Dairy Science & Technology

, Volume 91, Issue 1, pp 1–26 | Cite as

Dairy propionibacteria as human probiotics: A review of recent evidence

  • Fabien J. Cousin
  • Denis D. G. Mater
  • Benoît Foligné
  • Gwénaël JanEmail author


Probiotics have been the subject of intensive research, mainly focusing on bifidobacteria and lactic acid bacteria. However, there is evidence that dairy propionibacteria also display probiotic properties, which as yet have been underestimated. The aim of this paper is to review recent data which report probiotic characteristics of dairy propionibacteria and to distinctly organise them based on the experimental strategy employed: ranked from in vitro evidence to in vivo trials, which is a new approach. In addition to the selection criteria for probiotics in areas such as food safety, technological and digestive stress tolerance, many potential health benefits have been described which include modulation of microbiota andmetabolic activity in the gut, modulation of intestinal motility and absorption, impact on intestinal inflammation, modulation of the immune system and potential modulation of risk factors for cancer development. The robust nature of dairy propionibacteria towards technological stresses should allow their future use in various fermented probiotic foods. Among the probiotic properties of dairy propionibacteria described in the literature, some of these properties are different from those reported for bifidobacteria and lactic acid bacteria. However, supplementation with dairy propionibacteria in randomised, placebo-controlled, double-blind human trials has mainly involved mixtures of propionibacteria with probiotic bacteria from other genera. Clinical studies involving the use of dairy propionibacteria alone are lacking. Such studies will allow the specifically observed health benefits to be attributed to dairy propionibacteria. This, in turn, will allow the investigation of the synergistic effects with other probiotic bacteria or beneficial food components.


Probiotic Propionibacteria Propionibacterium Short-chain fatty acid 



2-amino-3-carboxy-1,4- naphthoquinone


Atopic eczema-dermatitis syndrome


Bifidogenic growth stimulator


Conjugated linoleic acid


Cow’s milk allergy


C-reactive protein


1,4-dihydroxy-2-naphthoic acid




Dextran sodium sulphate


European food safety authority


Generally recognised as safe


Inflammatory bowel diseases


Irritable bowel syndrome


Nonsteroidal anti-inflammatory drug


Qualified presumption of safety


Short-chain fatty acid


Trinitrobenzene sulphonic acid



近年来关于双歧杆菌和乳酸菌的益生性得到了广泛的关注、 相关的研究报道较多。 尽管乳中的丙酸菌也显示具有益生菌的功能、 但并没有引起人们的重视。 本文综述了近年来关于乳源丙酸菌益生功能的研究进展。 论述的内容包括从食品安全性考虑益生菌的选择标准、 益生菌的消化极限; 以及益生菌潜在的功能性、 如对肠道中微生物菌群和代谢活性的调整作用、 促进肠道蠕动和吸收作用、 对肠炎的作用、 对免疫系统的调节作用以及潜在的对癌症因子抑制作用。 丙酸菌在乳中生产旺盛、 因此从技术层面上分析丙酸菌可以用于各种发酵食品。 在关于乳源丙酸菌益生功能性的文献报道中、 丙酸菌的一些功能性不同于双歧杆菌和乳酸菌。 然而、 在双目失明的人体试验中、 则是将来源于其他属的丙酸菌与乳源丙酸 菌混合使用。 在临床试验中通常用含丙酸菌的乳制品和不含丙酸菌的乳制品同时进行试验、 目的是证明乳源丙酸菌对人体健康的作用。 同样方法也可以调查丙酸菌与其他益生菌或食物中其他有益成分的协同作用。


