Dairy Science & Technology

, Volume 90, Issue 2–3, pp 211–224 | Cite as

An overview of the recent advances in spray-drying

  • Arun S. Mujumdar
  • Li-Xin Huang
  • Xiao Dong ChenEmail author


A global overview is presented of recent developments in spray drying. Recent advances in computational fluid dynamics modeling have provided new insights into the flow processes occurring within the spray chamber. This is important since detailed experimental measurements within an operating spray dryer are almost impossible due to the hostile environment of high-temperature two-phase flow, which may be unsteady, and the high cost that would have to incur. Some recent predictive studies on predicted effects of innovative chamber geometry, reduced pressure operation, operation in low dew-point air and superheated steam are presented. Also, a comparison is made between steady and unsteady state computations to highlight the critical issues. Predicted results on a horizontal spray chamber configuration are also presented. Finally, a brief survey is made on the recent literature on spray freeze-drying as well as multi-stage drying processes.

computational fluid dynamics modeling spray drying CFD 

Récentes avancées dans la conception et l’optimisation des installations de séchage par pulvérisation: une vue d’ensemble


Un inventaire des récents développements dans le domaine du séchage par pulvérisation est dressé. Les dernières avancées de la dynamique des fluides numérique ont permis d’obtenir de nouvelles représentations des processus d’écoulement ayant lieu à l’intérieur de la chambre de séchage. Ces modélisations sont très importantes car des mesures expérimentales détaillées à l’intérieur d’une installation de séchage en fonctionnement sont pratiquement impossibles à réaliser, en raison des conditions hostiles liées au flux à température élevée de deux phases, pouvant être irrégulier, et aux coûts qui seraient engendrés. Des études prédictives récentes sur les effets d’une géométrie innovante de la chambre, de conditions de pression réduite, d’air à bas point de rosée et de vapeur surchauffée, sont notamment présentées. Une comparaison des calculs réalisés dans des conditions stables ou instables est également réalisée afin de mettre en lumière les points critiques. Les résultats de la prédiction pour une configuration de chambre horizontale sont présentés. Enfin, les dernières publications sur le couplage séchage par pulvérisation-lyophilisation et les procédés de séchage multi-étage sont présentées rapidement.

