Annals of Forest Science

, Volume 66, Issue 5, pp 511–511 | Cite as

Establishment limitation of holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) in a Mediterranean savanna — forest ecosystem

  • Christian Smit
  • Mario Díaz
  • Patrick Jansen
Original Article


  • • Tree recruitment in Mediterranean savannas is generally hampered, in contrast with the original oak forests where these savannas are derived from. We asked whether this difference in recruitment success can be explained by differential post-dispersal survival. For one year we monitored experimentally cached holm oak acorns in a savanna — forest ecosystem in Central Spain, and recorded cache pilferage, type of pilferer, boar rooting, seedling emergence, seedling survival and the cause of mortality.

  • • Cache pilferage was significantly lower in savanna (8%) than in forest (21%). However, the higher cache survival was more than offset by lower seedling emergence and, particularly, by nine times higher seedling mortality in savanna, mainly due to desiccation. Wild boar rooting did not differ between experimental caches and controls without acorns, indicating that individual cached acorns do not trigger rooting activity.

  • • Our results indicate that the difference in post-dispersal survival between savanna and forest is due to lower emergence and, primarily, higher seedling mortality in savanna, not to higher cache pilferage. Absence of safe sites such as shrubs, abundantly present in the forest, may well explain the lack of recruitment in the savanna. Management measures appear necessary for long-term persistence of Mediterranean savannas in general.


tree recruitment seedling establishment dehesa seed predation 

Limitation de l’installation du chêne vert (Quercus ilex subsp. ballota (Desf.) Samp.) dans un écosystème de savane forestière méditerranéenne


  • • Le recrutement des arbres dans les savanes méditerranéennes est généralement entravé, ce qui contraste avec les forêts de chênes originelles dont ces savanes sont issues. Nous nous sommes demandé si cette différence dans le succès du recrutement pouvait être expliqué par une différence de survie post-dissémination. Pendant une année, nous avons suivi expérimentalement des glands de chêne vert cachés dans un écosystème de savane forestière en Espagne centrale, et nous avons enregistré les chapardages des caches, les types de chapardage, la fouille des sangliers, l’émergence des semis, la survie des semis et les causes de la mortalité

  • • Le chapardage dans les caches a été significativement plus faible dans la savane (8 %) que dans la forêt (21 %). Toutefois, la survie plus élevée dans les caches été plus que compensée par une baisse de l’émergence des semis et, en particulier, par une mortalité des semis neuf fois plus élevée dans la savane, principalement due à la dessiccation. La fouille des racines par les sangliers n’est pas différente entre les caches expérimentales et les témoins sans glands, indiquant que les mises en cache des glands ne déclenchent pas activité de fouille des racines.

  • • Nos résultats indiquent que la différence de survie post-dissémination entre la savane et la forêt est due à la baisse d’émergence et en premier lieu, à une mortalité plus élevée des semis dans la savane, et non pas à des chapardages des caches plus élevés. L’absence de sites abris tels que les arbustes, très présents dans la forêt, peut expliquer l’absence de recrutement dans la savane. Des mesures de gestion apparaissent nécessaires pour une persistance à long terme des savanes méditerranéennes.


