Advertisement

Annals of Forest Science

, Volume 66, Issue 4, pp 410–410 | Cite as

The rise and fall of the black locust (Robinia pseudoacacia L.) in the “Siro Negri” Forest Reserve (Lombardy, Italy): lessons learned and future uncertainties

  • Renzo MottaEmail author
  • Paola Nola
  • Roberta Berretti
Original Article

Abstract

  • • The alluvial forests of the Ticino valley have been greatly reduced in size and are now represented by only a small number of fragmented remnants. To study the natural development of the black locust, an invasive species, on relatively undisturbed lowland forests, two permanent plots were established in 2005 in the “Siro Negri” Forest Reserve.

  • • The black locust became established almost exclusively between 1940 and 1960. The observed dynamic of the black locust in the Reserve was very similar to what has been observed in its native North American range: following the initial colonization, the black locust firmly established itself in the dominant and intermediate layers but did not regenerate. In addition to the absence of a significant younger population, the decline of the black locust is evident in an elevated mortality rate and higher proportion of black locust biomass in the total coarse woody debris (CWD)

  • • Our results support the hypothesis that the best strategy to control the spread of black locust is to avoid disturbances that favour black locust colonization, and to wait for natural suppression of the species by other trees. Due to the lack of past reference conditions and the future uncertainties, ongoing monitoring will be needed to fully understand the dynamics of forest ecosystem change in the Reserve.

Keywords

forest dynamic alluvial forests Robinia pseudoacacia L. treerings disturbances 

L’essor et le déclin du robinier (Robinia pseudoacacia L.) dans la Réserve Forestière « Siro Negri » (Lombardie, Italie) : leçons et incertitudes futures

Résumé

  • • Les forêts alluviales de la vallée du Tessin ont été fortement réduites en taille et ne sont maintenant représentées que par un petit nombre de vestiges fragmentaires. Pour étudier le développement naturel du robinier, une espèce envahissante, dans des forêts de plaine relativement intactes, deux placettes permanentes ont été établies en 2005 dans la Réserve Forestière « Siro Negri ».

  • • Le robinier s’est établi presque exclusivement entre 1940 et 1960. La dynamique d’installation observée de Robinia pseudoacacia L. dans la réserve est très similaire à ce qui a été observé dans son habitat naturel en Amérique du Nord : après la première colonisation, le robinier s’est fermement établi dans les strates dominantes et intermédiaires, mais il ne s’est pas régénéré. En plus de l’absence d’une population plus jeune, l’évidence du déclin du robinier est révélée par une élévation du taux de mortalité et une plus grande proportion de la biomasse du robinier dans le total des débris ligneux grossiers (CWD).

  • • Nos résultats appuient l’hypothèse que la meilleure stratégie pour contrôler la propagation du robinier est d’éviter les perturbations qui favorisent sa propagation, et d’attendre la suppression physique de l’espèce par d’autres arbres. En raison de l’absence de références sur les conditions passées, et les incertitudes futures, la surveillance continue sera nécessaire pour comprendre la dynamique de l’écosystème forestier dans la réserve.

Mots-clés

dynamique forestière forêts alluviales Robinia pseudoacacia L. cernes des arbres perturbations 