益生性 丙酸菌 丙酸杆菌属 短链脂肪酸 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams MC, Huang Y (2003) Probiotic Propionibacterium jensenii 702, Patent WO2004001022-A1Google Scholar
  2. Adams MC, Huang Y (2008) Probiotic Propionibacterium, Patent US 07427397Google Scholar
  3. Adams MC, Lean ML, Hitchick NC, Beagley KW (2005) The efficacy of Propionibacterium jensenii 702 to stimulate a cellmediated response to orally administered soluble Mycobacterium tuberculosis antigens using a mouse model. Lait 85:75–84Google Scholar
  4. Alvarez S, Medicini M, Vintini E, Oliver G, De Ruiz Holgado AP, Perdigon G (1996) Effect of the oral administration of Propionibacterium acidi-propionici on IgA levels and on the prevention of enteric infection in mice. Microbiol Alim Nut 14:237–243Google Scholar
  5. Andresen L, Hansen KA, Jensen H, Pedersen SF, Stougaard P, Hansen HR, Jurlander J, Skov S (2009) Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells. J Immunol 183:897–906Google Scholar
  6. Anonymous (2008) Scientific opinion of the panel on biological hazards on a request from EFSA on the maintenance of the QPS list of microorganisms intentionally added to food or feed. EFSA J 923:1–48Google Scholar
  7. Bouglé D, Roland N, Lebeurrier F, Arhan P (1999) Effect of propionibacteria supplementation on fecal bifidobacteria and segmental colonic transit time in healthy human subjects. Scand J Gastroenterol 34:144–148Google Scholar
  8. Bouglé D, Vaghefi-Vaezzadeh N, Roland N, Bouvard G, Arhan P, Bureau F, Neuville D, Maubois J-L (2002) Influence of short-chain fatty acids on iron absorption by proximal colon. Scand J Gastroenterol 37:1008–1011Google Scholar
  9. Cherbut C, Ferrier L, Roze C, Anini Y, Blottière H, Lecannu G, Galimiche JP (1998) Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol Gastrointest Liver Physiol 275:G1415–G1422Google Scholar
  10. Churruca I, Fernandez-Quintela A, Portillo MP (2009) Conjugated linoleic acid isomers: differences in metabolism and biological effects. Biofactors 35:105–111Google Scholar
  11. Collado MC, Jalonen L, Meriluoto J, Salminen S (2006) Protection mechanism of probiotic combination against human pathogens: in vitro adhesion to human intestinal mucus. Asia Pac J Clin Nutr 15:570–575Google Scholar
  12. Collado MC, Meriluoto J, Salminen S (2007a) Development of new probiotics by strain combinations: Is it possible to improve the adhesion to intestinal mucus? J Dairy Sci 90:2710–2716Google Scholar
  13. Collado MC, Meriluoto J, Salminen S (2007b) In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Res Int 40:629–636Google Scholar
  14. Collado MC, Meriluoto J, Salminen S (2007c) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45:454–460Google Scholar
  15. Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073Google Scholar
  16. Cutting W, Read G, Cords H (1962) Preliminary studies on the chemical nature of propionin. Stanford Med Bull 20:156–162Google Scholar
  17. de Vaux A, Morrison M, Hutkins RW (2002) Displacement of Escherichia coli O157:H7 from rumen medium containing prebiotic sugars. Appl Environ Microbiol 68:519–524Google Scholar
  18. de Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J (2001) Probiotics—compensation for lactase insufficiency. Am J Clin Nutr 73:421S–429SGoogle Scholar
  19. Dherbecourt J, Maillard MB, Catheline D, Thierry A (2008) Production of branchedchain aroma compounds by Propionibacterium freudenreichii: links with the biosynthesis of membrane fatty acids. J Appl Microbiol 105:977–985Google Scholar
  20. Dherbecourt J, Falentin H, Jardin J, Maillard MB, Bagliniere F, Barloy-Hubler F, Thierry A (2010) Identification of a secreted lipolytic esterase in Propionibacterium freudenreichii, a ripening process bacterium involved in Emmental cheese lipolysis. Appl Environ Microbiol 76:1181–1188Google Scholar
  21. Downes J, Wade WG (2009) Propionibacterium acidifaciens sp. nov., isolated from the human mouth. Int J Syst Evol Microbiol 59:2778–2781Google Scholar
  22. El-Nezami H, Kankaanpaa P, Salminen S, Ahokas J (1998) Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B-1. Food Chem Toxicol 36:321–326Google Scholar
  23. El-Nezami H, Mykkanen H, Kankaanpaa P, Salminen S, Ahokas J (2000a) Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B-1 from the chicken duodenum. J Food Prot 63:549–552Google Scholar
  24. El-Nezami H, Mykkanen H, Kankaanpaa P, Suomalainen T, Salminen S, Ahokas J (2000b) Ability of a mixture of Lactobacillus and Propionibacterium to influence the faecal aflatoxin content in healthy Egyptian volunteers: a pilot clinical study. Biosci Microflora 19:41–45Google Scholar
  25. El-Nezami HS, Chrevatidis A, Auriola S, Salminen S, Mykkanen H (2002) Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Addit Contam 19:680–686Google Scholar
  26. El-Nezami HS, Polychronaki NN, Ma J, Zhu HL, Ling WH, Salminen EK, Juvonen RO, Salminen SJ, Poussa T, Mykkanen HM (2006) Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. Am J Clin Nutr 83:1199–1203Google Scholar
  27. Emenaker NJ, Basson MD (1998) Short chain fatty acids inhibit human (SW1116) colon cancer cell invasion by reducing urokinase plasminogen activator activity and stimulating TIMP-1 and TIMP-2 activities, rather than via MMP modulation. J Surg Res 76:41–46Google Scholar
  28. FAO, WHO (2006) Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO Food Nutr PapGoogle Scholar
  29. Foligné B, Nutten S, Grangette C, Dennin V, Goudercourt D, Poiret S, Dewulf J, Brassart D, Mercenier A, Pot B (2007) Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol 13:236–243Google Scholar
  30. Fukushima A, Aizaki Y, Sakuma K (2009) Short-chain fatty acids induce intestinal transient receptor potential vanilloid type 6 expression in rats and Caco-2 cells. J Nutr 139:20–25Google Scholar
  31. Furuichi K, Hojo K, Katakura Y, Ninomiya K, Shioya S (2006) Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1, 4-dihydroxy-2-naphthoic acid to menaquinone. J Biosci Bioeng 101:464–470Google Scholar
  32. Furusawa E, Furusawa S, Cutting W (1965) Action mechanism of propionin against intracellular vaccinia multiplication and comparison with other agents. Med Pharmacol Exp Int J Exp Med 12:259–265Google Scholar
  33. Furusawa E, Ramanathan S, Furusawa S, Woo YK, Cutting W (1967) Antiviral activity of higher plants and propionin on lymphocytic choriomeningitis infection. Proc Soc Exp Biol Med 125:234–239Google Scholar
  34. Gratz S, El-Nezami H, Mykkanen H (2003) Probiotic bacteria retard the ex vivo absorption of aflatoxin B-1 from chick duodenum. Toxicology 191:50Google Scholar
  35. Gratz S, Mykkanen H, Ouwehand AC, Juvonen R, Salminen S, El-Nezami H (2004) Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin B-1 in vitro. Appl Environ Microbiol 70:6306–6308Google Scholar
  36. Gratz S, Mykkanen H, El-Nezami H (2005) Aflatoxin B-1 binding by a mixture of Lactobacillus and Propionibacterium: in vitro versus ex vivo. J Food Prot 68:2470–2474Google Scholar
  37. Halttunen T, Collado MC, El-Nezami H, Meriluoto J, Salminen S (2008) Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Lett Appl Microbiol 46:160–165Google Scholar
  38. Hartemink R, Rombouts FM (1999) Comparison of media for the detection of bifidobacteria, lactobacilli and total anaerobes from faecal samples. J Microbiol Methods 36:181–192Google Scholar
  39. Haskard CA, El-Nezami HS, Kankaanpaa PE, Salminen S, Ahokas JT (2001) Surface binding of aflatoxin B-1 by lactic acid bacteria. Appl Environ Microbiol 67:3086–3091Google Scholar
  40. Hatakka K, Ahola AJ, Yli-Knuuttila H, Richardson M, Poussa T, Meurman JH, Korpela R (2007) Probiotics reduce the prevalence of oral Candida in the elderly—a randomized controlled trial. J Dent Res 86:125–130Google Scholar
  41. Hatakka K, Holma R, El-Nezami H, Suomalainen T, Kuisma M, Saxelin M, Polussa T, Mykkänen H, Korpela R (2008) The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon. Int J Food Microbiol 128:406–410Google Scholar
  42. Hervé C, Fondrevez M, Cheron A, Barloy-Hubler F, Jan G (2007) Transcarboxylase mRNA: a marker which evidences P. freudenreichii survival and metabolic activity during its transit in the human gut. Int J Food Microbiol 113:303–314Google Scholar
  43. Hojo K, Yoda N, Tsuchita H, Ohtsu T, Seki K, Taketomo N, Murayama T, Iino H (2002) Effect of ingested culture of Propionibacterium freudenreichii ET-3 on fecal microflora and stool frequency in healthy females. Biosci Microflora 21:115–120Google Scholar
  44. Holo H, Faye T, Brede DA, Nilsen T, Odegard I, Langsrud T, Brendehaug J, Nes IF (2002) Bacteriocins of propionic acid bacteria. Lait 82:59–68Google Scholar
  45. Huang Y, Adams MC (2003) An in vitro model for investigating intestinal adhesion of potential dairy propionibacteria probiotic strains using cell line C2BBe1. Lett Appl Microbiol 36:213–216Google Scholar
  46. Huang Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91:253–260Google Scholar
  47. Huang Y, Kotula L, Adams MC (2003) The in vivo assessment of safety and gastrointestinal survival of an orally administered novel probiotic, Propionibacterium jensenii 702, in a male Wistar rat model. Food Chem Toxicol 41:1781–1787Google Scholar
  48. Hubner RA, Houlston RS (2009) Folate and colorectal cancer prevention. Br J Cancer 100:233–239Google Scholar
  49. Hugenholtz J, Hunik J, Santos H, Smid E (2002) Nutraceutical production by propionibacteria. Lait 82:103–112Google Scholar
  50. Ibrahim F, Halttunen T, Tahvonen R, Salminen S (2006) Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Can J Microbiol 52:877–885Google Scholar
  51. Isawa K, Hojo K, Yoda N, Kamiyama T, Makino S, Saito M, Sugano H, Mizoguchi C, Kurama S, Shibasaki M, Endo N, Sato Y (2002) Isolation and identification of a new bifidogenic growth stimulator produced by Propionibacterium freudenreichii ET-3. Biosci Biotechnol Biochem 66:679–681Google Scholar
  52. Jan G, Rouault A, Maubois J-L (2000) Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii. Lait 80:325–336Google Scholar
  53. Jan G, Leverrier P, Pichereau V, Boyaval P (2001) Changes in protein synthesis and morphology during acid adaptation of Propionibacterium freudenreichii. Appl Environ Microbiol 67:2029–2036Google Scholar
  54. Jan G, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G, Brenner C (2002a) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9:179–188Google Scholar
  55. Jan G, Leverrier P, Proudy I, Roland N (2002b) Survival and beneficial effects of propionibacteria in the human gut: in vivo and in vitro investigations. Lait 82:131–144Google Scholar
  56. Jan G, Lan A, Leverrier P (2007) Dairy propionibacteria as probiotics. In: Saarela M (ed) Functional dairy products, vol 2. Woodhead Publishing Ltd, Cambridge, UK, pp 165–194Google Scholar
  57. Kajander K, Korpela R (2006) Clinical studies on alleviating the symptoms of irritable bowel syndrome with a probiotic combination. Asia Pac J Clin Nutr 15:576–580Google Scholar
  58. Kajander K, Hatakka K, Poussa T, Markkila M, Korpela R (2005) A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month intervention. Aliment Pharmacol Ther 22:387–394Google Scholar
  59. Kajander K, Krogius-Kurikka L, Rinttila T, Karjalainen H, Palva A, Korpela R (2007) Effects of multispecies probiotic supplementation on intestinal microbiota in irritable bowel syndrome. Aliment Pharmacol Ther 26:463–473Google Scholar
  60. Kajander K, Myllyluoma E, Rajilic-Stojanovic M, Kyronpalo S, Rasmussen M, Jarvenpaa S, Zoetendal EG, De Vos WM, Vapaatalo H, Korpela R (2008) Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther 27:48–57Google Scholar
  61. Kaneko T (1999) A novel bifidogenic growth stimulator produced by Propionibacterium freudenreichii. Biosci Microflora 18:73–80Google Scholar
  62. Kaneko T, Mori H, Iwata M, Meguro S (1994) Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J Dairy Sci 77:393–404Google Scholar
  63. Kekkonen RA, Kajasto E, Miettinen M, Veckman V, Korpela R, Julkunen I (2008a) Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-gamma production. World J Gastroenterol 14:1192–1203Google Scholar
  64. Kekkonen RA, Lummela N, Karjalainen H, Latvala S, Tynkkynen S, Jarvenpaa S, Kautiainen H, Julkunen I, Vapaatalo H, Korpela R (2008b) Probiotic intervention has strain-specific anti-inflammatory effects in healthy adults. World J Gastroenterol 14:2029–2036Google Scholar
  65. Kirjavainen PV, El-Nezami HS, Salminen SJ, Ahokas JT, Wright PFA (1999) Effects of orally administered viable Lactobacillus rhamnosus GG and Propionibacterium freudenreichii subsp. shermanii JS on mouse lymphocyte proliferation. Clin Diagn Lab Immunol 6:799–802Google Scholar
  66. Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E (2005) Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol Rev 29:393–409Google Scholar
  67. Kouya T, Misawa K, Horiuchi M, Nakayama E, Deguchi H, Tanaka T, Taniguchi M (2007) Production of extracellular bifidogenic growth stimulator by anaerobic and aerobic cultivations of several propionibacterial strains. J Biosci Bioeng 103:464–471Google Scholar
  68. Kuitunen M, Kukkonen K, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, Haahtela T, Savilahti E (2009) Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J Allergy Clin Immunol 123:335–341Google Scholar
  69. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, Kuitunen M (2007) Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 119:192–198Google Scholar
  70. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, Kuitunen M (2008) Long-term safety and impact on infection rates of postnatal probiotic and prebiotic (synbiotic) treatment: randomized, double-blind, placebo-controlled trial. Pediatrics 122:8–12Google Scholar
  71. Lan A, Bruneau A, Philippe C, Rochet V, Rouault A, Herve C, Roland N, Rabot S, Jan G (2007a) Survival and metabolic activity of selected strains of Propionibacterium freudenreichii in the gastrointestinal tract of human microbiota-associated rats. Br J Nutr 97:714–724Google Scholar
  72. Lan A, Lagadic-Gossmann D, Lemaire C, Brenner C, Jan G (2007b) Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis 12:573–591Google Scholar
  73. Lan A, Bruneau A, Bensaada M, Philippe C, Bellaud P, Rabot S, Jan G (2008) Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1, 2-dimethylhydrazine. Br J Nutr 100:1251–1259Google Scholar
  74. Langsrud T, Reinbold GW (1973) Flavor development and microbiology of Swiss cheese. A review. III. Ripening and flavor production. J Milk Food Technol 36:593–609Google Scholar
  75. Lavillonniere F, Chajes V, Martin JC, Sebedio JL, Lhuillery C, Bougnoux P (2003) Dietary purified cis-9, trans-11 conjugated linoleic acid isomer has anticarcinogenic properties in chemically induced mammary tumors in rats. Nutr Cancer 45:190–194Google Scholar
  76. Lee YK, El-Nezami H, Haskard CA, Gratz S, Puong KY, Salminen S, Mykkanen H (2003) Kinetics of adsorption and desorption of aflatoxin B-1 by viable and nonviable bacteria. J Food Prot 66:426–430Google Scholar
  77. Lehto EM, Salminen S (1997) Adhesion of two Lactobacillus strains, one Lactococcus and one Propionibacterium strain to cultured human intestinal Caco-2 cell line. Biosci Microflora 16:13–17Google Scholar
  78. Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan GL (2003) Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol 69:3809–3818Google Scholar
  79. Leverrier P, Vissers JPC, Rouault A, Boyaval P, Jan G (2004) Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Arch Microbiol 181:215–230Google Scholar
  80. Leverrier P, Fremont Y, Rouault A, Boyaval P, Jan G (2005) In vitro tolerance to digestive stresses of propionibacteria: influence of food matrices. Food Microbiol 22:11–18Google Scholar
  81. Lind H, Sjogren J, Gohil S, Kenne L, Schnurer J, Broberg A (2007) Antifungal compounds from cultures of dairy propionibacteria type strains. FEMS Microbiol Lett 271:310–315Google Scholar
  82. Lock AL, Corl BA, Barbano DM, Bauman DE, Ip C (2004) The anticarcinogenic effect of trans-11 18: One is dependent on its conversion to cis-9, trans-11 CLA by Delta 9-desaturase in rats. J Nutr 134:2698–2704Google Scholar
  83. Mantere-Alhonen S (1983) On the survival of a Propionibacterium freudenreichii culture during in vitro gastric digestion. Meijeritieteellinen Aikakauskirja 41:19–23Google Scholar
  84. Mantere-Alhonen S (1995) Propionibacteria used as probiotics—a review. Lait 75:447–452Google Scholar
  85. Matthews GM, Howarth GS, Butler RN (2007) Short-chain fatty acid modulation of apoptosis in the Kato III human gastric carcinoma cell line. Cancer Biol Ther 6:1051–1057Google Scholar
  86. McIntosh FM, Shingfield KJ, Devillard E, Russell WR, Wallace RJ (2009) Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria. Microbiology 155:285–294Google Scholar
  87. Meile L, Le Blay G, Thierry A (2008) Safety assessment of dairy microorganisms: Propionibacterium and Bifidobacterium. Int J Food Microbiol 126:316–320Google Scholar
  88. Michel C, Roland N, Lecannu G, Hervé C, Avice JC, Rival M, Cherbut C (2005) Colonic infusion with Propionibacterium acidipropionici reduces severity of chemically-induced colitis in rats. Lait 85:99–111Google Scholar
  89. Mitsuyama K, Masuda J, Yamasaki H, Kuwaki K, Kitazaki S, Koga H, Uchida M, Sata M (2007) Treatment of ulcerative colitis with milk whey culture with Propionibacterium freudenreichii. J Intest Microbiol 21:143–147Google Scholar
  90. Mogensen G, Salminen S, O’Brien J, Ouwehand A, Holzapfel W, Shortt C, Fonden R, Miller G, Donohue D, Playne M, Crittenden R, Salvadori B, Zink R (2002) Inventory of microorganisms with a documented history of use in food, Bulletin of the IDF 10–19Google Scholar
  91. Morata de Ambrosini V, Gonzalez S, Perdigon G, De Ruiz Holgado AP, Oliver G (1998) Immunostimulating activity of cell walls from lactic acid bacteria and related species. Food Agric Immunol 10:183–191Google Scholar
  92. Mori H, Sato Y, Taketomo N, Kamiyama T, Yoshiyama Y, Meguro S, Sato H, Kaneko T (1997) Isolation and structural identification of bifidogenic growth stimulator produced by Propionibacterium freudenreichii. J Dairy Sci 80:1959–1964Google Scholar
  93. Moussavi M, Adams MC (2010) An in vitro study on bacterial growth interactions and intestinal epithelial cell adhesion characteristics of probiotic combinations. Curr Microbiol 60:327–335Google Scholar
  94. Myllyluoma E, Veijola L, Ahlroos T, Tynkkynen S, Kankuri E, Vapaatalo H, Rautelin H, Korpela R (2005) Probiotic supplementation improves tolerance to Helicobacter pylori eradication therapy—a placebo-controlled, double-blind randomized pilot study. Aliment Pharmacol Ther 21:1263–1272Google Scholar
  95. Myllyluoma E, Ahlroos T, Veijola L, Rautelin H, Tynkkynen S, Korpela R (2007a) Effects of anti-Helicobacter pylori treatment and probiotic supplementation on intestinal microbiota. Int J Antimicrob Agents 29:66–72Google Scholar
  96. Myllyluoma E, Kajander K, Mikkola H, Kyronpalo S, Rasmussen M, Kankuri E, Sipponen P, Vapaatalo H, Korpela R (2007b) Probiotic intervention decreases serum gastrin-17 in Helicobacter pylori infection. Digest Liver Dis 39:516–523Google Scholar
  97. Myllyluoma E, Ahonen AM, Korpela R, Vapaatalo H, Kankuri E (2008) Effects of multispecies probiotic combination on Helicobacter pylori infection in vitro. Clin Vaccine Immunol 15:1472–1482Google Scholar
  98. Niderkorn V, Boudra H, Morgavi DP (2006) Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J Appl Microbiol 101:849–856Google Scholar
  99. Okada Y, Hokari R, Kato S, Mataki N, Okudaira K, Takebayashi K, Matsunaga H, Tsuzuki Y, Komoto S, Watanabe C, Kawaguchi A, Nagao S, Itoh K, Miura S (2006a) 1.4-dihydroxy-2-naphthoic acid (DHNA) shows anti-inflammatory effect on NSAID-induced colitis in IL-10-knockout mice through suppression of inflammatory cell infiltration and increased number of Genus Bifidobacterium. Gastroenterology 130:A313Google Scholar
  100. Okada Y, Tsuzuki Y, Miyazaki J, Matsuzaki K, Hokari R, Komoto S, Kato S, Kato S, Kawaguchi A, Nagao S, Itoh K, Watanabe T, Miura S (2006b) Propionibacterium freudenreichii component 1.4-dihydroxy-2-naphthoic acid (DHNA) attenuates dextran sodium sulphate induced colitis by modulation of bacterial flora and lymphocyte homing. Gut 55:681–688Google Scholar
  101. Orla-Jensen O (1909) Die hauptlinien des natürlichen bakteriensystems, The main lines of the natural bacterial system. Zentralbl Bakteriol 22:305–346Google Scholar
  102. Ouwehand AC, Tolkko S, Kulmala J, Salminen S, Salminen E (2000) Adhesion of inactivated probiotic strains to intestinal mucus. Lett Appl Microbiol 31:82–86Google Scholar
  103. Ouwehand AC, Lagstrom H, Suomalainen T, Salminen S (2002a) Effect of probiotics on constipation, fecal azoreductase activity and fecal mucin content in the elderly. Ann Nutr Metab 46:159–162Google Scholar
  104. Ouwehand AC, Suomalainen T, Tolkko S, Salminen S (2002b) In vitro adhesion of propionic acid bacteria to human intestinal mucus. Lait 82:123–130Google Scholar
  105. Ouwehand AC, Salminen S, von Wright A, Ouwehand A (2004) The probiotic potential of propionibacteria, in: Lactic acid bacteria: Microbiology and functional aspects, 3 rd edition, revised and expanded. Marcel Dekker, New York, USA, pp 159–174Google Scholar
  106. Perez-Chaia A, Zarate G (2005) Dairy propionibacteria from milk or cheese diets remain viable and enhance propionic acid production in the mouse cecum. Lait 85:85–98Google Scholar
  107. Perez-Chaia A, Nader de Macias ME, Oliver G (1995) Propionibacteria in the gut: effect on some metabolic activities of the host. Lait 75:435–445Google Scholar
  108. Perez-Chaia A, Zarate G, Oliver G (1999) The probiotic properties of propionibacteria. Lait 79:175–185Google Scholar
  109. Pohjavuori E, Viljanen M, Korpela R, Kuitunen M, Tiittanen M, Vaarala O, Savilahti E (2004) Lactobacillus GG effect in increasing IFN-gamma production in infants with cow’s milk allergy. J Allergy Clin Immunol 114:131–136Google Scholar
  110. Rainio A, Vahvaselka M, Suomalainen T, Laakso S (2001) Reduction of linoleic acid inhibition in production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii. Can J Microbiol 47:735–740Google Scholar
  111. Rainio A, Vahvaselka M, Suomalainen T, Laakso S (2002) Production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii. Lait 82:91–101Google Scholar
  112. Ramanathan S, Furusawa E, Read G, Cutting W (1965) Isolation and activity of propionin A an antiviral polypeptide from propionibacteria. Chemotherapy 10:197–198Google Scholar
  113. Ramanathan S, Read G, Cutting W (1966) Purification of propionin, an antiviral agent from propionibacteria. Proc Soc Exp Biol Med 123:271–273Google Scholar
  114. Ramanathan S, Olynec C, Cutting W (1968) Antiviral principles of Propionibacteriaisolation, activity of Propionins B, C. Proc Soc Exp Biol Med 129:73–77Google Scholar
  115. Ramanathan S, Furusawa E, Yee H, Cutting WC (1973) Propionin B an anti viralprinciple of propionibacteria. Chemotherapy 19:16–21Google Scholar
  116. Roland N, Bouglé D, Lebeurrier F, Arhan P, Maubois J-L (1998) Propionibacterium freudenreichii stimulates the growth of Bifidobacterium bifidum in vitro and increases fecal bifidobacteria in healthy human volunteers. Int Dairy J 8:587–588Google Scholar
  117. Ruijschop RMAJ, Boelrijk AEM, Giffel MCT (2008) Satiety effects of a dairy beverage fermented with propionic acid bacteria. Int Dairy J 18:945–950Google Scholar
  118. Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46:S58–S61Google Scholar
  119. Sarkar S, Misra AK (1998) Effect of feeding Propiono-Acido-Bifido (PAB) milk on the nutritional status and excretory pattern in rats and infants. Milchwissenschaft 53:666–668Google Scholar
  120. Sarkar S, Misra AK (2002) Effect of feeding dietetic yoghurt on the nutritional status and excretory pattern in rats and infants. Egypt J Dairy Sci 30:63–73Google Scholar
  121. Satomi K, Kurihara H, Isawa K, Mori H, Kaneko T (1999) Effects of culture-powder of Propionibacterium freudenreichii ET-3 on fecal microflora of normal adults. Biosci Microflora 18:27–30Google Scholar
  122. Seki K, Nakao H, Umino H, Isshiki H, Yoda N, Tachihara R, Ohuchi T, Saruta H, Suzuki K, Mitsuoka T (2004) Effects of fermented milk whey containing novel bifidogenic growth stimulator produced by Propionibacterium on fecal bacteria, putrefactive metabolite, defecation frequency and fecal properties in senile volunteers needed serious nursing-care taking enteral nutrition by tube feeding. J Intest Microbiol 18:107–115Google Scholar
  123. Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T (2000) Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp Biochem Physiol A Mol Integr Physiol 125:525–531Google Scholar
  124. Sidorchuk II, Bondarenko VM (1984) Selection of a biologically active mutant of Propionibacterium shermanii and the possibility of its use in complex therapy of enteral dysbacteriosis. J Hyg Epidemiol Microbiol Immunol 28:331–338Google Scholar
  125. Somkuti GA, Johnson TL (1990) Cholesterol uptake by Propionibacterium freudenreichii. Curr Microbiol 20:305–309Google Scholar
  126. Stackebrandt E, Schumann P, Schaal KP, Weiss N (2002) Propionimicrobium gen. nov., a new genus to accommodate Propionibacterium lymphophilum (Torrey 1916) Johnson and Cummins 1972, 1057 (AL) as Propionimicrobium lymphophilum comb. nov. Int J Syst Evol Microbiol 52:1925–1927Google Scholar
  127. Suomalainen T, Sigvart-Mattila P, Matto J, Tynkkynen S (2008) In vitro and in vivo gastrointestinal survival, antibiotic susceptibility and genetic identification of Propionibacterium freudenreichii ssp. shermanii JS. Int Dairy J 18:271–278Google Scholar
  128. Suzuki A, Mitsuyama K, Koga H, Tomiyasu N, Masuda J, Takaki K, Tsuruta O, Toyonaga A, Sata M (2006) Bifidogenic growth stimulator for the treatment of active ulcerative colitis: a pilot study. Nutrition 22:76–81Google Scholar
  129. Thiel A, Eikmanns B, Salminen S, Ouwehand AC (2004) In vitro adhesion of propionibacteria to human intestinal mucus. Ital J Food Sci 16:245–253Google Scholar
  130. Thierry A, Maillard MB, Yvon M (2002) Conversion of L-leucine to isovaleric acid by Propionibacterium freudenreichii TL 34 and ITGP23. Appl Environ Microbiol 68:608–615Google Scholar
  131. Thierry A, Maillard MB, Hervé C, Richoux R, Lortal S (2004a) Varied volatile compounds are produced by Propionibacterium freudenreichii in Emmental cheese. Food Chem 87:439–446Google Scholar
  132. Thierry A, Richoux R, Kerjean JR (2004b) Isovaleric acid is mainly produced by Propionibacterium freudenreichii in Swiss cheese. Int Dairy J 14:801–807Google Scholar
  133. Trinidad TP, Wolever TMS, Thompson LU (1999) Effects of calcium concentration, acetate, and propionate on calcium absorption in the human distal colon. Nutrition 15:529–533Google Scholar
  134. Tuomola EM, Ouwehand AC, Salminen SJ (1999) Human ileostomy glycoproteins as a model for small intestinal mucus to investigate adhesion of probiotics. Lett Appl Microbiol 28:159–163Google Scholar
  135. Uchida M, Mogami O (2005) Milk whey culture with Propionibacterium freudenreichii ET-3 is effective on the colitis induced by 2, 4, 6-trinitrobenzene sulfonic acid in rats. J Pharmacol Sci 99:329–334Google Scholar
  136. Vahvaselka M, Laakso S (2010) Production of cis-9, trans-11-conjugated linoleic acid in camelina meal and okara by an oat-assisted microbial process. J Agric Food Chem 58:2479–2482Google Scholar
  137. Vesterlund S, Karp M, Salminen S, Ouwehand AC (2006) Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology 152:1819–1826Google Scholar
  138. Viljanen M, Kuitunen M, Haahtela T, Juntunen-Backman K, Korpela R, Savilahti E (2005a) Probiotic effects on faecal inflammatory markers and on faecal IgA in food allergic atopic eczema/dermatitis syndrome infants. Pediatr Allergy Immunol 16:65–71Google Scholar
  139. Viljanen M, Pohjavuori E, Haahtela T, Korpela R, Kuitunen M, Sarnesto A, Vaarala O, Savilahti E (2005b) Induction of inflammation as a possible mechanism of probiotic effect in atopic eczemadermatitis syndrome. J Allergy Clin Immunol 115:1254–1259Google Scholar
  140. Vorobjeva LI, Khodjaev EY, Cherdinceva TA (1995) Antimutagenic and reactivative activities of dairy propionibacteria. Lait 75:473–487Google Scholar
  141. Vorobjeva LI, Iljasova OV, Khodjaev EY, Ponomareva GM, Varioukhina SY (2001) Inhibition of induced mutagenesis in Salmonella typhimurium by the protein of Propionibacterium freudenreichii subsp. shermanii. Anaerobe 7:37–44Google Scholar
  142. Vorobjeva L, Leverrier P, Zinchenko A, Boyaval P, Khodjaev E, Varioukhina S, Ponomareva G, Gordeeva E, Jan G (2004) Anti-stress activity of Propionibacterium freudenreichii: identification of a reactivative protein, Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 85:53–62Google Scholar
  143. Vorobjeva LI, Khodjaev EY, Vorobjeva NV (2008) Propionic acid bacteria as probiotics. Microb Ecol Health Dis 20:109–112Google Scholar
  144. Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: Are they beneficial or detrimental to health? Prog Lipid Res 43:553–587Google Scholar
  145. Wang LM, Lv JP, Chu ZQ, Cui YY, Ren XH (2007) Production of conjugated linoleic acid by Propionibacterium freudenreichii. Food Chem 103:313–318Google Scholar
  146. Warminska-Radyko I, Laniewska-Moroz L, Babuchowski A (2002) Possibilities for stimulation of Bifidobacterium growth by propionibacteria. Lait 82:113–121Google Scholar
  147. Wood HG, Eastbrook RW, Srera P (1981) Metabolic cycles in the fermentation of propionic acid bacteria, in: Current topics in cellular regulation. Academic, New York, USA, pp 255–287Google Scholar
  148. Yamazaki S, Kano K, Ikeda T, Isawa K, Kaneko T (1998) Mechanistic study on the roles of a bifidogenetic growth stimulator based on physicochemical characterization. BBA-Gen Subjects 1425:516–526Google Scholar
  149. Yamazaki S, Kano K, Ikeda T, Isawa K, Kaneko T (1999) Role of 2-amino-3-carboxy-1, 4-naphthoquinone, a strong growth stimulator for bifidobacteria, as an electron transfer mediator for NAD(P)(+) regeneration in Bifidobacterium longum. BBA-Gen Subjects 1428:241–250Google Scholar
  150. Yokota A, Tamura T, Takeuchi M, Weiss N, Stackebrandt E (1994) Transfer of Propionibacterium innocuum Pitcher and Collins 1991 to Propioniferax gen. nov., as Propioniferax innocua comb. nov. Int J Syst Bacteriol 44:579–582Google Scholar
  151. Zarate G, Perez Chaia A (2009) Dairy bacteria remove in vitro dietary lectins with toxic effects on colonic cells. J Appl Microbiol 106:1050–1057Google Scholar
  152. Zarate G, Chaia AP, Gonzalez S, Oliver G (2000) Viability and beta-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Prot 63:1214–1221Google Scholar
  153. Zarate G, Chaia AP, Oliver G (2002a) Some characteristics of practical relevance of the beta-galactosidase from potential probiotic strains of Propionibacterium acidipropionici. Anaerobe 8:259–267Google Scholar
  154. Zarate G, De Ambrosini VIM, Chaia AP, Gonzalez SN (2002b) Adhesion of dairy propionibacteria to intestinal epithelial tissue in vitro and in vivo. J Food Prot 65:534–539Google Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Fabien J. Cousin
    • 1
    • 2
    • 3
  • Denis D. G. Mater
    • 3
  • Benoît Foligné
    • 4
  • Gwénaël Jan
    • 1
    • 2
    Email author
  1. 1.INRAUMR1253 Science et Technologie du Lait et de l’OeufRennesFrance
  2. 2.AGROCAMPUS OUESTUMR1253 Science et Technologie du Lait et de l’OeufRennesFrance
  3. 3.CNIEL/SyndifraisParis 09France
  4. 4.Institut Pasteur de Lille, Bactéries Lactiques & Immunité des Muqueuses, Centre d’Infection et d’Immunité de Lille, Unit 1019—UMR 8204Univ. Lille Nord de FranceLilleFrance

Personalised recommendations