installation des semis prédation des graines recrutement des arbres dehesa 


  1. Bonal R., Muñoz A., and Díaz M., 2007. Satiation of predispersal seed predators: the importance of considering both plant and seed levels. Evol. Ecol. 21: 367–380.CrossRefGoogle Scholar
  2. Bonal R. and Muñoz A., 2007. Multi-trophic effects of ungulate intraguild predation on acorn weevils. Oecologia 152: 533–540.PubMedCrossRefGoogle Scholar
  3. Braun-Blanquet J., 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, Wien, New York.Google Scholar
  4. Castro J., Zamora R., Hódar J.A., Gómez J.M., and Gómez-Aparicio L., 2004. Benefits of using shrubs as nurse plants for reforestation in Mediterranean mountains: A 4-year study. Restor. Ecol. 12: 352–358.CrossRefGoogle Scholar
  5. Den Ouden J., Jansen P.A., and Smit R., 2005. Jays, Mice and Oaks: predation and dispersal of Quercus robur and Q. petraea in Northwestern Europe. In: Forget J.E., Lambert P.E., Vander Wall S.B. (Eds.), Seed Fate, CAB International, pp. 223–239.Google Scholar
  6. Díaz M., Alonso C.L., Arroyo L., Bonal R., Muñoz A., and Smit C., 2007. Desarrollo de un protocolo de seguimiento a largo plazo de los organismos clave para el funcionamiento de los bosques mediterráneos. In: Ramírez L. (Ed.), Investigación en la red organismo autónomo parques nacionales, Madrid.Google Scholar
  7. Díaz M., Campos P., and Pulido F.J., 1997. The Spanish dehesas: a diversity of land use and wildlife. In: D. Pain and M. Pienkowski (Ed.), Farming and birds in Europe, Academic Press, London, pp. 178–209.Google Scholar
  8. Díaz M., Gonzalez E., Munozpulido R., and Naveso M.A., 1993. Effects of food abundance and habitat structure on seed-eating rodents in spain wintering in Man-Made habitats. Mamm. Biol. 58: 302–311.Google Scholar
  9. Díaz M., Pulido F.J., and Moller A.P., 2004. Herbivore effects on developmental instability and fecundity of holm oaks. Oecologia 139: 224–234.PubMedCrossRefGoogle Scholar
  10. Duncan R.S., Wenny D.G., Spritzer M.D., and Whelan C.J., 2002. Does human scent bias seed removal studies? Ecology 83: 2630–2636.CrossRefGoogle Scholar
  11. Focardi S., Capizzi D., and Monetti D., 2000. Competition for acorns among wild boar (Sus scrofa) and small mammals in a Mediterranean woodland. J. Zool. 250: 329–334.CrossRefGoogle Scholar
  12. García-Cebrian F., Esteso-Martinez J., and Gil-Pelegrin E., 2003. Influence of cotyledon removal on early seedling growth in Quercus robur L. Ann. For. Sci. 60: 69–73.CrossRefGoogle Scholar
  13. Gómez-Aparicio L., Valladares F., and Zamora R., 2006. Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiol. 26: 947–958.PubMedGoogle Scholar
  14. Gómez J.M., 2003. Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography 26: 573–584.CrossRefGoogle Scholar
  15. Gómez J.M., 2004. Importance of microhabitat and acorn burial on Quercus ilex early recruitment: non-additive effects on multiple demographic processes. Plant Ecol. 172: 287–297.CrossRefGoogle Scholar
  16. Gómez J.M., Garcia D., and Zamora R., 2003. Impact of vertebrate acornand seedling-predators on a Mediterranean Quercus pyrenaica forest. For. Ecol. Manage. 180: 125–134.CrossRefGoogle Scholar
  17. Herrera J., 1995. Acorn predation and seedling production in a low-density population of cork oak (Quercus suber L). For. Ecol. Manage. 76: 197–201.CrossRefGoogle Scholar
  18. Hyatt L.A., Rosenberg M.S., Howard T.G., Bole G., Fang W., Anastasia J., Brown K., Grella R., Hinman K., Kurdziel J.P., and Gurevitch J., 2003. The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis. Oikos 103: 590–602.CrossRefGoogle Scholar
  19. Janzen D.H., 1970. Herbivores and number of tree species in tropical forests. Am. Nat. 104: 501–528.CrossRefGoogle Scholar