References

  1. Bergot M., Cloppet E., Pérarnaud V., Déqué M., Marçais B., and Desprez-Loustau M.L., 2004. Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Global Change Biol. 10: 1539–1552.CrossRefGoogle Scholar
  2. Boring L.R. and Swank W.T., 1984. The role of black locust (Robinia pseudoacacia) in forest succession. J. Ecol. 72: 749–766.CrossRefGoogle Scholar
  3. Brothers T.S. and Spingarn A., 1992. Forest fragmentation and alien plant invasion of central Indiana old-growth forests. Conserv. Biol. 6: 91–100.CrossRefGoogle Scholar
  4. Buckley Y.M., 2008. The role of research for integrated management of invasive species, invaded landscapes and communities. J. Appl. Ecol. 45: 397–402.CrossRefGoogle Scholar
  5. Castellani C., Scrinzi G., Tabacchi G., and Tosi V., 1984. Inventario forestale nazionale italiano. Tavole di cubatura a doppia entrata, Ministero dell’Agricoltura e delle Foreste, Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura, Trento.Google Scholar
  6. Driesche J.V. and Driesche R.V., 2004. Nature out of place: biological invasions in the global age, Washington, Island Press.Google Scholar
  7. Dzwonko Z. and Loster S., 1997. Effects of dominant trees and anthropogenic disturbances on species richness and floristic composition of secondary communities in southern Poland. J. Appl. Ecol. 34: 861–870.CrossRefGoogle Scholar
  8. European Committee For Standardization, 1995. Durability of wood and woodbased products — natural durability of solid wood — Part 2: Guide to natural durability and treatability of selected wood species of importance in Europe, Brussel, EN 350-2.Google Scholar
  9. Ferraris P., Terzuolo P., Brenta P.P., and Palenzona M., 2000. La robinia. Indirizzi per la gestione e la valorizzazione. Peveragno (CN), Regione Piemonte, Blu Edizioni.Google Scholar
  10. Fowells H.A., 1965. Silvics of forest trees of the United States, Washington D.C., USDA.Google Scholar
  11. Harris J.A., Hobbs R.J., Higgs E., and Aronson J., 2006. Ecological restoration and global climate change. Restor. Ecol. 14: 170–176.CrossRefGoogle Scholar
  12. Humphrey J.W., Davey S., Peace A.J., Ferris R., and Harding K., 2002. Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biol. Conserv. 107: 165–180.CrossRefGoogle Scholar
  13. Johnson E.A., Miyanishi K., and Kleb H., 1994. The hazards of interpretation of static age structures as shown by stand reconstruction in Pinus contortaPicea engelmannii forest. J. Ecol. 82: 923–931.CrossRefGoogle Scholar
  14. Kaennel M. and Schweingruber F.H., 1995. Multilingual glossary of Dendrochronology, Berne, Wsl/Fnp Birmensdorf, P. Haupt Pub.Google Scholar
  15. Kirkman L.K., Mitchell R.J., Kaeser M.J., Pecot S.D., and Coffey K.L., 2007. The perpetual forest: using undesirable species to bridge restoration. J. Appl. Ecol. 44: 604–614.CrossRefGoogle Scholar
  16. Latham P.A., Zuuring H.R., and Coble D.W. 1998. A method for quantifying vertical forest structure. For. Ecol. Manage. 104: 157–170.CrossRefGoogle Scholar
  17. Magnani F., Mencuccini M., Borghetti M., Berbigier P., Berninger F., Delzon S., Grelle A., Hari P., Jarvis P.G., Kolari P., Kowalski A.S., Lankreijer H., Law B.E., Lindroth A., Loustau D., Manca G., Moncrieff J.B., Rayment M., Tedeschi V., Valentini R., and Grace J., 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature (London) 447: 848–850.CrossRefGoogle Scholar
  18. McDonald R.I. and Urban D.L., 2006. Edge effects on species composition and exotic species abundance in the North Carolina Piedmont. Biol. Invasions 8: 1049–1060.CrossRefGoogle Scholar
  19. Mohan J.E., Clark J.S., and Schlesinger W.H., 2007. Long-term CO2 enrichment of a forest ecosystem: implications for forest regeneration and succession. Ecol. Appl. 17: 1198–1212.PubMedCrossRefGoogle Scholar
  20. Mondino G.P. and Scotta M., 1987. Robinia pseudoacacia L. nell’ambiente forestale piemontese. Inf. Bot. Ital. 43–48.Google Scholar
  21. Motta Fré V. and Motta R., 2000. Selvicoltura e ciliegio tardivo (Prunus serotina Ehrh.) nella Riserva Naturale Orientata “La Fagiana” (Magenta-MI). Sherwood 6: 5–14.Google Scholar
  22. Motta R. and Garbarino F., 2003. Stand history and its consequences for the present and future dynamic in two silver fir (Abies alba Mill.) stands in the high Pesio Valley (Piedmont, Italy). Ann. For. Sci. 60: 361–370.CrossRefGoogle Scholar
