Annals of Forest Science

, Volume 66, Issue 3, pp 301–301

Landscape metrics for characterization of forest landscapes in a sustainable management framework: Potential application and prevention of misuse

  • Emilio R. Diaz-Varela
  • Manuel F. Marey-Pérez
  • Antonio Rigueiro-Rodriguez
  • Pedro Álvarez-Álvarez
Original Article

Abstract

  • • The use of landscape indices in the analysis of forest landscapes offers great potential for integration of spatial pattern information in management processes, but requires understanding of the limitations and correct interpretation of results. In this sense, awareness of scale effects on landscape indices is essential, especially when the data available is restricted to low-resolution maps.

  • • In this study, developed within the framework of the FORSEE project, the objective was to define accurately the potential usefulness of applying landscape indices to low-resolution maps commonly used in forestry studies. Landscape indices were applied to two maps differing in spatial resolution, and subsets were defined for three spatial extensions. Correlation analysis and comparison of the results were carried out to enable identification of the most suitable indices for use with low resolution data.

  • • The analysis enabled identification of the least scale-dependent indices, which are thus more useful for extrapolating results from low-resolution data. In general terms, diversity and edge indices provided the best results.

  • • We conclude that some (but not all) of the landscape indices can be used to analyse low-resolution maps with acceptable results. Additional advice is made to prevent misuse of the application of landscape indices.

Keywords

landscape indices scale pattern analysis sustainable forest management FORSEE project 

Indices quantitatifs de paysage pour une caractérisation des paysages forestiers dans le cadre d’une gestion durable : application potentielle et prévention de mauvaise utilisation

Résumé

  • • L’utilisation d’indices de paysage dans l’analyse des paysages forestiers offre un grand potentiel pour l’intégration d’informations de modèles spatiaux dans les processus de gestion, mais exige la compréhension des limitations et une interprétation correcte de résultats. Dans ce sens, la conscience des effets d’échelle sur les indices de paysage est essentielle, particulièrement quand les données disponibles sont limitées aux cartes de basse résolution.

  • • Dans cette étude, développée dans le cadre du projet FORSEE, l’objectif était de définir précisément l’utilité potentielle d’application des indices de paysage aux cartes de basse résolution, généralement utilisées dans les études de sylviculture. Les indices de paysage ont été appliqués à deux cartes différant par la résolution spatiale et les sous-ensembles ont été définis pour trois extensions spatiales. Une analyse de corrélation et la comparaison des résultats ont été effectuées pour permettre l’identification des indices les plus appropriés pour une utilisation avec des données de basse résolution.

  • • L’analyse a permis l’identification des indices les moins dépendants de l’échelle, qui sont ainsi plus utiles pour extrapoler les résultats de données de basse résolution. En termes généraux, la diversité et des indices de bord ont fourni les meilleurs résultats.

  • • Nous concluons que certains (mais pas tous) indices de paysage peuvent être utilisés pour analyser les cartes de basse résolution avec des résultats acceptables. Un conseil supplémentaire est fait pour prévenir une mauvaise utilisation des indices de paysage.

Mots-clés

indices de paysage échelle modèle d’analyse gestion durable des forêts projet FORSEE 