dynamique des fluides modélisation séchage par pulvérisation CFD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bhandari B., Howes T., Relating the stickiness property of foods undergoing drying and dried products to their surface energetic, Drying Technol. 23 (2005) 791–797.CrossRefGoogle Scholar
  2. [2]
    Blei S., Sommerfeld M., Computation of agglomeration for non-uniform dispersed phase properties — an extended stochastic collision model, in: Proceedings of the 5th International Conference on Multiphase Flow, 30 May–4 June 2004, ICMF’04, Yokohama, Japan.Google Scholar
  3. [3]
    Caric M., Concentrated and Dried Dairy Products, VCH Publishers, New York, USA, 1994.Google Scholar
  4. [4]
    Chen X.D., Whole milk powder agglomeration — principle and practice, in: Chen X.D. (Ed.), Milk Powders for the Future, Dunmore Press, Palmerston North, New Zealand, 1992.Google Scholar
  5. [5]
    Chen X.D., Lake R., Jebson S., Study of milk powder deposition on a large industrial dryer, Trans. IChemE: Bio-Process. Food Process. 71 (1993) 180–186.Google Scholar
  6. [6]
    Crowe C.T., Sharma M.P., Stock D.E., The particle-source-in-cell (PSI-Cell) model for gas-droplet flows, J. Fluid Eng. 9 (1977) 325–332.CrossRefGoogle Scholar
  7. [7]
    Ducept F., Sionneau M., Vasseur J., Superheated steam dryer: simulations and experiments on product drying, Chem. Eng. J. 86 (2002) 75–83.CrossRefGoogle Scholar
  8. [8]
    Filkova I., Huang L.X., Mujumdar A.S., Industrial spray drying systems, in: Mujumdar A.S. (Ed.), Handbook of Industrial Drying, Taylor & Francis, New York, USA, 2007, pp. 215–257.Google Scholar
  9. [9]
    Frydman A., Vasseur J., Ducept F., Moureh J., Simulation of spray drying in superheated steam using computational fluid dynamics, Drying Technol. 17 (1999) 1313–1326.CrossRefGoogle Scholar
  10. [10]
    Goldberg J.E., Prediction of Spray Dryer Performance, Ph.D. Thesis, University of Oxford, UK, 1987.Google Scholar
  11. [11]
    Guo B., Langrish T.A.G., Fletcher D.F., Time-dependent simulation of turbulent flows in axisymmetric sudden expansions, in: Thompson M.C., Hourigan K. (Eds.), Proceedings 13th Australasian Fluid Mechanics Conference, Melbourne, Australia, 1998, pp. 283–286.Google Scholar
  12. [12]
    Guo B., Langrish T.A.G., Fletcher D.F., Numerical simulation of unsteady turbulent flow in axisymmetric sudden expansions, J. Fluids Eng. 123 (2001) 574–587.CrossRefGoogle Scholar
  13. [13]
    Guo B., Langrish T.A.G., Fletcher D.F., Simulation of turbulent swirl flow in an axisymetric sudden expansion, AIAA J. 39 (2001) 96–102.CrossRefGoogle Scholar
  14. [14]
    Guo B., Langrish T.A.G., Fletcher D.F., CFD simulation of precession in sudden pipe expansion flows with low inlet swirl, Appl. Math. Model. 26 (2002) 1–15.CrossRefGoogle Scholar
  15. [15]
    Guo B., Langrish T.A.G., Fletcher D.F., Simulation of gas flow instability in a spray dryer, Chem. Eng. Res. Des. 81 (2003) 631–638.CrossRefGoogle Scholar
  16. [16]
    Harvie D.J.E., Langrish T.A.G., Fletcher D.F., A computational fluid dynamics study of a tall-form spray dryer, Trans. IChemE 80 (2002) 163–175.Google Scholar
  17. [17]
    Huang L.X., Kumar K., Mujumdar A.S., Use of computational fluid dynamics to evaluate alternative spray dryer chamber configurations, Drying Technol. 21 (2003) 385–412.CrossRefGoogle Scholar
  18. [18]
    Huang L.X., Mujumdar A.S., Spray drying: principle and practice, in: Mujumdar A.S. (Ed.), Guide to Industrial Drying, 2nd enhanced edn., Colour Publications Pvt. Ltd., Mumbai, India, 2004, pp. 143–169.Google Scholar
  19. [19]
    Huang L.X., Mujumdar A.S., Development of a new innovative conceptual design for horizontal spray dryer via mathematical modeling, Drying Technol. 23 (2005) 1169–1187.CrossRefGoogle Scholar
  20. [20]
    Huang L.X., Mujumdar A.S., Numerical study of two-stage horizontal spray dryers using computational fluid dynamics, Drying Technol. 24 (2006) 727–733.CrossRefGoogle Scholar
  21. [21]
    Huang L.X., Mujumdar A.S., Simulation of an industrial spray dryer and prediction of off-design performance, Drying Technol. 25 (2007) 703–714.CrossRefGoogle Scholar
  22. [22]
    Huang L.X., Passos M.L., Kumar K., Mujumdar A.S., A three-dimensional simulation of a spray dryer fitted with a rotary atomizer, Drying Technol. 23 (2005) 1859–1873.CrossRefGoogle Scholar
