Dairy Science & Technology

, Volume 90, Issue 6, pp 687–698 | Cite as

Increasing pasture intakes enhances polyunsaturated fatty acids and lipophilic antioxidants in plasma and milk of dairy cows fed total mix ration

  • Stefania La Terra
  • Vita Maria Marino
  • Mario Manenti
  • Giuseppe Licitra
  • Stefania Carpino
Original article


Polyunsaturated fatty acids and lipo-soluble vitamins in the milk are considered as neutraceutical compounds due to their beneficial effects on human health. The aim of the present study was to evaluate the changes in fatty acid composition and fat-soluble antioxidant content in plasma and milk from cows fed with different dietary proportions from pasture. Cows from a farm in the Hyblean mountain region in Italy were randomly divided into three groups (12 animals per group): CTRL fed only a total mix ration (TMR); 30P fed a TMR supplemented with 30% dry matter (DM) from pasture and 70P fed a TMR supplemented with 70% DM of pasture. Blood and milk samples were collected, stored and analysed for their content of fatty acids and fat-soluble antioxidants. Fatty acid profiles were significantly modified by different diets. CLA, vaccenic acid (VA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) significantly (P < 0.05) increased in plasma as a function of the proportion of pasture added to the diet. In agreement with these data, a progressively significant (P < 0.05) increase in concentrations of VA, CLA and EPA was observed in the milk. Such changes in fatty acid composition were accompanied by a concomitant increase in the concentrations of α-tocopherol and β-carotene in both plasma and milk. The increase in EPA, DHA and CLA, β-carotene and α-tocopherol in plasma may not only have a beneficial impact for milk and meat quality, but may also result in an increased protection against inflammatory events.

pasture plasma milk PUFA fat-soluble vitamins 

L’augmentation de la teneur en herbe de la ration améliore la teneur en acides gras polyinsaturés et en antioxydants lipophiles dans le plasma et le lait des vaches laitières en ration complète


Les acides gras polyinsaturés (AGPI) et les vitamines liposolubles du lait sont considérés comme des composés nutraceutiques en raison de leurs effets bénéfiques pour la santé. Le but de cette étude était d’évaluer les changements de composition en acides gras et de teneur en antioxydants liposolubles dans le plasma et le lait de vaches laitières recevant différentes proportions de pâture. Les vaches provenant d’une ferme de la région du mont Iblei en Italie, ont été réparties aléatoirement en trois groupes (12 animaux par groupe) : un groupe témoin recevant une alimentation en ration complète (TMR); un groupe recevant une alimentation TMR supplémentée à hauteur de 30 % de matière sèche en herbe; un groupe recevant une alimentation TMR supplémentée à hauteur de 70 % de matière sèche en herbe. Des échantillons sanguins et du lait ont été collectés, conservés et analysés pour leur teneur en acides gras et en antioxydants liposolubles. Les profils en acides gras étaient modifiés de façon significative par les différents régimes. L’acide linoléique conjugué (CLA), l’acide vaccénique (VA), l’acide eisapentanoïque (EPA) et l’acide docohexanoïque (DHA) augmentaient significativement (P < 0,05) dans le plasma en fonction de la proportion de pâture. En accord avec ces résultats, une augmentation progressivement significative (P < 0,05) des concentrations en VA, CLA et EPA était observée dans le lait. De tels changements dans la composition en acides gras étaient accompagnés d’une augmentation concomitante des concentrations en α-tocophérol et en β-carotène à la fois dans le plasma et le lait. L’augmentation en EPA, DHA et CLA, α-tocophérol et β-carotène dans le plasma pourrait avoir un effet bénéfique en ce qui concerne non seulement la qualité du lait et de la viande, mais aussi de possibles effets contre les évènements inflammatoires.