References

  1. Andersson F., Birot Y., and Päivinen R., 2004. Towards the sustainable use of Europe’s forests — Forest ecosystems and landscape research: Scientific challenges and opportunities. EFI Proceedings No. 49, European Forest Institute.Google Scholar
  2. Bailey D., Billeter R., Aviron S., Schweiger O., and Herzog F., 2007a. The influence of thematic resolution on metric selection for biodiversity monitoring in agricultural landscapes. Landsc. Ecol. 22: 461–473.CrossRefGoogle Scholar
  3. Bailey D., Herzog F., Augenstein I., Aviron S., Billeter R., Szerencsits E., and Baudry J., 2007b. Thematic resolution matters: Indicators of landscape pattern for European agro-ecosystems. Ecological Indicators 7: 692–709.CrossRefGoogle Scholar
  4. Baldwin D.J.B., Weaver K., Schnekenburger F., and Perera A.H., 2004. Sensitivity of landscape pattern indices to input data characteristics on real landscapes: implications for their use in natural disturbance emulation. Landsc. Ecol. 19: 255–271.CrossRefGoogle Scholar
  5. Bengtsson J., Nilsson S.G., Franc A., and Menozzi P., 2000. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manage. 132: 39–50.CrossRefGoogle Scholar
  6. Benson B.J. and MacKenzie M.D., 1995. Effects of sensor spatial resolution on landscape structure parameters. Landsc. Ecol. 10: 113–120.CrossRefGoogle Scholar
  7. Botequilha Leitao A. and Ahern J., 2002. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc. Urban Plann. 59: 65–93.CrossRefGoogle Scholar
  8. Botequilha Leitao A., Miller J., Ahern J., and McGarigal K., 2006. Measuring landscapes. A planner’s handbook, Island Press, Washington, 245 p.Google Scholar
  9. Buyantuyev A. and Wu J., 2007. Effects of thematic resolution on landscape pattern analysis. Landsc. Ecol. 22: 7–13.CrossRefGoogle Scholar
  10. Corry R.C. and Nassauer J.I., 2005. Limitations of using landscape pattern indices to evaluate the ecological consequences of alternative plans and designs. Landsc. Urban Plann. 72: 265–280.CrossRefGoogle Scholar
  11. Falcao A.O. and Borges J.G., 2005. Designing decision support tools for Mediterranean forest ecosystems management: a case study in Portugal. Ann. For. Sci. 62: 751–760.CrossRefGoogle Scholar
  12. Franklin J.F. and Forman R.T.T., 1987. Creating landscape patterns by forest cutting: Ecological consequences and principles. Landsc. Ecol. 1: 5–18.CrossRefGoogle Scholar
  13. Frohn R.C., 1998. Remote sensing for landscape ecology. New metric indicators for monitoring, modeling, and assessment of ecosystems, Lewis Publishers, Boca Raton, 99 p.Google Scholar
  14. Frohn R.C. and Hao Y., 2006. Landscape metric performance in analyzing two decades of deforestation in the Amazon Basin of Rondonia, Brazil. Remote Sens. Environ. 100: 237–251.CrossRefGoogle Scholar
  15. Gonzalez J.R., Palahí M., and Pukkala T., 2000. Integrating fire risk considerations in forest management planning in Spain — a landscape level perspective. Landsc. Ecol. 20: 957–970.CrossRefGoogle Scholar
  16. Gustafson E.J., 1998. Quantifying Landscape Spatial Pattern: What Is the State of the Art? Ecosystems 1: 143–156.CrossRefGoogle Scholar
  17. Hargis C.D., Bissonette J.A., and David J.L., 1998. The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc. Ecol. 13: 167–186.CrossRefGoogle Scholar
  18. Hoover S.R. and Parker A.J., 1991. Spatial components of biotic diversity in landscapes of Georgia, USA. Landsc. Ecol. 5: 125–136.CrossRefGoogle Scholar
  19. Huang C., Geiger E.L., and Kupfer J.A., 2006. Sensitivity of landscape metrics to classification scheme. Int. J. Remote Sens. 27: 2927–2948.CrossRefGoogle Scholar
  20. Jelinski D.E. and Wu J., 1996. The modifiable areal unit problem and implications for landscape ecology. Landsc. Ecol. 11: 129–140.CrossRefGoogle Scholar
  21. Klijn F., 1991. Hierarchical classification of ecosystems: a tool for susceptibility analysis and quality evaluation for environmental policy. In: Ravera O. (Ed.), Terrestrial and aquatic ecosystems. Perturbation and recovery, Ellis Horwood, London, pp. 80–89.Google Scholar
  22. Lausch A. and Herzog F., 2002. Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecol. Indic. 2: 3–15.CrossRefGoogle Scholar
  23. Li H. and Wu J., 2004. Use and misuse of landscape indices. Landsc. Ecol. 19: 389–399.CrossRefGoogle Scholar
  24. Li X.Z., He H.S., Bu R.C., Wen Q.C., Chang Y., Hu Y.M., and Li Y.H., 2005. The adequacy of different landscape metrics for various landscape patterns. Pattern Recogn. 38: 2626–2638.CrossRefGoogle Scholar
  25. Lindenmayer D.B., Margules C.R., and Botkin D.B., 2000. Indicators of biodiversity for ecologically sustainable forest management. Conserv. Biol. 14: 941–950.CrossRefGoogle Scholar
  26. Lloret F., Calvo E., Pons X., and Diaz-Delgado X., 2002. Wildfires and landscape patterns in the Eastern Iberian peninsula. Landsc. Ecol. 17: 745–759.CrossRefGoogle Scholar
  27. Löfman S. and Kouki J. 2003. Scale and dynamics of a transforming forest landscape. For. Ecol. Manage. 175: 247–252.CrossRefGoogle Scholar
  28. Marceau D.J., 1999. The scale issue in social and natural sciences. Can. J. Remote Sens. 25: 347–356.Google Scholar
  29. Marey M.F., 2003. Tenencia de la tierra en Galicia: Modelo para la caracterización de los propietarios forestales. Doctoral Thesis. University of Santiago de Compostela.Google Scholar
  30. Martin-Garcia J., Herve J., and Diez J.J., 2006. Landscape metrics as surrogates for bird assemblages in biodiversity indicators. Indicators for Sustainable forest management in cultivated forests: International Conference FORSEE Project Final Meeting, 11–13 December 2006, Porto (Portugal).Google Scholar
  31. McAlpine C.A. and Eyre T.J., 2002. Testing landscape metrics as indicators of habitat loss and fragmentation in continuous eucalypt forests (Queensland, Australia). Landsc. Ecol. 17: 711–728.CrossRefGoogle Scholar
  32. McGarigal K., Cushman S.A., Neel M.C., and Ene E., 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. University of Massachussetts. Available on the internet, URL: www.umass.edu/landeco/research/fragstats/fragstats.html.Google Scholar
  33. Nagendra H., 2002. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography 22: 175–186.CrossRefGoogle Scholar
  34. Nakamura F., Inahara S., and Kaneko M., 2005. A hierarchical approach to ecosystem assessment of restoration planning at regional, catchment and local scales in Japan. Landscape and Ecological Engineering 1: 43–52.CrossRefGoogle Scholar
  35. O’Neill R.V., Krummel J.R., Gardner R.H., Sugihara G., Jackson B., DeAngelis D.L., Milne B.T., Turner M.G., Zygmunt B., Christensen S.W., Dale V.H., and Graham R.L., 1988. Indices of landscape pattern. Landsc. Ecol. 1: 153–162.CrossRefGoogle Scholar
  36. Pagano M. and Gauvreau K., 2001. Principios de Bioestadística. Thomson Learning, México D.F., 525 p.Google Scholar
  37. Päivinen R. and Köhl M., 2005. European Forest Information and Communication System (EFICS), Technical Report 17, European Forest Institute. Available on the internet, URL: http://www.efi.fi/ publications/technical-reports/17.html (last visit 23/07/2007).Google Scholar
  38. Riitters K.H., Wickham J.D., O’Neill R.V., Jones K.B., Smith E.R., Coulston J.W., Wade T.G., and Smith J.H., 2002. Fragmentation of continental United States forests. Ecosystems 5: 815–822.CrossRefGoogle Scholar
  39. Romme W.H., 1982. Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecol. Monogr. 52: 199–221.CrossRefGoogle Scholar
  40. Saura S., 2002. Effects of minimum mapping unit on land cover data spatial configuration and composition. Int. J. Remote Sens. 23: 4853–4880.CrossRefGoogle Scholar
  41. Saura S., 2004. Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices. Landsc. Ecol. 19: 197–209.CrossRefGoogle Scholar
  42. Saura S. and Carballal P., 2004. Discrimination of native and exotic forest patterns through shape irregularity indices: an analysis in the landscapes of Galicia, Spain. Landsc. Ecol. 19: 647–662.CrossRefGoogle Scholar
  43. Saura S. and Martínez-Millán J., 2001. Sensitivity of landscape pattern metrics to map spatial extent. Photogram. Eng. Remote Sens. 67: 1027–1036.Google Scholar
  44. Sims R.A., Mackey B.G., and Baldwin K.A., 1995. Stand and landscape level applications of a forest ecosystem classification for northwestern Ontario, Canada. Ann. For. Sci. 52: 573–588.CrossRefGoogle Scholar
  45. Spearman C., 1904. The proof and measurement of association between two things. Am. J. Psychol. 15: 72–101.CrossRefGoogle Scholar
  46. SPSS Inc., 2005. SPSSTM version14.0.1. Statistical software. Statistical Products and Service Solutions Inc., Chicago.Google Scholar
  47. Thompson C.M. and McGarigal K., 2002. The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landsc. Ecol. 17: 569–586.CrossRefGoogle Scholar
  48. Trani M.K. and Giles R.H., 1999. An analysis of deforestation: Metrics used to describe pattern change. For. Ecol. Manage. 114: 459–470.CrossRefGoogle Scholar
  49. Turner M.G., O’Neill R.V., Gardner R.H., and Milne B.T., 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landsc. Ecol. 3: 153–162.CrossRefGoogle Scholar
  50. Von Gadow K., Pukkala T. and Tome M., 2000. Sustainable Forest Management. Kluwer Academic Publishers, Dordrecht, 356 p.Google Scholar
  51. Wu J., 2004. Effects of changing scale on landscape pattern analysis: scaling relations. Landsc. Ecol. 19: 125–138.CrossRefGoogle Scholar
  52. Wu J., Shen W., Sun W., and Tueller P.T., 2002. Empirical patterns of the effects of changing scale on landscape metrics. Landsc. Ecol. 17: 761–782.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • Emilio R. Diaz-Varela
    • 1
  • Manuel F. Marey-Pérez
    • 1
  • Antonio Rigueiro-Rodriguez
    • 2
  • Pedro Álvarez-Álvarez
    • 2
  1. 1.Department of Agroforestry EngineeringUniversity of Santiago de CompostelaSpain
  2. 2.Department of Vegetal ProductionUniversity of Santiago de CompostelaSpain

Personalised recommendations