Annals of Forest Science

, Volume 66, Issue 1, pp 108–108 | Cite as

Potential productivity of forested areas based on a biophysical model. A case study of a mountainous region in northern Spain

  • Raquel Benavides
  • Sonia Roig
  • Koldo Osoro
Original Article


  • • Today’s forest managers face a number of important challenges involving an increasing need for precise estimates of forest structure and biomass, potential productivity or forest growth. The objective is to develop a model for potential productivity in a mountainous region of Spain. The model combines climatic, topographic and lithological data using a variant of a traditional biophysical model: the Paterson index.

  • • In a first approach, the climatic productivity is assessed by modelling the required parameters using different geostatistical techniques and software supported by GIS. A second approach includes the correction of the former productivity classes considering the different lithological facies. The potential forest productivity model involves the integration of both models.

  • • Finally, data from the National Forest Inventory (NFI) are used to compare the real and potential yield data within different regions of the studied area.

  • • The results of these analyses demonstrate the usefulness of the model, particularly in mountainous regions, where no significant differences are found between the data from the NFI and the model, but they also show the discrepancies between the estimates and real data when the latter are considered for different tree species, diameter classes or management.


geostatistics GIS land use planning modelling yields 

Productivité potentielle des forêts à partir d’un modèle biophysique. Étude du cas d’une région montagneuse dans le nord de l’Espagne


  • • Les gestionnaires forestiers doivent actuellement faire face à de nombreux défis qui impliquent un besoin croissant d’estimateurs précis de la structure et de la biomasse, de la productivité potentielle et de la croissance des forêts.

  • • L’objectif de ce travail est la modélisation de la productivité potentielle dans une région montagneuse de l’Espagne. Le modèle combine des données climatiques, topographiques et lithologiques et se base sur une variante d’un modèle biophysique classique : l’indice de Paterson.

  • • Dans une première approche, la productivité climatique est estimée en modélisant les paramètres requis grâce à différentes techniques géostatistiques et de logiciels relevant des systèmes d’information géographique (SIG). Une deuxième approche consiste corriger les anciennes classes de productivité en prenant en compte les facies lithologiques. Le modèle de productivité forestière potentielle a été obtenu en combinant ces deux modèles. Finalement, les données de l’Inventaire Forestier National (IFN) sont utilisées pour comparer les rendements réels et potentiels dans les différentes régions de la zone étudiée.

  • • Les résultats de ces analyses ont montré l’utilité du modèle, en particulier dans les régions montagneuses, où aucune différence significative n’a été décelée entre les données IFN et le modèle. Ces résultats ont cependant mis aussi en évidence des divergences entre la productivité potentielle et données réelles lorsque l’on compare différentes espèces, classes de diamètre ou modes de gestion.


techniques géostatistiques SIG gestion de l’usage des sols modélisation rendements 


