semblé plus fréquent dans les peuplements où la dominance relative d’A. alba avait récemment augmenté par rapport aux autres espèces forestières. L’activité d’éclaircies était corrélée à l’augmentation d’Armillaire dans le sol. La même espèce d’Armillaria a été observée au dessus du sol et dans le sol, dans 83 % des peuplements.

  • • Il apparaît que, en forêt de conifères, A. cepistipes peut être plus fréquent qu’ A. ostoyae, pathogène virulent des conifères. Puisque les coupes forestières sont reliées à une plus grande abondance d’Armillaire dans le sol, la présence d’une espèce particulière d’Armillaria dans un peuplement donné pourrait être un paramètre stationnel supplémentaire à considérer lors de décisions de gestion.

Mots-clés

dépérissement forestier maladie de la pourriture des racines dynamique forestière forêt de montagne Armillaria ostoyae Armillaria cepistipes 

References

  1. Altschul S.F., Madden T.L., Schãffer A.A., Zhang, J., Zhang Z., Miller W., and Lipman D.J., 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.PubMedCrossRefGoogle Scholar
  2. Baumgartner K. and Rizzo, D.M., 2001. Ecology of Armillaria spp. in mixed-hardwood forests of California. Plant Dis. 85: 947–951.CrossRefGoogle Scholar
  3. Bendel M., Kienast F., Bugmann H., and Rigling D., 2006a. Incidence and distribution of Heterobasidion and Armillaria and their influence on canopy gap formation in unmanaged mountain pine forests in the Swiss Alps. Eur. J. Plant Pathol. 116: 85–93.CrossRefGoogle Scholar
  4. Bendel M., Kienast F., and Rigling D., 2006b. Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests. Mycol. Res. 110: 705–712.PubMedCrossRefGoogle Scholar
  5. Blanco E., Casado M.A., Costa M., Escribano R., García M., Génova M., Gómez A., Gómez F., Moreno J.C., Morla C., Regato P., and Sainz H., 1997. Los bosques ibéricos, Planeta, Barcelona, Spain.Google Scholar
  6. Blodgett J.T. and Worrall J.J., 1992. Distribution and hosts of Armillaria species in New York. Plant Dis. 76: 166–170.CrossRefGoogle Scholar
  7. Camarero J.J., Martín E., and Gil-Pelegrín E., 2003. The impact of a needleminer (Epinotia subsequana) outbreak on radial growth of silver fir (Abies alba) in the Aragón Pyrenees: a dendrochronological assessment. Dendrochronologia 21: 3–12.CrossRefGoogle Scholar
  8. Camarero J.J., Padró A., Martín E., and Gil-Pelegrín E., 2002. Aproximación dendroecológica al decaimiento del abeto (Abies alba Mill.) en el Pirineo Aragonés. Montes 70: 26–33.Google Scholar
  9. Cherubini P., Fontana G., Rigling D., Dobbertin M., Brang P., and Innes J.L., 2002. Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. J. Ecol. 90: 839–850.CrossRefGoogle Scholar
  10. Clauser F., 1980. Una nuova moria dell’abete bianco a Vallombrosa. Monti e Boschi 31: 51–55.Google Scholar
  11. Clopper C.J. and Pearson E.S., 1934. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26: 404–413.CrossRefGoogle Scholar
  12. Dettman J.R. and Van der Kamp B.J., 2001. The population structure of Armillaria ostoyae and Armillaria sinapina in the central interior of British Columbia. Can. J. Bot. 79: 600–611.Google Scholar
  13. Dobbertin M., Baltensweiler A., and Rigling D., 2001. Tree mortality in an unmanaged mountain pine (Pinus mugo var. uncinata) stand in the Swiss national park impacted by root rot fungi. For. Ecol. Manage. 145: 79–89.CrossRefGoogle Scholar
  14. Durrieu G., Beneteau A., and Niocel S., 1985. Armillaria obscura dans l’écosystème forestier de Cerdagne. Eur. J. For. Pathol. 15: 350–355.CrossRefGoogle Scholar
  15. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., and Paulißen D., 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot. 18: 1–248.Google Scholar
  16. Ferguson B.A., Dreisbach T.A., Parks C.G., Filip G.M., and Schmitt C.L., 2003. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can. J. For. Res. 33: 612–623.CrossRefGoogle Scholar
  17. Fox R.T.V., 2000a. Biology and live cycle, Armillaria root rot: biology and control of honey fungus. In: Fox R.T.V. (Ed.), Intercept, Andover, UK, pp. 3–44.Google Scholar
  18. Fox R.T.V., 2000b. Pathogenicity. Armillaria root rot: biology and control of honey fungus. In: Fox R.T.V. (Ed.), Intercept, Andover, UK, pp. 113–138.Google Scholar
  19. Gardes M. and Bruns T.D., 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 1–6.CrossRefGoogle Scholar
  20. Guillaumin J.-J., Mohammed C., Anselmi N., Courtecuisse R., Gregory S.C., Holdenrieder O., Intini M., Lung B., Marxmüller H., Morrison D., Rishbeth J., Termorshuizen A.J., Tirró A., and van Dam B., 1993. Geographical distribution and ecology of the Armillaria species in Western Europe. Eur. J. For. Pathol. 23: 321–341.CrossRefGoogle Scholar
  21. Hall T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95–98.Google Scholar
  22. Harrington T.C. and Wingfield B.D., 1995. A PCR-based identification method for species of Armillaria. Mycologia 87: 280–288.CrossRefGoogle Scholar