  23. [23]
    Huang L.X., Wang Z., Tang J., Recent progress of spray drying in China [in Chinese], Chem. Eng. (China) 29 (2001) 51–55.Google Scholar
  24. [24]
    Huang L.X., Zheng W.H., Wang C.Z., Mujumdar A.S., Leuenberger H., Spray freeze drying and its applications in drying of plant extracts and pharmaceuticals [in Chinese], Chem. Ind. For. Prod. 27 (2007) 143–146.Google Scholar
  25. [25]
    Jin Y., Chen X.D., A three-dimensional numerical study of the gas/particle interactions in an industrial-scale spray dryer for milk powder production, Drying Technol. 27 (2009) 1018–1027.CrossRefGoogle Scholar
  26. [26]
    Jin Y., Chen X.D., Numerical study of the drying process of different sized particles in an industrial-scale spray dryer, Drying Technol. 27 (2009) 371–381.CrossRefGoogle Scholar
  27. [27]
    Jin Y., Chen X.D., A numerical model for the particle deposition on industrial milk dryers, Drying Technol. (to appear).Google Scholar
  28. [28]
    Katta S., Gauvin W.H., Some fundamental aspects of spray drying, AIChE J. 21 (1975) 143–150.CrossRefGoogle Scholar
  29. [29]
    Kieviet F.G., Modelling Quality in Spray Drying, Ph.D. Thesis, Endinhoven University of Technology, The Netherlands, 1997.Google Scholar
  30. [30]
    Kota K., Langrish T.A.G., Fluxes and patterns of wall deposits for skim milk in a pilot-scale spray dryer, Drying Technol. 24 (2006) 993–1001.CrossRefGoogle Scholar
  31. [31]
    Kota K., Langrish T.A.G., Prediction of deposition patterns in a pilot-scale spray dryer using computational fluid dynamics (CFD) simulations, Chem. Prod. Process Model. 2 (2007) Article 26.Google Scholar
  32. [32]
    Langrish T.A.G., Oakley D.E., Keey R.B., Bahu R.E., Hutchinson C.A., Time-dependent flow patterns in spray dryers, Trans. IChemE 71 (1993) 355–360.Google Scholar
  33. [33]
    Langrish T.A.G., Williams J., Fletcher D.F., Simulation of the effects of inlet swirl on gas flow patterns in a pilot-scale spray dryer, Chem. Eng. Res. Des. 82 (2004) 821–833.CrossRefGoogle Scholar
  34. [34]
    Langrish T.A.G., Zbicinski I., The effects of air inlet geometry and spray angle on the wall deposition rate in spray dryers, Trans. IChemE 72 (1994) 420–430.Google Scholar
  35. [35]
    Leuenberger H., Plitzko M., Puchkov M., Spray freeze drying in a fluidized bed at normal and low pressure, Drying Technol. 24 (2006) 711–719.CrossRefGoogle Scholar
  36. [36]
    Masters K., Spray Drying Handbook, 5th edn., John Wiley & Sons Inc., New York, USA, 1991, pp. 725–726.Google Scholar
  37. [37]
    Maurel A., Ern P., Zielinska B.J.A., Wesfreid J.E., Experimental study of self-sustained oscillations in a confined jet, Phys. Rev. E 54 (1996) 3643–3651.CrossRefGoogle Scholar
  38. [38]
    Mezhericher M., Levy A., Borde I., Droplet-droplet interactions in spray drying by using 2D Computational Fluid Dynamics, Drying Technol. 26 (2008) 265–282.CrossRefGoogle Scholar
  39. [39]
    Mezhericher M., Levy A., Borde I., Modeling of droplet drying in spray chambers using 2D and 3D computational fluid dynamics, Drying Technol. 27 (2009) 359–370.CrossRefGoogle Scholar
  40. [40]
    Murthi R.A., Paterson A.H.J., Pearce D., Bronlund J.E., Controlling SMP stickiness by changing the wall material: feasible or not?, in: Proceedings of Chemeca, Auckland, New Zealand, 2006, CD-ROM, paper 209.Google Scholar
  41. [41]
    Nhumaio G.C.S., Watkins A.P., Yule A.J., Experiments and CFD predictions of two overlapping water sprays issued from air-assist atomizers, in: Proceedings ILASS Europe 19th Annual Conference on Liquid Atomization and Spray Systems, 6–8 September 2004, Nottingham, UK, 2004.Google Scholar
  42. [42]
    O’Callaghan J., Cunningham P., Modern process control techniques in the production of dried milk — a review, Lait 85 (2005) 335–342.CrossRefGoogle Scholar
  43. [43]
    Oakley D.E., Bahu R.E., Spray/gas mixing behavior within spray dryers, in: Mujumdar A.S., Filkova I. (Eds.), Drying’91, Elsevier, Amsterdam, The Netherlands, 1991.Google Scholar
  44. [44]
    Parti M., Palancz B., Mathematical model for spray drying, Chem. Eng. Sci. 29 (1974) 355–362.CrossRefGoogle Scholar
  45. [45]
    Passos M.L., Mujumdar A.S., Mathematical models for improving spray drying processes for foods, Stewart Post-harvest Review,, 2005.Google Scholar