  1. Adame P., Cañellas I., Roig S., and del Rio M. 2006. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Ann. For. Sci. 63: 929–940.CrossRefGoogle Scholar
  2. Battaglia M. and Sands P.J. 1998. Process-based forest productivity models and their applications in forest management. For. Eco. Manage. 102: 13–32.CrossRefGoogle Scholar
  3. Benavides R., Montes F., Rubio A., and Osoro K. 2007. Geostatistical modelling of air temperature in a mountainous region of northern Spain. Agric. For. Meteorol. 146: 173–188.CrossRefGoogle Scholar
  4. Bernier P.Y., Fournier R.A., Ung C.H., Robitaille G., Larocque G.R., Lavigne M.B., Boutin R., Raulier F., Paré D., Beaubien J., and Delisle C., 1999. Linking ecophysiology and forest productivity: An overview of the ECOLEAP project. For. Chron. 75: 417–421.Google Scholar
  5. Bravo F. and Díaz-Balteiro L., 2004. Evaluation of new silvicultural alternatives for Scots pine stands in northern Spain. Ann. For. Sci 61: 163–169.CrossRefGoogle Scholar
  6. Bravo F. and Montero G., 2003. High-grading effects on Scots pine volume and basal area in pure stands in northern Spain. Ann. For. Sci. 60: 11–18.CrossRefGoogle Scholar
  7. Bravo F., Rivas J.C., Monreal J.A., and Ordóñez C., 2005. Basifor 2.0: aplicación informàtica para el manejo de las bases de datos del inventario forestal nacional. In: IV Congreso Forestal Español, Zaragoza, Spain.Google Scholar
  8. Bravo-Oviedo A. and Montero G., 2006. Site index in relation to edaphic variables in stone pine (Pinus pinea L.) stands in south west Spain. Ann. For. Sci. 62: 61–72.CrossRefGoogle Scholar
  9. Carrega P., 1995. A method for reconstruction of mountain air temperatures with automatic cartographic applications. Theor. Appl. Climatol. 52: 69–84.CrossRefGoogle Scholar
  10. Daniel T.W., Helms J.A., and Baker F.S., 1979. Principles of silviculture. McGraw-Hill, New York, 521 p.Google Scholar
  11. Del Río M., Rivas J.C., Condés S., Martínez-Milán J., Montero G., Cañellas I., Ordóñez C., Pando V., San Martín R., and Bravo F., 2002. BASIFOR: Aplicación informática para el manejo de bases de datos del Segundo Inventario Forestal Nacional. In: Bravo F., Río M., Del Peso C. (Eds.), El Inventario Forestal Nacional. Universidad de Valladolid — MMA, Palencia, 181–191 p.Google Scholar
  12. Environmental Systems Research Institute, Inc. (ESRI), 2004. ArcGIS Desktop, Version 9.0. Reedlands, Washington.Google Scholar
  13. Environmental and Territorial Cartography Centre. Digital map of lithology in Asturias, 1:25 000 scale, Planning and Infrastructures Department, Regional Government of Asturias.Google Scholar
  14. Fernández S., Marquínez J., and Menéndez R., 2005. A susceptibility model for post wildfire erosion in a temperate oceanic mountain area of Spain. Catena 61: 256–272.CrossRefGoogle Scholar
  15. Gandullo J.M., 1994. Climatología y Ciencia del Suelo, Universidad Politécnica de Madrid, Fundación Conde del Valle de Salazar, Madrid.Google Scholar
  16. García López J.M., and Allué Camacho C., 2006. Characterization and phytoclimatic potentialities of Quercus petraea (Matt.) Liebl. and Quercus robur L. forests in Spain. Invest. Agrar: Sist. Recur. For. 15: 277–295.Google Scholar
  17. Gaussen H., 1954. Théorie et classification des climats et des micro-climats du point de vue Phytogéographique. In: Le VIII Congrès International de Botanique, Paris, pp 125–130.Google Scholar
  18. Goelz J.C.G. and Burk T.E., 1992. Development of a well-behaved site index equation: Jack pine in north central Ontario. Can. J. For. Res. 22: 776–784.CrossRefGoogle Scholar
  19. Goodale C., Aber J.D., and Ollinger S.V., 1998. Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Climate Res. 10: 35–49.CrossRefGoogle Scholar
  20. Goovaerts P., 2000. Geostatistical approaches fro incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 228: 113–129.CrossRefGoogle Scholar
  21. Hägglund B., 1981. Evaluation of forest site productivity. Forest Abstracts. Review Article 42: 515–527.Google Scholar
  22. Havesi J.A., Flint A.L., and Istok J.D., 1992. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis. J. Appl. Meteorol. 31: 677–688.CrossRefGoogle Scholar
  23. Hudson G. and Wackernagel H., 1994. Mapping temperatures using kriging with external drift: theory and an example from Scotland. Int. J. Climatol. 14: 77–91.CrossRefGoogle Scholar
  24. Johnston D.R., Grayson A.J., and Bradley R.T., 1967. Forest Planning, Faber and Faber Limited, London, 541 p.Google Scholar
  25. Kumar L., Skidmore A.K., and Knowles E., 1997. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 11: 475–497.CrossRefGoogle Scholar
  26. Landsberg J., 2003. Modelling forest ecosystems: state of the art, challenges and future directions. Can. J. For. Res. 33: 385–397.CrossRefGoogle Scholar
  27. Landsberg J.J. and Waring R.H., 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance, and partitioning. For. Ecol. Manage. 95: 209–228.CrossRefGoogle Scholar
  28. Lemieux G.L., 1961. An evaluation of Paterson’s CVP Index in Eastern Canada, Canada Department of Forestry, Forest Research Branch, Technical Note 112, 12 p.Google Scholar
  29. Marquínez J., Lastra J., and García P., 2003. Estimation models for precipitation in mountainous regions, the use of GIS and multivariate analysis. J. Hydrol. 270: 1–11.CrossRefGoogle Scholar
  30. Milner K.S., Running S.W., and Coble D.W., 1996. A biophysical soilsite model for estimating potential productivity of forested landscape. Can. J. For. Res. 26: 1174–1186.CrossRefGoogle Scholar
  31. Ministry of Environment of Spain, 2003. III Inventario Forestal Nacional (1997–2006). Principado de Asturias, Dirección General de Conservación de la Naturaleza, Secretaría General de Medio Ambiente, MMA, Madrid, 439 p.Google Scholar
  32. Monserud R.A., and Sterba H., 1996. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For. Ecol. Manage. 80: 57–80.CrossRefGoogle Scholar
  33. Ni J., 2004. Forest productivity of the Altay and Tianshan Mountains in the dryland, northwest China. For. Ecol. Manage. 202: 13–22.CrossRefGoogle Scholar
  34. Odeh I.O.A., McBratney A.B., and Chittleborough D.J., 1994. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 63: 197–214.CrossRefGoogle Scholar
  35. Paterson S.S., 1956. The forest area of the world and its potential productivity, Royal University of Göteborg, Göteborg.Google Scholar
  36. Rolland C., 2002. Spatial and seasonal variations of air temperature lapse rates in Alpine Regions. J. Climate 16: 1032–1046.CrossRefGoogle Scholar
  37. Rodríguez Soalleiro R., Álvarez González J.G., and Schröder J., 2000. Simulation and comparison of silvicultural alternatives for even-aged Pinus pinaster Ait. stands in Galicia (Northwestern Spain). Ann. For. Sci. 57: 747–754CrossRefGoogle Scholar
  38. Sánchez Palomares O. and Sánchez Serrano F., 2000. Mapa de productividad potencial forestal de España. Cartografía digita, Dirección General de Conservación de la Naturaleza, MMA, Madrid, 317 p.Google Scholar
  39. Serrada R., 1976. Método para la evaluación con base ecológica de la productividad potencial de las masas forestales en grandes regiones y su aplicación en la España Peninsular, Ph.D. thesis, unpublished, Universidad Politécnica de Madrid, Madrid, 80 p.Google Scholar
  40. Shao G. and Reynolds K.M., (Eds) 2006. Computer applications in sustainable forest management including perspectives on collaboration and integration. Springer, Netherlands, 276 p.Google Scholar
  41. SPSS Inc., 2004. Statistical package for social sciences. Version 12.0. Chicago, Illinois.Google Scholar
  42. Tickle P.K., Coops N.C., Hafner S.D., and The Bago Science Team, 2001. Assessing forest productivity at local scales across a native eucalypt forest using a process model, 3PG-SPATIAL. For. Ecol. Manage. 152: 275–291.CrossRefGoogle Scholar
  43. Stoutjesdijk P. and Barkman J.J., 1992. Microclimate, Vegetation and Fauna, Opulus Press, Sweden, 216 p.Google Scholar
  44. Ung C.H., Bernier P.Y., Raulier F., Fournier R.A., Lambert M.C., and Régnière J., 2001. Biophysical site indices for shade tolerant and intolerant boreal species. For. Sci. 47: 83–95.Google Scholar
  45. Vanclay J.K., 1994. Modelling forest growth and yield. Applications to mixed tropical forests. CAB International, 312 p.Google Scholar
  46. Wang Y., Raulier F., and Ung C.H., 2005. Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods — A case study of lodge pine productivity. For. Ecol. Manage. 214: 201–211.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  1. 1.SERIDA, Área de Sistemas de Producción AnimalVillaviciosaSpain
  2. 2.Centro de Investigación Forestal (CIFOR)-INIAMadridSpain

Personalised recommendations