Dairy Science & Technology

, Volume 88, Issue 4–5, pp 511–523 | Cite as

Parmigiano Reggiano cheese: evolution of cultivable and total lactic microflora and peptidase activities during manufacture and ripening

  • Juliano De Dea Lindner
  • Valentina Bernini
  • Angela De Lorentiis
  • Alberto Pecorari
  • Erasmo Neviani
  • Monica Gatti
Original Article

Abstract

Parmigiano Reggiano is a Protected Designation of Origin, long-ripened cheese, made from cow’s milk supplemented with natural whey starter, which thus contains a large microbial biodiversity. The aim of this study was to understand the population dynamics of the total lactic microflora throughout the manufacture and ripening of this cheese. Several approaches were combined to determine the quantitative changes in the different bacterial populations during 20 months of ripening of Parmigiano Reggiano cheeses from the same cheesemaking. Total and viable cells were enumerated after fluorescent labeling. Culturable bacteria were enumerated on different plate count agar media, including original media prepared from curd and ripened cheese. Six peptidase activities were quantified in curd and cheese samples free from cells. While the total bacterial cultivable population remained high and similar for the first six months, a decrease in viable starter lactic acid bacteria was observed during the first 48 h. The non-starter lactic acid bacteria populations, initially present in low numbers, began to grow after the brining and remained at high levels (about 107 CFU·g−1) for at least 10 months. During ripening, a strong decrease in the total bacterial population and a marked increase in 4 out of 6 peptidase activities were observed. In the external and internal zones of Parmigiano Reggiano cheese different trends in microbial growth, cell autolysis and peptidase activity were observed. This study gives for the first time a global view of the possible contribution of total, viable, cultivable and lysed bacterial cells throughout the ripening of Parmigiano Reggiano cheese.

Parmigiano Reggiano cheese ripening lactic acid microflora bacterial cell lysis cell viability peptidase activity 

Le Parmigiano Reggiano : évolution de la microflore lactique cultivable et totale et des activités peptidasiques pendant la fabrication et l’affinage

Résumé

Le Parmigiano Reggiano est un fromage d’Appellation d’Origine Protégée à affinage long, fabriqué à partir de lait cru supplémenté d’un levain naturel issu du lactosérum. Ce fromage contient, en conséquence, une large biodiversité microbienne. L’objectif de cette étude était de comprendre la dynamique de population de la microflore lactique pendant la fabrication et l’affinage du Parmigiano Reggiano. Plusieurs approches ont été combinées pour déterminer l’évolution des différentes populations bactériennes dans ce fromage au cours de 20 mois d’affinage de fromages issus de la même série de fabrications. Le nombre de bactéries totales et viables a été mesuré après marquage fluorescent. Les bactéries cultivables ont été déterminées en utilisant différents milieux gélosés, incluant des milieux originaux préparés à partir de caillé et de fromage affiné. Six activités peptidasiques ont été quantifiées dans des échantillons de caillé et de fromages exempts de cellules bactériennes. La population de bactéries viables diminuait dans le caillé pendant les 48 premières heures, alors que la population totale de bactéries cultivables restait élevée et constante sur les six premiers mois d’affinage. Les populations de bactéries lactiques non levains, présentes initialement en faible nombre, commençaient à se développer dès le saumurage puis restaient à un niveau élevé (environ 107 UFC·g−1) pendant plus de 10 mois. Une forte chute de la population bactérienne totale était observée peandant l’affinage, accompagnée d’une hausse marquée de 4 activités peptidasiques. Dans les parties externes et internes du Parmigiano Reggiano, différentes tendances de croissance, d’autolyse et d’activité peptidasique étaient observées. Cette étude donne pour la première fois un aperçu global de la contribution possible des populations totales, viables, cultivables et lysées tout au long de l’affinage du Parmigiano Reggiano.

Parmigiano Reggiano affinage bactéries lactiques lyse bactérienne viabilité cellulaire activité peptidasique 

Abstract

Parmigiano Reggiano (PDO) 20 Parmigiano Reggiano 10 107 CFU·g−1) 6 4 Parmigiano Reggiano Parmigiano Reggiano

Parmigiano Reggiano 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Boquien C.Y., Corrieu G., Desmazeaud M.J., Enzymatic methods for determining populations of Streptococcus cremoris AM2 and Leuconostoc lactis CNRZ 1091 in pure and mixed cultures, Appl. Microbiol. Biotech. 30 (1989) 402–407.CrossRefGoogle Scholar
  2. [2]
    Broadbent J.R., Steele J.L., Cheese flavor and the genomics of lactic acid bacteria, ASM News 71 (2005) 121–125.Google Scholar
  3. [3]
    Bütikofer U., Fuchs D., Development of free amino acids in Appenzeller, Emmentaler, Gruyère, Raclette, Sbrinz and Tilsiter cheese, Lait 77 (1997) 91–100.CrossRefGoogle Scholar
  4. [4]
    Careri M., Spagnoli S., Panari G., Zannoni M., Barbieri G., Chemical parameters of the non-volatile fraction of ripened Parmigiano-Reggiano cheese, Int. Dairy J. 6 (1996) 147–155.CrossRefGoogle Scholar
  5. [5]
    Casey M.G., Häni J.P., Gruskovnjak J., Schaeren W., Wechsler D., Characterisation of the non-starter lactic acid bacteria (NSLAB) of Gruyère PDO cheese, Lait 86 (2006) 407–414.CrossRefGoogle Scholar
  6. [6]
    Christensen J.E., Dudley E.G., Pederson J.A., Steel J.L., Peptidases and amino acid catabolism in lactic acid bacteria, Antonie van Leeuwenhoek 76 (1999) 217–249.CrossRefGoogle Scholar
  7. [7]
    Cogan T.M., Beresford T.P., Steele J., Broadbent J., Shah N.P., Ustunol Z., Invited review: Advances in starter cultures and cultured foods, J. Dairy Sci. 90 (2007) 4005–4021.CrossRefGoogle Scholar
  8. [8]
    Coppola R., Nanni M., Iorizzo M., Sorrentino A., Sorrentino E., Chiavari C., Grazia L., Microbiological characteristics of Parmigiano Reggiano cheese during the cheesemaking and the first months of the ripening, Lait 80 (2000) 479–490.CrossRefGoogle Scholar
  9. [9]
    Coppola R., Nanni M., Iorizzo M., Sorrentino A., Sorrentino E., Grazia L., Survey of lactic acid bacteria isolated during the advance stages of the ripening of Parmigiano Reggiano cheese, J. Dairy Res. 64 (1997) 305–310.CrossRefGoogle Scholar
  10. [10]
    De Dea Lindner J., Traditional and innovative approaches to evaluate microbial contribution in long ripened fermented foods: the case of Parmigiano Reggiano cheese, Ph.D. thesis, University of Parma, Italy, 2008.Google Scholar
  11. [11]
    Fernández M., Zúñiga M., Amino acid catabolic pathways of lactic acid bacteria, Crit. Rev. Microbiol. 32 (2006) 155–183.CrossRefGoogle Scholar
  12. [12]
    Fornasari M.E., Rossetti L., Carminati D., Giraffa G., Cultivability of Streptococcus thermophilus in Grana Padano cheese whey starters, FEMS Microbiol. Lett. 257 (2006) 139–144.CrossRefGoogle Scholar
  13. [13]
    Fox P.F., Wallace J.M., Formation of flavour compounds in cheese, Adv. Appl. Microbiol. 45 (1997) 17–85.CrossRefGoogle Scholar
  14. [14]
    Fox P.F., Wallace J.M., Morgan S., Lynch C.M., Niland E.J., Tobin J., Acceleration of cheese ripening, Antonie van Leeuwenhoek 70 (1996) 271–297.CrossRefGoogle Scholar
  15. [15]
    Gala E., Landi S., Solieri L., Nocetti M., Pulvirenti A., Giudici P., Diversity of lactic acid bacteria population in ripened Parmigiano Reggiano cheese, Int. J. Food Microbiol. 125 (2008) 347–351.CrossRefGoogle Scholar
  16. [16]
    Gatti M., Bernini V., Lazzi C., Neviani E., Fluorescence microscopy for studying the viability of micro-organisms in natural whey starters, Lett. Appl. Microbiol 42 (2006) 338–343.CrossRefGoogle Scholar
  17. [17]
    Gatti M., Fornasari M.E., Mucchetti G., Addeo F., Neviani E., Presence of peptidase activities in different varieties of cheese, Lett. Appl. Microbiol. 28 (1999) 368–372.CrossRefGoogle Scholar
  18. [18]
    Gatti M., Lazzi C., Rossetti L., Mucchetti G., Neviani, E., Biodiversity in Lactobacillus helveticus strains present in natural whey starter used for Parmigiano Reggiano cheese, J. Appl. Microbiol. 95 (2003) 463–470.CrossRefGoogle Scholar
  19. [19]
    Hannon J.A., Kilcawley K.N., Wilkinson M.G., Delahunty C.M., Beresford T.P., Flavour precursor development in Cheddar cheese due to lactococcal starters and the presence and lysis of Lactobacillus helveticus, Int. Dairy J. 17 (2007) 316–327.CrossRefGoogle Scholar
  20. [20]
    Krause I., Bockhardt A., Klostermeyer H., Characterization of cheese ripening by free amino acids and biogenic amines and influence of bactofugation and heat-treatment of milk, Lait 77 (1997) 101–108.CrossRefGoogle Scholar
  21. [21]
    Kunji E.R.S., Mierau I., Hagting A., Poolman B., Konings W.N., The proteolytic system of lactic acid bacteria, Antonie Van Leeuwenhoek 70 (1996) 187–221.CrossRefGoogle Scholar
  22. [22]
    Lazzi C., Gatti M., Bernini V., De Dea Lindner J., Neviani E., Impiego di nuovi terreni colturali a base di cagliata e di formaggio per il recupero e la differenziazione della microflora caratteristica di formaggi a lunga stagionatura, Sci. Tecn. Latt.-Cas. 58 (2007) 55–69.Google Scholar
  23. [23]
    Lortal S., Chapot-Chartier M.P., Role, mechanisms and control of lactic acid bacteria lysis in cheese, Int. Dairy J. 15 (2005) 857–871.CrossRefGoogle Scholar
  24. [24]
    Mucchetti G., Locci F., Gatti M., Neviani E., Addeo F., Dossena A., Marchelli R., Pyroglutamic acid in cheese: presence, origin, and correlation with ripening time of Grana Padano cheese, J. Dairy Sci. 83 (2000) 659–665.CrossRefGoogle Scholar
  25. [25]
    Mucchetti G., Neviani E., Microbiologia e tecnologia lattiero-casearia. Qualità e sicurezza, Tecniche nuove, Milano, Italy, 2006.Google Scholar
  26. [26]
    O’Cuinn G., Jennigs P.V., Fhaolain I.F., Booth M., Bacon C.L., McDonnel M., Wilkinson M., O’Callaghan M.D., Fitzgerald R.J., The contribution of the starter peptidases to flavour development in cheese, in: Cogan T.M., Fox P.F., Ross P. (Eds.), Proceedings of the 4th Cheese Symposium, Teagasc, University of Cork, Ireland, 1995, pp. 68–71.Google Scholar
  27. [27]
    Panari G., L’acido lattico e l’acido piroglutammico nella maturazione del formaggio Parmigiano-Reggiano, Sci. Tecn. Latt.-Cas. 36 (1985) 98–109.Google Scholar
  28. [28]
    Panari G., Reverberi P., Caroli A., Nocetti M., Pecorari M., Le variazione del profilo microbiologico del latte durante l’affioramento in diverse condizioni operative, Sci. Tecn. Latt.-Cas. 58 (2007) 83–93.Google Scholar
  29. [29]
    Pereira C.I., Gomes E.O., Gomes A.M.P., Malcata F.X., Proteolysis in model Portuguese cheeses: effects of rennet and starter culture, Food Chem. 108 (2007) 862–868.CrossRefGoogle Scholar
  30. [30]
    Preininger M., Warmke R., Grosch W., Identification of the character impact flavour compounds of Swiss cheese by sensory studies of models, Z. Lebensm. Unters.-Forsch. 202 (1996) 30–34.CrossRefGoogle Scholar
  31. [31]
    Resmini P., Pellegrino L., Pazzaglia C., Hogenboom J.A., Gli amminoacidi liberi nella tipizzazione del formaggio Parmigiano-Reggiano ed in particolare nel prodotto grattugiato, Sci. Tecn. Latt.-Cas. 37 (1985) 557–592.Google Scholar
  32. [32]
    Sandri S., Tosi F., Fossa E., Scotti C., Malacarne M., Andamento dei valori di pH misurati al centro della forma nelle prime ore successive alla fabbricazione del Parmigiano Reggiano: influenza di alcuni fattori tecnologici, Sci. Tecn. Latt.-Cas. 58 (2007) 17–28.Google Scholar
  33. [33]
    Savijoki K., Ingmer H., Varmanen P., Proteolytic system of lactic acid bacteria, Appl. Microbiol. Biotechnol. 71 (2006) 394–406.CrossRefGoogle Scholar
  34. [34]
    Sheehan A., O’Cuinn G., FitzGerald R.J., Wilkinson M.G., Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties, J. Appl. Microbiol. 100 (2006) 893–901.CrossRefGoogle Scholar
  35. [35]
    Sheehan J.J., Fenelon M.A., Wilkinson M.G., McSweeney P.L.H., Effect of cook temperature on starter and non-starter lactic acid bacteria viability, cheese composition and ripening indices of a semi-hard cheese manufactured using thermophilic cultures, Int. Dairy J. 17 (2007) 704–716.CrossRefGoogle Scholar
  36. [36]
    Smit G., Smit B.A., Engels W.J.M., Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products, FEMS Microbiol Rev. 29 (2005) 591–610.CrossRefGoogle Scholar
  37. [37]
    Swaisgood H.E., Chemistry of milk proteins, in: Fox P.F. (Ed.), Developments in dairy chemistry, Vol. 1: Proteins, Elsevier Applied Science, London, UK, 1982, pp. 1–59.Google Scholar
  38. [38]
    Takafuji S., Iwasaki T., Sasaki M., Tan P.S.T., Proteolytic enzymes of lactic acid bacteria, in: Charalambous G. (Ed.), Food Flavors: Generation, Analysis and Process Influence, Elsevier Science B.V., Amsterdam, The Netherlands, 1995, pp. 753–767.Google Scholar
  39. [39]
    Valence F., Deutsch S.M., Richoux R., Gagnaire V., Lortal S., Autolysis and related proteolysis in Swiss cheese for two Lactobacillus helveticus strains, J. Dairy Res. 67 (2000) 261–271.CrossRefGoogle Scholar
  40. [40]
    Wilkinson M.G., Guinee T.P., O’Callaghan D.M., Fox P.F., Autolysis and proteolysis in different strains of starter bacteria during Cheddar cheese ripening, J. Dairy Res. 61 (1994) 249–262.CrossRefGoogle Scholar
  41. [41]
    Yvon M., Rijnen L., Cheese flavour formation by amino acid catabolism, Int. Dairy J. 11 (2001) 185–201.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Juliano De Dea Lindner
    • 1
  • Valentina Bernini
    • 1
  • Angela De Lorentiis
    • 1
  • Alberto Pecorari
    • 2
  • Erasmo Neviani
    • 1
  • Monica Gatti
    • 1
  1. 1.Department of Genetics, Biology of Microorganisms, Anthropology, EvolutionUniversity of ParmaParmaItaly
  2. 2.Consorzio del Formaggio Parmigiano-ReggianoReggio EmiliaItaly

Personalised recommendations