  20. Jordano P. and Herrera C.M., 1995. Shuffling the offspring: uncoupling and spatial discordance of multiple stages in vertebrate seed dispersal. Ecoscience 2: 230–237.Google Scholar
  21. Leaver L.A. and Daly M., 2001. Food caching and differential cache pilferage: a field study of coexistence of sympatric kangaroo rats and pocket mice. Oecologia 128: 577–584.CrossRefGoogle Scholar
  22. Leiva M.J. and Fernández-Alés R., 2003. Post-dispersive losses of acorns from Mediterranean savannah-like forests and shrublands. For. Ecol. Manage. 176: 265–271.CrossRefGoogle Scholar
  23. Muñoz A. and Bonal R., 2007. Rodents change acorn dispersal behaviour in response to ungulate presence. Oikos 116: 1631–1638.CrossRefGoogle Scholar
  24. Muñoz A., Bonal R., and Díaz M., 2009. Ungulates, rodents, shrubs: interactions in a diverse Mediterranean ecosystem. Basic Appl. Ecol. 10: 151–160.CrossRefGoogle Scholar
  25. Nathan R. and Muller-Landau H.C., 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15: 278–285.PubMedCrossRefGoogle Scholar
  26. Pons J. and Pausas J.G., 2007. Rodent acorn selection in a Mediterranean oak landscape. Ecol. Res., 22: 535–541.CrossRefGoogle Scholar
  27. Pulido F.J. and Díaz M., 2005. Regeneration of a Mediterranean oak: a whole-cycle approach. Ecoscience 12: 92–102.CrossRefGoogle Scholar
  28. Pulido F.J., Díaz M., and de Trucios S.J.H., 2001. Size structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability. For. Ecol. Manage. 146: 1–13.CrossRefGoogle Scholar
  29. R Development Core Team, 2006. R: A language and environment for statistical computing. R foundation for statistical Computing, Vienna, Austria.Google Scholar
  30. Ramírez J.A. and Díaz M., 2008. The role of temporal shrub encroachment for the maintenance of Spanish holm oak Quercus ilex dehesas. For. Ecol. Manage. 255: 1976–1983.CrossRefGoogle Scholar
  31. Scheffer M., Carpenter S., Foley J.A., Folke C., and Walker B., 2001. Catastophic shifts in ecosystems. Nature 413: 591–596.PubMedCrossRefGoogle Scholar
  32. Schupp E.W., Milleron T., and Russo S.E., 2002. Dissemination limitation and the origin and maintenance of species-rich tropical forests. In: Levey D.J., Sivla W.R., Galetti M. (Eds.), Seed dispersal and frugivory: ecology, evolution and conservation, CAB International, Wallingford, pp. 19–33.Google Scholar
  33. Smit C., Den Ouden J., and Díaz M., 2008. Facilitation of holm oak recruitment by shrubs in Mediterranean open woodlands. J. Veg. Sci.19: 193–200.CrossRefGoogle Scholar
  34. Smit C., Gusberti M., and Müller-Schärer H., 2006. Safe for saplings; safe for seeds? For. Ecol. Manage. 237: 471–477.CrossRefGoogle Scholar
  35. Vander Wall S.B., Briggs J.S., Jenkins S.H., Kuhn K.M., Thayer T.C., and Beck M.J., 2006. Do food-hoarding animals have a cache recovery advantage? Determining recovery of stored food. Anim. Behav. 72: 189–197.CrossRefGoogle Scholar
  36. Vander Wall S.B. and Jenkins S.H., 2003. Reciprocal pilferage and the evolution of food-hoarding behavior. Behav. Ecol. 14: 656–667.CrossRefGoogle Scholar
  37. Winterink A., 2006. Does miss Piggy rob Micky Mouse? Research on seed dispersal by wood mice (Apodemus sylvaticus) and seed predation by wild boar (Sus scrofa). MSc thesis, Wageningen University, Wageningen.Google Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  1. 1.Departamento de Ciencias Ambientales, Facultad de Ciencias del Medio AmbienteUniversidad de Castilla-La ManchaToledoSpain
  2. 2.Community Ecology and Conservation Ecology group, Centre for Ecological and Evolutionary StudiesUniversity of GroningenAA, HarenThe Netherlands
  3. 3.Instituto de Recursos NaturalesIRN-CCMA-CSICMadridSpain

Personalised recommendations