pâture lait plasma acide gras polyinsaturé vitamine liposoluble 


(PUFA) 3 12 (CTRL) (TMR); 30P (TMR) (DM) 70P (TMR) 70% (DM) (DM) (CLA), (VA), (EPA) (DHA) (P < 0.05) (VA), (CLA) (EPA) (P < 0.05) α- E β-(EPA) (DHA) (CLA) α- β-(CLA) n-3 PUFA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Al-Mabruk R.M., Beck N.F.G., Dewhurst R.J., Effects of silage species and supplemental vitamin E on the oxidative stability of milk, J. Dairy Sci. 87 (2004) 406–412.CrossRefGoogle Scholar
  2. [2]
    Angioni E., Lercker G., Frega N.G., Carta G., Melis M.P., Murru E., Spada S., Banni S., UV spectral properties of lipids as a tool for their identification, Eur. J. Lipid Sci. Technol. 104 (2002) 59–64.CrossRefGoogle Scholar
  3. [3]
    Banni S., Angioini E., Casu V., Melis M.P., Scrugli S., Carta G., Corongiu F.P., Ip C., An increase in vitamin A status by the feeding of conjugated linoleic acid, Nutr. Cancer 33 (1999) 53–57.CrossRefGoogle Scholar
  4. [4]
    Banni S., Carta G., Contini M.S., Angioni E., Deiana M., Dessi M.A., Melis M.P., Corongiu F.P., Characterization of conjugated diene fatty acids in milk dairy products, and lamb tissues, J. Nutr. Biochem. 7 (1996) 150–155.CrossRefGoogle Scholar
  5. [5]
    Britton G., Example 1: higher plants, in: Britton G., Liaaen-Jensen S., Pfander H. (Eds.), Carotenoids, Volume 1A: Isolation and analysis, Birkhauser, Basel, Switzerland, 1995, pp. 201–214.Google Scholar
  6. [6]
    Burton G.W., Antioxidant action of carotenoids, J. Nutr. 119 (1989) 109–111.Google Scholar
  7. [7]
    Burton G.W., Ingold K.U., β-carotene: an unusual type of lipid antioxidant, Science 224 (1984) 569–573.CrossRefGoogle Scholar
  8. [8]
    Carpino S., Selective grazing on sicilian pasture by cattle and effects on Ragusano cheese, Ph.D. dissertation, Cornell University, Ithaca, USA, 2003.Google Scholar
  9. [9]
    Carpino S., Horne J., Melilli C., Licitra G., Barbano D.M., Van Soest P.J., Contribution of native pasture to the sensory properties of Ragusano cheese, J. Dairy Sci. 87 (2000) 308–315.CrossRefGoogle Scholar
  10. [10]
    Chew B.P., Wong T.S., Michal J.J., Uptake of orally administered β-carotene by blood plasma leukocytes, and lipoproteins in calves, J. Anim. Sci. 71 (1993) 730–739.Google Scholar
  11. [11]
    Chilliard Y., Ferlay A., Doreau M., Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat composition and secretion, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids, Livest. Prod. Sci. 70 (2001) 31–48.CrossRefGoogle Scholar
  12. [12]
    Chilliard Y., Ferlay A., Mansbridge R.M., Doreau M., Ruminant milk fat plasticity: nutritional control of saturated polyunsaturated, trans and conjugated fatty acids, Ann. Zootechn. 49 (2000) 181–205.CrossRefGoogle Scholar
  13. [13]
    Collomb M., Bisig W., Butikofer U., Sieber R., Bregy M., Etter L., Seasonal variation in the fatty acid composition of milk supplied to dairies in the mountain regions of Switzerland, Dairy Sci. Technol. 88 (2008) 631–647.CrossRefGoogle Scholar
  14. [14]
    Dhiman T.R., Anand G.R., Satter L.D., Pariza M.W., Conjugated linoleic acid content of milk from cows fed different diets, J. Dairy Sci. 82 (1999) 2146–2156.CrossRefGoogle Scholar
  15. [15]
    Dhiman T.R., Satter L.D., Patriza M.W., Galli M.P., Albright K., Tolosa M.X., Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid, J. Dairy Sci. 83 (2000) 1016–1027.CrossRefGoogle Scholar
  16. [16]
    Dhiman T.R., Seung-Hee N., Amy L.U., Factors affecting conjugated linoleic acid content in milk and meat, Crit. Rev. Food Sci. Nutr. 45 (2005) 463–482.CrossRefGoogle Scholar
  17. [17]
    Focant M., Mignolet E., Marique M., Clabots F., Breyne T., Dalemans D., Larondelle Y., The effect of vitamin E supplementation of cow diets containing rapeseed and linseed on 18 the prevention of milk fat oxidation, J. Dairy Sci. 81 (1998) 1095–1101.CrossRefGoogle Scholar
  18. [18]
