Dairy Science & Technology

, Volume 88, Issue 6, pp 631–647

Seasonal variation in the fatty acid composition of milk supplied to dairies in the mountain regions of Switzerland

  • Marius Collomb
  • Walter Bisig
  • Ueli Bütikofer
  • Robert Sieber
  • Mirjam Bregy
  • Luzi Etter
Original Article

Abstract

The influence of typical feeds from five mountain regions of Switzerland (altitude of grass-based feed (GBF) during the summer and winter seasons: 1247 (± 465) m and 1136 (± 310) m, respectively) on the fatty acid (FA) composition of bovine milk fat was studied over one year (from May 2004 to April 2005). Compared with winter, summer milk had a significantly lower concentration of saturated FA (SFA) (−8.6%) and significantly higher contents of monounsaturated FA (MUFA) (+19.9%), polyunsaturated FA (PUFA) (+21.7%), conjugated linoleic acid (CLA) (+70.1%), and trans FA other than CLA (+56.7%). Summer and winter milk from mountains did not significantly differ with respect to the contents of branched, n-3 and n-6 FA. However, the content of the main n-3 FA (α-linolenic acid) was significantly higher in summer than in winter milk and its content was positively correlated with increasing percentages of GBF and altitude.

milk fat fatty acid mountain milk winter milk summer milk 

Composition en acides gras du lait de montagne suisse. Variations saisonnières

Résumé

L’influence d’un affouragement typique des régions de montagne suisses (cinq régions; altitude du fourrage à base d’herbe durant les saisons estivale et hivernale : 1247 (± 465) m et 1136 (± 310) m, respectivement) sur la composition en acides gras du lait de vache a été étudiée pendant une année (de mai 2004 à avril 2005). Comparée à l’hiver, la matière grasse du lait d’été avait des concentrations significativement plus basses en acides gras saturés (−8,6 %) et plus élevées en monoinsaturés (+19,9 %), polyinsaturés (+21,7 %), acides linoléiques conjugués (ALC) (+70,1 %) et en acides gras trans (+56,7 %, ALC non inclus). Les concentrations en acides gras ramifiés, n-3 et n-6 du lait d’été et d’hiver n’étaient pas significativement différentes. Cependant, la concentration de l’acide gras n-3 principal de la matière grasse du lait, l’acide α-linolénique, était significativement plus élevée dans les laits d’été que dans ceux d’hiver et était positivement corrélée avec le pourcentage de fourrage à base d’herbe et avec l’altitude.

matière grasse du lait acide gras lait de montagne lait d’hiver lait d’été 

Abstract

5 ( 1247 ± 465 m 1136 ± 310 m) (2004 5 –2005 4) (−8.6%) (+19.9%) (+21.7%) (+70.1%) (+56.7%) n-3 n-6 n-3 (α-)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anonymous, Systat for Windows version 11, Chicago, USA, SPSS Inc (2004).Google Scholar
  2. [2]
    Bartsch B.D., Graham E.R.B., McLean D.M., Protein and fat composition and some manufacturing properties of milk from dairy cows fed hay and concentrate in various ratios, Austr. J. Agric. Res. 30 (1979) 191–199.CrossRefGoogle Scholar
  3. [3]
    Bauman D.E., Corl B.A., Peterson D.G., The biology of conjugated linoleic acids in ruminants, in: Sébédio J.-L., Christie W.W., Adlof R. (Eds.), Advances in Conjugated Linoleic Acid Research, vol. 2, AOAC Press, Champaign, USA, 2003, pp. 146–173.Google Scholar
  4. [4]
    Bugaud C., Buchin S., Coulon J.B., Hauwuy A., Dupont D., Influence of alpine pastures on plasmin activity, fatty acid and volatile compound composition of milk, Lait 81 (2001) 401–414.CrossRefGoogle Scholar
  5. [5]
    Chilliard Y., Ferlay A., Doreau M., Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids, Livest. Prod. Sci. 70 (2001) 31–48.CrossRefGoogle Scholar
  6. [6]
    Chilliard Y., Ferlay A., Mansbridge R.M., Doreau M., Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids, Ann. Zootech. 49 (2000) 181–205.CrossRefGoogle Scholar
  7. [7]
    Chouinard P.Y., Corneau L., Butler W.R., Chilliard Y., Drackley J.K., Bauman D.E., Effect of dietary lipid source on conjugated linoleic acid concentrations in milk fat, J. Dairy Sci. 84 (2001) 680–690.CrossRefGoogle Scholar
  8. [8]
    Collomb M., Bühler T., Analyse de la composition en acides gras de la graisse de lait. I. Optimisation et validation d’une méthode générale à haute résolution, Trav. Chim. Alim. Hyg. 91 (2000) 306–332.Google Scholar
  9. [9]
    Collomb M., Bütikofer U., Sieber R., Jeangros B., Bosset J.O., Composition of fatty acids in cow’s milk fat produced in the lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography, Int. Dairy J. 12 (2002) 649–659.CrossRefGoogle Scholar
  10. [10]
    Collomb M., Bütikofer U., Sieber R., Jeangros B., Bosset J.O., Correlation between fatty acids in cows’ milk fat produced in the lowlands, mountains and highlands of Switzerland and botanical composition of the fodder, Int. Dairy J. 12 (2002) 661–666.CrossRefGoogle Scholar
  11. [11]
    Collomb M., Schmid A., Sieber R., Wechsler D., Ryhänen E.-L., Conjugated linoleic acid in milk fat: variation and physiological effects, Int. Dairy J. 16 (2006) 1347–1361.CrossRefGoogle Scholar
  12. [12]
    Collomb M., Sieber R., Bütikofer U., CLA isomers in milk fat from cows fed diets with high levels of unsaturated fatty acids, Lipids 39 (2004) 355–364.CrossRefGoogle Scholar
  13. [13]
    Couvreur S., Hurtaud C., Marnet P.G., Faverdin P., Peyraud J.L., Composition of milk fat from cows selected for milk fat globule size and offered either pasture or a corn silage-based diet, J. Dairy Sci. 90 (2007) 392–403.CrossRefGoogle Scholar
  14. [14]
    Dewhurst R.J., Fisher W.J., Tweed J.K.S., Wilkins R.J., Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate, J. Dairy Sci. 86 (2003) 2598–2611.CrossRefGoogle Scholar
  15. [15]
    Dewhurst R.J., Shingfield K.J., Lee M.R.F., Scollan N.D., Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems, Anim. Feed Sci. Technol. 131 (2006) 168–206.CrossRefGoogle Scholar
  16. [16]
    Dhiman T.R., Arnand G.R., Satter L.D., Pariza M.W., Conjugated linoleic acid content of milk from cows fed different diets, J. Dairy Sci. 82 (1999) 2146–2156.CrossRefGoogle Scholar
  17. [17]
    Ferlay A., Agabriel C., Sibra C., Journal C., Martin B., Chilliard Y., Tanker milk variability in fatty acids according to farm feeding and husbandry practices in a French semimountain area, Dairy Sci. Technol. 88 (2008) 193–215.CrossRefGoogle Scholar
  18. [18]
    Ferlay A., Martin B., Pradel P., Coulon J.B., Chilliard Y., Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbéliarde cow breeds, J. Dairy Sci. 89 (2006) 4026–4041.CrossRefGoogle Scholar
  19. [19]
    Harfoot C.G., Hazlewood G.P., Lipid metabolism in the rumen, in: Hobson P.N., Stewart C.S. (Eds.), The Rumen Microbial Ecosystem, 2nd edn., Chapman and Hall, London, UK, 1997, pp. 382–426.Google Scholar
  20. [20]