  23. Harrington T.C., Worrall J.J., and Baker J.A., 1992. Armillaria. In: Singleton L.L., Mihail J.D., and Rush C.M. (Eds), Methods for research on soilborne phytopathogenic fungi. American Phytopathological Society Press, St. Paul, MN, pp. 81–85.Google Scholar
  24. Intini M.G., 1988. Un caso di moria dell’abete bianco associato ad Armillaria ostoyae (Romagnesi) Herink. Informatore Fitopatologico 38: 67–70.Google Scholar
  25. Kårén O., Högberg N., Dahlberg A., Jonsson L., and Nylund J.E., 1997. Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis. New Phytol. 136: 313–325.CrossRefGoogle Scholar
  26. Kile G.A., McDonald G.I., and Byler J.W., 1991. Ecology and disease in natural forests. Armillaria root disease. In: Shaw III C.G. and Kile G.A. (Eds), forest service, USDA, agriculture handbook No. 691, Washington, pp. 102–121.Google Scholar
  27. Legrand P., Ghahari S., and Guillaumin J.-J., 1996. Occurrence of genets of Armillaria spp. in four mountain forests in Central France: the colonization strategy of Armillaria ostoyae. New Phytol. 133: 321–332.CrossRefGoogle Scholar
  28. Legrand P. and Guillaumin J.-J., 1993. Armillaria species in the forest ecosystems of the Auvergne (Central France). Acta Oecologica 14: 389–403.Google Scholar
  29. Macías M., Andreu L., Bosch O., Camarero J.J., and Guitiérrez E., 2006. Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-western distribution limit. Clim. Change. 76: 289–313.CrossRefGoogle Scholar
  30. Martín E. and Cobos J.M., 1986. Graves ataques de perforadores en los abetares de Ansó (Huesca). Bol. San. Veg. Plagas 12: 297–298.Google Scholar
  31. McLaughlin J.A., 2001. Distribution, hosts, and site relationships of Armillaria spp. in central and southern Ontario. Can. J. For. Res. 31: 1481–1490.Google Scholar
  32. Montoya R., López M., Sánchez G., González M.R., and Jiménez R., 1998. La red europea de seguimiento de daños en los bosques (nivel 1) en España, 1987–1996, organismo autónomo de parques nacionales, Madrid.Google Scholar
  33. Morquer R. and Touvet A., 1972. The resistance of forest tree species to attack by Clitocybe [Armillaria] mellea, comptes rendus hebdomadaires des séances de l’académie des sciences, France 274: 1038–1043.Google Scholar
  34. Morrison D.J., Pellow K.W., Nemec A.F.L., Norris D.J., and Semenoff P., 2001. Effects of selective cutting on the epidemiology of Armillaria root disease in the southern interior of British Columbia. Can. J. For. Res. 31: 59–70.CrossRefGoogle Scholar
  35. Oliva J. and Colinas C., 2007. Decline of silver fir (Abies alba Mill.) stands in the Spanish Pyrenees: Role of management, historic dynamics and pathogens. For. Ecol. Manage. 252: 84–97.CrossRefGoogle Scholar
  36. Pérez-Sierra A., Whitehead D.S., and Whitehead M.P., 1999. Investigation of a PCR-based method for the routine identification of British Armillaria species. Mycol. Res. 103: 1631–1636.CrossRefGoogle Scholar
  37. Rigling D., Blauenstein H., Walthert L., Rigling A., Kull P., Schwyzer A., and Heinger U., 1997. Rhizomorph producing Armillaria species in Norway spruce stands in Switzerland. 9th Int. Conf. root and butt rots, Carcans-Maubuisson, France. In: Delatour C., Guillaumin J.-J., Lung-Escarmant B., and Marçais, B. (Eds), INRA Éditions, les colloques No. 89, Paris, pp. 259–265.Google Scholar
  38. Rizzo D.M., Whiting E.C., and Elkins R.B., 1998. Spatial distribution of Armillaria mellea in pear orchards. Plant Dis. 82: 1226–1231.CrossRefGoogle Scholar
  39. Schabenberger O. and Pierce F.J., 2001. Contemporary statistical models for the plant and soil sciences, CRC press LLC, Boca Raton, FL.CrossRefGoogle Scholar
  40. Smith M.L., Bruhn, J.N., and Anderson J.B., 1992. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356: 428–431.CrossRefGoogle Scholar
  41. Tamura K., Dudley J., Nei M., and Kumar S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.PubMedCrossRefGoogle Scholar
  42. Tsopelas P., 1999. Distribution and ecology of Armillaria species in Greece. Eur. J. For. Pathol. 29: 103–116.CrossRefGoogle Scholar
  43. White T.J., Bruns T., Lee S., and Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., and White T.J. (Eds.), PCR protocols. A guide to methods and applications, Academic press, San Diego, pp. 315–322.Google Scholar
  44. Worrall J.J., Lee T.D., and Harrington T.C., 2005. Forest dynamics and agents that initiate and expand canopy gaps in Picea-Abies forests of Crawford Notch, New Hampshire, USA. J. Ecol. 93: 178–190.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  1. 1.Dept. of Forest Mycology and PathologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Forest Protection SectionForest Technological Center of CataloniaSolsonaSpain
  3. 3.Dept. of Botany, Biology FacultyUniversity of MurciaMurciaSpain
  4. 4.Dept. of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations