Annals of Forest Science

, Volume 66, Issue 1, pp 109–109 | Cite as

Evaluation of decay resistance of wood products made from borax-impregnated wood and bonded with a formaldehyde-free cornstarch and tannin adhesive

  • Amine MoubarikEmail author
  • Bertrand Charrier
  • Fatima Charrier
  • Antonio Pizzi
  • Ahmed Allal
Original Article


  • • At present, the production of wood composites mainly relies on the petrochemical-based and formaldehyde-based adhesives such as phenol-formaldehyde (PF) resins and urea-formaldehyde (UF) resins, which are non-renewable and therefore ultimately limited in supply.

  • • This paper concerns the decay resistance of wood products bonded with a new, environment-friendly adhesive derived from abundant and renewable cornstarch and tannin. To improve the total resistance of the composite against both Coriolus versicolor and Coniophora puteana rot fungi, borax (di-sodium tetraborate) was added in proportions of 0.5%, 1% and 2% (w/w) to the cornstarch-tannin adhesives.

  • • The results show that increasing the concentration of borax in the adhesive decreased the mechanical properties of the composite. The best way to avoid this problem was to use wood impregnated with borax.

  • • Biodegradation studies were conducted on new composites, first without any treatment, followed by borax at 0.5% aqueous solution treatment. The results show that wood impregnated with borax, in the presence of tannin and sodium hydroxide in the adhesive improves the total resistance of the wood composite against both Coriolus versicolor and Coniophora puteana rot fungi.


borax cornstarch decay resistance tannin wood adhesive 

Évaluation de la durabilité des produits en bois imprégnés avec du borax et collés avec un adhésif naturel à base d’amidon de maïs et de tannin


  • • Actuellement, la production des composites à base de bois nécessite l’utilisation d’adhésifs d’origine pétrochimique et à base de formaldéhyde, tels que le phénol-formaldéhyde (PF) et l’uréeformaldéhyde (UF), qui sont non renouvelables et limités dans l’approvisionnement.

  • • Ce travail a pour objectif d’étudier la durabilité du bois collé avec une nouvelle colle naturelle à base d’amidon et tannin. Pour améliorer la résistance des composites vis-à-vis des deux types principaux de dégradation fongique, Coriolus versicolor et Coniophora puteana, nous avons ajouté à l’adhésif, différentes concentrations de borax (di-sodium tetraborate) 0,5 %, 1 % et 2 % (m/m).

  • • Les résultats obtenus montrent que l’augmentation de la concentration du borax dans l’adhésif diminue les performances mécaniques des composites. La meilleure façon d’éviter ce problème est de traiter le bois avec du borax, avant collage.

  • • L’étude de la biodégradation a été réalisée sur les nouveaux composites, d’abord sans traitement, et après traitement à 0,5 % (m/m) avec du borax. Les résultats montrent que le bois traité au borax associé à la présence des tannins et de NaOH dans l’adhésif améliore la résistance totale des composites vis-à-vis de Coriolus versicolor et Coniophora puteana.


borax amidon de maïs durabilité tannin adhésif 


  1. Aloui F., Ayadi N., Charrier F., and Charrier B., 2004. Durability of European oak (Quercus petraea and Quercus robur) against white rot fungi (Coriolus versicolor): relations with phenol extractives. Holz Roh Werkst. 62: 286–290.CrossRefGoogle Scholar
  2. Bech-Anderson J., 1987. Production and neutralization of oxalic acid produced by the dry rot fungus and other brown rot fungi. IRG/WP/1330.Google Scholar
  3. British Standard 1204, 1965. Part 2. Specification for synthetic resins adhesives.Google Scholar
  4. Charrier B., Haluk J.P., Klumpers J., and Janin G., 1995. Characterisation of European oak wood constituents acting in the brown discoloration during kiln drying. Holzforschung 49: 168–172.CrossRefGoogle Scholar
  5. Cornelius M.L., Bland J.M., Daigle D.J., Williams K.S., Lovisa M.P., Connick W.J. Jr., and Lax A.R., 2004. Effect of a lignin-degrading fungus on feeding preferences of formosan subterranean termite (Isoptera: Rhinotermitidae) for different commercial lumber. J. Econ. Entomol. 97: 1025–1035.PubMedCrossRefGoogle Scholar
  6. Cullen D. and Kersten P.J., 2004. Enzymology and molecular biology of lignin degradation. Biochem. Mol. Biol. 60: 2524–2532.Google Scholar
  7. Custers P.A.J.L., Rushbrook R., Pizzi A., and Knauff C.J., 1979. Industrial applications of wattle-tannin/urea-formaldehyde fortified starch adhesives for damp-proof corrugated cardboard. Holzforsch. Holzverwert. 31: 131–133.Google Scholar
  8. Drysdale J.A., 1994. Boron treatments for the preservation of wood-A review of efficacy data for fungi and termites. The International Research Group on Wood Preservation, Doc IRG/WP 94-30037, IRG secretariat, Stockholm, Sweden.Google Scholar
  9. Dutton M.V., Evans C.S., Atkey P.T., and Wood D.A., 1993. Oxalate production by Basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 39: 5–10.Google Scholar
  10. Eduardo E. and Eduardo A., 1991. Production and degradation of oxalic acid by brown rot fungi. Appl. Environ. Microbiol. 57: 1980–1986.Google Scholar
  11. European Standard EN 113, 1996. Wood preservatives — Test method for determining the protective effectiveness against wood destroying basidiomycetes — Determination of toxic values. European Committee for Standardization (CEN), Brussels, Belgium.Google Scholar
  12. Gökay Nemli E., Derya G., Sibel Y., Ali T., and Aytaç A., 2006. Evaluation of the mechanical, physical properties and decay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives. Bioresource Technol. 97: 2059–2064.CrossRefGoogle Scholar
  13. Green F. and Clausen C.A., 2003. Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int. Biodeterior. Biodegradation 51: 145–149.CrossRefGoogle Scholar
  14. Hart J.H. and Hillis W.E., 1972. Inhibition of wood rotting fungi by ellagitannins in the heartwood of Quercus alba. Phytopatholog. 62: 620–626.CrossRefGoogle Scholar
  15. Illman B.L., Meinholtz D.C., and Highly T.L., 1988. Generation of hydroxyl radical by the brown rot fungus, Postia placenta. Stockholm, Int. Res. Group on Wood Pres. Doc.No. IRG/WP/ 1360.Google Scholar
  16. Imam S.H., Sherald H.G., Lijun M., and Liang C., 2001. Environmentally friendly wood adhesive from a renewable plant polymer: characteristics and optimization. Polym. Degrad. Stab. 73: 529–533.CrossRefGoogle Scholar
  17. Imam S.H., Lijun M., Liang C., and Greene R.V., 1999. Wood adhesive from crosslinked poly(vinyl alcohol) and partially gelatinized starch: preparation and properties. Stärke 51: 5225–5229.CrossRefGoogle Scholar
  18. Kamoun C., Pizzi A., and Zanetti M., 2003. Upgrading melamine-urea-formaldehyde polycondensation resins with buffering additives. I. The effect of hexamine sulfate and its limits. J. Appl. Polym. Sci. 90: 203–214.CrossRefGoogle Scholar
  19. Keith I.H. and Telliard W.I., 1979. Priority pollutants. I. A perspective view. Environ. Sci. Technol. 13: 416–23.CrossRefGoogle Scholar
  20. Knudson R.M., 1990. Commercial development of borate-treated wood composites. In: Hamel, H. (Ed.), Proceedings, First International Conference on Wood Protection with Diffusible Preservatives. Forest Products Research Society, Proceedings No. 47355, Madison, WI, 107–109.Google Scholar
  21. Mansouri H.R. and Pizzi A., 2007. Recycled micronized polyurethane powders as active extenders of UF and PF wood panel adhesives. Holz Roh Werkst. 65: 293–299.CrossRefGoogle Scholar
  22. Mansouri H.R., Pizzi A., and Leban J.M., 2006. Improved water resistance of UF adhesives for plywood by small pMDI additions. Holz Roh Werkst. 64: 218–220.CrossRefGoogle Scholar
  23. Nemli G., Derya Gezer E., Yildiz S., Temiz A., and Aydin A., 2006. Evaluation of the mechanical, physical properties and decay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives. Bioresource Technol. 97: 2059–2064.CrossRefGoogle Scholar
  24. Nihat S.C. and Nilgül Ö., 2002. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production. II. Particleboard production and properties. Int. J. Adhes. Adhes. 22: 481–486.Google Scholar
  25. Pichelin F., Kamoun C., and Pizzi A., 1999. Hexamine hardener behaviour: effects on wood glueing, tannin and other wood adhesives. Holz Roh Werkst. 57: 305–317.CrossRefGoogle Scholar
  26. Pandeya K.K. and Pitmanb A.J., 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 52: 151–160.CrossRefGoogle Scholar
  27. Pizzi A., 1977. Hot-setting tannin-urea-formaldehyde exterior wood adhesives. Adhes. Age 20: 27–35.Google Scholar
  28. Pizzi A. and Conradie W.E., 1986. A chemical balance-microdistribution theory — New CCA formulations for soft-rot control. Mater. Org. 21: 31–46.Google Scholar
  29. Pizzi A. and Tekely P., 1995. Mechanism of polyphenolic tannin resin hardening by hexamethylenetetramine: CP-MAS 13C NMR. J. Appl. Polym. Sci. 56: 1645–1650.CrossRefGoogle Scholar
  30. Pizzi A. and Tekely P., 1996. Hardening mechanisms by hexamethylenetetramine of fast-reacting phenolic wood adhesives — a CPMAS 13C NMR study. Holzforschung 50: 277–281.CrossRefGoogle Scholar
  31. Sutter H.P., Jones E.B.G., and Walchli O., 1983. The mechanism of copper tolerance in Poria placenta (Fr.) Cke. and Poria vaillantii (Pers.). Fr. Mater. Org. 18: 241–262.Google Scholar
  32. Zucker W.V., 1983. Tannins: Does structure determine function? An ecological perspective. Am. Nat. 121: 335–365.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • Amine Moubarik
    • 1
    Email author
  • Bertrand Charrier
    • 1
  • Fatima Charrier
    • 1
  • Antonio Pizzi
    • 2
  • Ahmed Allal
    • 3
  1. 1.Sylvadour, IUT des Pays de l’AdourMont de MarsanFrance
  2. 2.ENSTIBUniversité de Nancy 1ÉpinalFrance
  3. 3.IPREM-EPCP (UMR 5254)Université de Pau et des Pays de l’AdourPau Cedex 9France

Personalised recommendations