    Hauswirth C.B., Scheeder M.R.L., Beer J.H., High ω-3 fatty acid content in alpine cheese, the basis for an alpine paradox, Circulation 109 (2004) 103–107.CrossRefGoogle Scholar
  21. [21]
    International Organization for Standardization (ISO), Milk fat, Preparation of fatty acid methyl ester, ISO standard 15 884 (2002).Google Scholar
  22. [22]
    Ip C., Banni S., Angioni E., Carta G., McGinley J., Thompson H.J., Barbano D., Bauman D., Conjugated linoleic acidenriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats, J. Nutr. 129 (1999) 2135–2142.Google Scholar
  23. [23]
    Kelly M.L., Berry J.R., Dwyer D.A., Griinari J.M., Chouinard P.Y., van Amburgh M.E., Bauman D.E., Dietary fatty acid sources affect conjugated linoleic acid (CLA) concentrations in milk from lactating dairy cows, J. Nutr. 128 (1998) 881–885.Google Scholar
  24. [24]
    Kelly M.L., Kolver E.S., Bauman D.E., van Amburgh M.E., Muller L.D., Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating cows, J. Dairy Sci. 81 (1998) 1630–1636.CrossRefGoogle Scholar
  25. [25]
    Kraft J., Collomb M., Möckel P., Sieber R., Jahreis G., Differences in CLA isomer distribution of cow’s milk lipids, Lipids 38 (2003) 657–664.CrossRefGoogle Scholar
  26. [26]
    Latham M.J., Storry J.E., Sharpe M.E., Effect of low roughage diets on the microflora and lipid metabolism in the rumen, Appl. Microbiol. 24 (1972) 871–877.Google Scholar
  27. [27]
    Leiber F., Kreuzer M., Nigg D., Wettstein H.R., Scheeder M.R.L., A study on the causes for the elevated «-3 fatty acids in cows’ milk of alpine origin, Lipids 40 (2005) 191–202.CrossRefGoogle Scholar
  28. [28]
    Leiber F., Scheeder M.R.L., Wettstein H.R., Kreuzer M., Milk fatty acid profile of cows under the influence of alpine hypoxia and high mountainous forage quality, J. Anim. Feed Sci. 13 (2004) 693–696.Google Scholar
  29. [29]
    Lock A.L., Garnsworthy P.C., Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows, Livest. Prod. Sci. 79 (2003) 47–59.CrossRefGoogle Scholar
  30. [30]
    Maijala K., Cow milk and human development and well-being, Livest. Prod. Sci. 65 (2000) 1–18.CrossRefGoogle Scholar
  31. [31]
    Precht D., Molkentin J., Analysis and seasonal variation of conjugated linoleic acid and further cis-/trans-isomers of C18:1 and C18:2 in bovine milk fat, Kieler Milchwirt. Forschungsber. 51 (1999) 63–78.Google Scholar
  32. [32]
    Stanton C., Lawless F., Kjellmer G., Harrington D., Devery R., Connolly J.F., Murphy J., Dietary influences on bovine milk cis-9,trans-11-conjugated linoleic acid content, J. Food Sci. 62 (1997) 1083–1086.CrossRefGoogle Scholar
  33. [33]
    Tschager E., Zangerl P., Sebastian H.J., Kneifel W., Lang E.C., Legner F., Organoleptische, technologische und ernährungsphysiologische Eigenschaften von Almmilch, Milchwirt. Ber. Wolfpassing Rotholz 120 (1994) 152–157.Google Scholar
  34. [34]
    Van Dorland H.A., Effect of white clover and red clover addition to ryegrass on nitrogen use efficiency, performance, milk quality, and eating behaviour in lactating dairy cows, Thesis ETH Zürich, no 16867 (2006).Google Scholar
  35. [35]
    Vlaeminck B., Fievez V., Cabrita A.R.J., Fonseca A.J.M., Dewhurst R.J., Factors affecting odd- and branched-chain fatty acids in milk: a review, Anim. Feed Sci. Technol. 131 (2006) 389–417.CrossRefGoogle Scholar
  36. [36]
    Wilde P.F., Dawson R.M., The biohydrogenation of α-linolenic acid and oleic acid by rumen microorganisms, Biochem. J. 98 (1966) 469–475.Google Scholar
  37. [37]
    Wijesundera C., Shen Z., Wales W.J., Dalley D.E., Effects of cereal grain and fibre supplements on the fatty acid composition of milk fat of grazing dairy cows in early lactation, J. Dairy Res. 70 (2003) 257–265.CrossRefGoogle Scholar
  38. [38]
    Wonsil B.J., Herbein J.H., Watkins B.A., Dietary and ruminally derived trans-18:1 fatty acids alter bovine milk lipids, J. Nutr. 124 (1994) 556–565.Google Scholar
  39. [39]
    Zeppa G., Giordano M., Gerbi V., Arlorio M., Fatty acid composition of Piedmont “Ossolano Cheese”, Lait 83 (2003) 167–173.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Marius Collomb
    • 1
  • Walter Bisig
    • 1
    • 2
  • Ueli Bütikofer
    • 1
  • Robert Sieber
    • 1
  • Mirjam Bregy
    • 2
  • Luzi Etter
    • 2
  1. 1.Agroscope Liebefeld-Posieux Research Station ALPBerneSwitzerland
  2. 2.Swiss College of AgricultureUniversity of Applied Sciences of BerneZollikofenSwitzerland

Personalised recommendations