  23. Motta R. and Nola P., 2001. Growth trends and dynamics in sub-alpine forest stands in the Varaita valley (Piedmont, Italy) and their relationships with human activities and global change. J. Veg. Sci. 12: 219–230.CrossRefGoogle Scholar
  24. Motta R., Nola P., and Piussi P., 1999. Structure and stand development in three subalpine Norway spruce (Picea abies (L.) Karst.) stands in Paneveggio (Trento, Italy). Global Ecol. Biogeogr. 8: 455–471.CrossRefGoogle Scholar
  25. Nagel T.A., Levanic T., and Diaci J., 2007. A dendroecological reconstruction of disturbance in an old-growth Fagus-Abies forest in Slovenia. Ann. For. Sci. 64: 891–897.CrossRefGoogle Scholar
  26. Nocentini S., 2006. La rinaturalizzazione dei sistemi forestali: è necessario un modello di riferimento? Forest 3: 376–379.CrossRefGoogle Scholar
  27. Nola P., 1991. Primo approccio alla dendroclimatologia della quercia (Quercus robur L. e Quercus petraea (Mattuschka) Liebl.) in Pianura Padana (Italia Settentrionale). Dendrochronologia 9: 71–94.Google Scholar
  28. Nola P., 1996. Climatic signal in earlywood and latewood of deciduous oaks from northern Italy. In: Dean J.S., Meko D.M., and Swetnam T.W. (Eds.), Tree rings, environment and humanity, Radiocarbon, Tucson, pp. 249–258.Google Scholar
  29. Norton D.A., Palmer J.G., and Ogden J., 1987. Dendroecological studies in New Zealand 1. An evaluation of tree age estimates based on increment cores. N. Z. J. Bot. 25: 373–383.Google Scholar
  30. Payette S., Filion L., and Delwaide A., 1990. Disturbance regime of a cold temperate forest as deduced from tree-ring patterns: the Tantaré Ecological Reserve, Québec. Can. J. For. Res. 20: 1228–1241.CrossRefGoogle Scholar
  31. Pividori M. and Grieco C. 2003. Evoluzione strutturale di popolamenti cedui di robinia (Robinia pseudoacacia L.) nel Canavese (Torino — Italia). Schweiz. Z. Forstwes. 154: 1–7.CrossRefGoogle Scholar
  32. Ragazzi A., Fedi I.D., and Mesturino, L. 1989. The oak decline: a new problem in Italy. Eur. J. For. Pathol. 19: 105–110.CrossRefGoogle Scholar
  33. Rice S.K., Westerman B., and Federici R., 2004. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogencycling in a pine-oak ecosystem. Plant Ecol. 174: 97–107.CrossRefGoogle Scholar
  34. Rinn F., 1996. TSAP Reference Manual. Version 3.0. Heidelberg.Google Scholar
  35. Rozas V., 2005. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: establishment patterns and the management history. Ann. For. Sci. 62: 13–22.CrossRefGoogle Scholar
  36. Sartori F., 1984. Les forêts alluviales de la basse vallée du Tessin (Italie du nord). In: Cramer J. (Ed.), Colloques phytosocologiques, la végétation des forêts alluviales, Berlin, pp. 201–216.Google Scholar
  37. Schnitzler A., 1994. European alluvial hardwood forests of large floodplains. J. Biogeogr. 21: 605–623.CrossRefGoogle Scholar
  38. Schnitzler A., Hale B.W., and Alsum E.M., 2007. Examining native and exotic species diversity in European riparian forests. Biol. Conserv. 138: 146–156.CrossRefGoogle Scholar
  39. Schweingruber F.H., 1990. Dendroecological Information in Pointer Years and Abrupt Growth Changes. In: Cook E.R. and Kariukstis L.A. (Eds.) Methods of dendrochronology. Kluwer, Dordrecht, pp. 276–283.Google Scholar
  40. Swetnam T.W., Allen C.D., and Betancourt J.L., 1999. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9: 1189–1206.CrossRefGoogle Scholar
  41. Thomas F.M., Blank R., and Hartmann G., 2002. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For. Pathol. 32: 277–307.Google Scholar
  42. Tomaselli R. and Gentile S., 1971. La Riserva naturale integrale “Bosco Siro Negri” dell’Università di Pavia. Atti Ist. Bot. Lab. Critt. Univ. Pavia 6: 41–70.Google Scholar
  43. Vera F.W.M., 2000. Grazing ecology and forest history. Wallingford, Cabi Publishing.CrossRefGoogle Scholar
  44. Wedin D.A. and Tilman D., 1996. Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science (Washington) 274: 1720–1723.CrossRefGoogle Scholar
  45. White P.S. and Walker J.L., 1997. Approximating nature’s variation: selecting and using reference information in Restor. Ecol. Restor. Ecol. 5: 338–349.CrossRefGoogle Scholar
  46. Wilcove D.S., Rothstein D., Dubow J., Phillips A., and Losos E. 1998. Assessing the relative importance of habitat destruction, alien species, pollution, over-exploitation, and disease. BioScience 48: 607–616.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  1. 1.Dep. AGROSELVITERUniversity of TurinGrugliascoItaly
  2. 2.Dep. ECOTERUniversity of PaviaPaviaItaly

Personalised recommendations