    Folch J., Lees M., Sloane-Stanley G.H., A simple method for the isolation and purification of total lipid from animal tissues, J. Biol. Chem. 226 (1957) 497–509.Google Scholar
  19. [19]
    Fox D.G., Sniffen C.J., O’Connor J.D., Russell J.B., Van Soest P.J., A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy, J. Anim. Sci. 70 (1992) 3578–3596.Google Scholar
  20. [20]
    Frigg M., Broz J., Relationship between vitamin A and vitamin E in the chick, Int. J. Vitam. Nutr. Res. 54 (1984) 125–135.Google Scholar
  21. [21]
    Griinari J.M., Bauman D.E., Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants, in: Yurawecz M.P., Mossoba M.M., Kramer J.K.G., Pariza M.W., Nelson G.J. (Eds.), Advances in conjugated linoleic acid research, Vol. 1, AOCS Press, Champaign, USA, 1999, pp. 180–200.Google Scholar
  22. [22]
    Griinari J.M., Corl B.A., Lacy S.H., Chouinard P.Y., Nurmela K.V.V., Bauman D.E., Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ-9 desaturase, J. Nutr. 130 (2000) 2285–2291.Google Scholar
  23. [23]
    Harfoot C.G., Hazelwood G.P., Lipid metabolism in the rumen, in: Hobson P.N. (Ed.), The rumen microbial ecosystem, Elsevier Applied Science Publishers, London, UK, 1988, pp. 285–322.Google Scholar
  24. [24]
    Hidiroglou N., McDowell L.R., Balbuena O., Plasma tocopherol in sheep and cattle after ingesting free or acetylated tocopherol, J. Dairy Sci. 72 (1989) 1793–1799.CrossRefGoogle Scholar
  25. [25]
    Jenkins T.C., Lipid metabolism in the rumen, J. Dairy Sci. 76 (1993) 3851–3863.CrossRefGoogle Scholar
  26. [26]
    Jensen S.K., Johannesen A.K.B., Hermansen J.E., Quantitative secretion and maximal secretion capacity of retinol, β-carotene and α-tocopherol into cow’s milk, J. Dairy Res. 66 (1999) 511–522.CrossRefGoogle Scholar
  27. [27]
    Jones L., Shingfield K.J., Kohen C.K., Jones A., Lupoli B., Grandison A.S., Beever D.E., Williams C.M., Calder P.C., Yaqoob P., Chemical, physical, and sensory properties of dairy products enriched with conjugated linoleic acid, J. Dairy Sci. 88 (2005) 2923–2937.CrossRefGoogle Scholar
  28. [28]
    Kay J.K., Mackle T.R., Auldist M.J., Thomson N.A., Bauman D.E., Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture, J. Dairy Sci. 87 (2004) 369–378.CrossRefGoogle Scholar
  29. [29]
    Kay J.K., Roche J.R., Kolver E.S., Thomson N.A., Baumgard L.H., A comparison between feeding systems (pasture and TMR) and the effect of vitamin E supplementation on plasma and milk fatty acid profiles in dairy cows, J. Dairy Res. 72 (2005) 322–332.CrossRefGoogle Scholar
  30. [30]
    Kellens M.J., Goderis H.L., Tobback P.P., Biohydrogenation of unsaturated fatty acids by a mixed culture of rumen microorganisms, Biotechnol. Bioeng. 28 (1986) 1268–1276.CrossRefGoogle Scholar
  31. [31]
    Kelly M.L., Berry J.R., Dwyer A.D., Griinari J.M., Chouinard P.Y., Van Amburgh M.E., Bauman D.E., Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows, J. Nutr. 128 (1998) 881–885.Google Scholar
  32. [32]
    Kelly M.L., Kolver E.S., Bauman D.E., Van Amburg M.E., Muller L.D., Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating dairy cows, J. Dairy Sci. 81 (1998) 1630–1636.CrossRefGoogle Scholar
  33. [33]
    Kristensen D., Hedegaard R.V., Nielsen J.H., Skibsted L.H., Oxidative stability of butter-milk as influenced by the fatty acid composition of cows’ milk manipulated by diet, J. Dairy Res. 71 (2004) 46–50.CrossRefGoogle Scholar
  34. [34]
    Lynch J.M., Lock A.L., Dwyer D.A., Noorbakhsh R., Barbano D.M., Bauman D.E., Flavour and stability of pasteurized milk with elevated levels of conjugated linoleic acid and vaccenic acid, J. Dairy Sci. 88 (2005) 489–498.CrossRefGoogle Scholar
  35. [35]
    Martin B., Fedele V., Ferlay A., Grolier P., Rock E., Gruffat D., Chilliard Y., Effects of grass-based diets on the content of micro-nutrients and fatty acids in bovine and caprine dairy products, in: Proceedings of the 20th General Meeting on Land use systems in grassland dominated regions, Grassland Science in Europe, Vol. 9, European Grassland Federation, Zurich, Switzerland, 2004, pp. 867–886.Google Scholar
  36. [36]
    Martin S.A., Jenkins T.C., Factors affecting conjugated linolenic acid and trans-C18:1 fatty acid production by mixed ruminal bacteria, J. Anim. Sci. 80 (2002) 3347–3352.Google Scholar
  37. [37]
    Mayne S.T., Cartmel B., Silva F., Kim C.S., Fallon B.G., Briskin K., Zheng T., Baum M., Shor-Prosner G., Goodwin W.J., Effect of supplemental β-carotene on plasma concentrations of carotenoids, retinol, and α-tocopherol in humans, Am. J. Clin. Nutr. 68 (1998) 642–647.Google Scholar
  38. [38]
    Melis M.P., Angioni E., Carta G., Murru E., Scanu P., Spada S., Banni S., Characterization of conjugated linoleic acid and its metabolites by RP-HPLC with diode array detector, Eur. J. Lipid Sci. Technol. 103 (2001) 617–621.CrossRefGoogle Scholar
  39. [39]
    Nicholson J.W.G., St-Laurent A.M., Effect of forage type and supplemental dietary vitamin E on milk oxidative stability, Can. J. Anim. Sci. 71 (1991) 1181–1186.CrossRefGoogle Scholar
  40. [40]
    Nonnecke J., Horst R.L., Waters W.R., Dubeski P., Modulation of fat-soluble vitamin concentrations and blood mononuclear leukocyte populations in milk replacer-fed calves by dietary vitamin A and β-carotene, J. Dairy Sci. 82 (1999) 2632–2641.CrossRefGoogle Scholar
  41. [41]
    Noziere P., Graulet B., Lucas A., Martin B., Grolier P., Doreau M., Carotenoids for ruminants: from forages to dairy products, Anim. Feed Sci. Technol. 131 (2006) 418–450.CrossRefGoogle Scholar
  42. [42]
    NRC, Nutrient requirements of dairy cattle, 7th Edn. Revised, National Academy of Science, Washington, USA, 2001.Google Scholar
  43. [43]
    Overton T.R., Waldron M.R., Nutritional management of transition dairy cows: strategies to optimize metabolic health, J. Dairy Sci. 87 (2004) 105–119.CrossRefGoogle Scholar
  44. [44]
    Palozza P., Prooxidant actions of carotenoids in biologic systems, Nutr. Rev. 56 (1998) 257–265.CrossRefGoogle Scholar
  45. [45]
    Palozza P., Krinsky N.I., β-Carotene and tocopherol are synergistic antioxidants, Arch. Biochem. Biophys. 297 (1992) 184–187.CrossRefGoogle Scholar
  46. [46]
    Pestana J.M., Martins S.I.V., Alfaia C.M.M., Lopes P.A., Costa A.S.H., Bessa R.J.B., Castro M.L.F., Prates J.A.M., Content and distribution of conjugated linoleic acid isomers in bovine milk, cheese and butter from Azores, Dairy Sci. Technol. 89 (2009) 193–200.CrossRefGoogle Scholar
  47. [47]
    Prates J.A., Mateus C., Functional foods from animal sources and their physiologically active components, Rev. Med. Vet. Toulouse 153 (2002) 155–160.Google Scholar
  48. [48]
    Roche H.M., Noone E., Nugent A., Gibney M.J., Conjugated linoleic acid: a novel therapeutic nutrient?, Nutr. Res. Rev. 14 (2001) 173–187.CrossRefGoogle Scholar
  49. [49]
    SAS Inc., SAS® user’s guide, version 8, SAS Inc., NY, USA, 1999.Google Scholar
  50. [50]
    Shantha A.C., Ram L.N., O’Leary J., Hicks C., Decker E.A., Conjugated linoleic acid concentrations in dairy products as affected by processing and storage, J. Food Sci. 60 (1995) 695–697.CrossRefGoogle Scholar
  51. [51]
    Steinmetz K.A., Childs M.T., Stimson C., Kushi L.H., McGovern P.G., Potter J.D., Yamanaka W.K., Effect of consumption of whole milk and skim milk on blood lipid profiles in healthy men, Am. J. Clin. Nutr. 59 (1994) 612–618.Google Scholar
  52. [52]
    White S.L., Bertrand J.A., Wade M.R., Washburn S.P., Green J.T. Jr., Jenkins T.C., Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration, J. Dairy Sci. 84 (2001) 2295–2301.CrossRefGoogle Scholar
  53. [53]
    Williams C.M., Dietary fatty acids and human health, Ann. Zootechn. 49 (2000) 165–205.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Stefania La Terra
    • 1
  • Vita Maria Marino
    • 1
  • Mario Manenti
    • 1
  • Giuseppe Licitra
    • 1
    • 2
  • Stefania Carpino
    • 1
  1. 1.CoRFiLaCRagusaItaly
  2. 2.DACPA Catania UniversityCataniaItaly

Personalised recommendations