  46. [46]
    Pisecky J., Evaporation and spray drying in the dairy industry, in: Mujumdar A.S. (Ed.), Handbook of Industrial Drying, Vol. 1, 2nd edn., Marcel Dekker Inc., New York, USA, 1995, pp. 715–742.Google Scholar
  47. [47]
    Rogers S., Wu D., Saunders J., Chen X.D., Characteristics of milk powders produced by spray freeze drying, Drying Technol. 26 (2008) 404–412.CrossRefGoogle Scholar
  48. [48]
    Sommerfeld M., Validation of a stochastic Lagrangian modeling approach for interparticle collisions in homogeneous isotropic turbulence, Int. J. Multiphase Flow 27 (2001) 1829–1858.CrossRefGoogle Scholar
  49. [49]
    Sonner C., Protein-Loaded Powders by Spray Freeze Drying, Ph.D. Thesis, Department of Pharmaceutics, Friedrich-Alexandar University, Erlangen, Germany, 2002.Google Scholar
  50. [50]
    Southwell D.B., Langrish T.A.G., Observations of flow patterns in a spray dryer, Drying Technol. 18 (2000) 661–685.CrossRefGoogle Scholar
  51. [51]
    Straatsma J., van Houwelingen G., Meulman A.P., Steenbergen A.E., Dry-SPEC2: a computer model of a two-stage dryer, J. Soc. Dairy Technol. 44 (1991) 107–111.CrossRefGoogle Scholar
  52. [52]
    Straatsma J., van Houwelingen G., Steenbergen A.E., De Jong P., Spray drying of food products: 1. Simulation model, J. Food Eng. 42 (1999) 67–72.CrossRefGoogle Scholar
  53. [53]
    Straatsma J., van Houwelingen G., Steenbergen A.E., De Jong P., Spray drying of food products: 2. Prediction of insolubility, J. Food Eng. 42 (1999) 73–77.CrossRefGoogle Scholar
  54. [54]
    Tang J.X., Huang L.X., Wang Z.L., Three-stage drying system and its application in dairy product processing [in Chinese], J. Nanjing Forestry 21 (1997) 56–58.Google Scholar
  55. [55]
    Thompson R.I., Nutrient Profile, Functional Properties and Microstructure of Dried Waste Milk Product for Use as a Potential Animal Feed, Ph.D. Thesis, Louisiana State University, USA, 2002.Google Scholar
  56. [56]
    Ullum T., Simulation of a spray dryer with rotary atomizer: the appearance of vortex breakdown, in: Proceedings of the 15th International Drying Symposium, 20–23 August 2006, Budapest, Hungary, pp. 251–257.Google Scholar
  57. [57]
    Verdurmen R.E.M., Menn P., Ritzert J., Blei S., Nhumaio G.C.S., Sonne Sørensen T., Gunsing M., Straatsma J., Verschueren M., Sibeijn M., Schulte G., Fritsching U., Bauckhage K., Tropea C., Sommerfeld M., Watkins A.P., Yule A.J., Schønfeldt H., Simulation of agglomeration in spray drying installations: the EDECAD project, Drying Technol. 22 (2004) 1403–1462.CrossRefGoogle Scholar
  58. [58]
    Verdurmen R.E.M., Straatsma H., Verschueren M., van Haren J.J., Smit E., Bargeman G., De Jong P., Modeling spray drying processes for dairy products, Lait 82 (2002) 453–463.CrossRefGoogle Scholar
  59. [59]
    Verdurmen R.E.M., Verschueren M., Gunsing M., Straatsma H., Simulation of agglomeration in spray dryers: the EDECAD project, Lait 85 (2005) 343–351.CrossRefGoogle Scholar
  60. [60]
    Westergaard V., Milk powder technology: evaporation and spray drying, Niro A/S, Søborg, Denmark, 1994, pp. 18–121.Google Scholar
  61. [61]
    Williams A.M., Jones J.R., Paterson A.H.J., Pearce D.L., Effect of fines on agglomeration in spray dryers: an experimental study, Int. J. Food Eng. (2009) DOI: 10.2202/1556-3758.1635.Google Scholar
  62. [62]
    Woo M.W., The simulation of spray drying under unsteady flow using CFD, 2008, private communications.Google Scholar
  63. [63]
    Woo M.W., Daud W.R.W., Tasirin S.M., Talib M.Z.M., Controlling food powder deposition in spray dryers: wall surface energy manipulation as an alternative, J. Food Eng. 94 (2008) 192–198.CrossRefGoogle Scholar
  64. [64]
    Woo M.W., Daud W.R.W., Tasirin S.M., Talib M.Z.M., Effect of wall surface properties at different drying kinetics on the deposition problem in spray drying, Drying Technol. 26 (2008) 15–26.CrossRefGoogle Scholar
  65. [65]
    Wu Z.H., Liu X.D., Simulation of spray drying of a solution atomized in a pulsating flow, Drying Technol. 20 (2002) 1101–1121.CrossRefGoogle Scholar
  66. [66]
    Xiao Z.F., Xie X.Y., Yuan Y.J., Liu X.D., Influence of atomizing parameters on droplet properties in a pulse combustion spray dryer, Drying Technol. 26 (2008) 427–432.CrossRefGoogle Scholar
  67. [67]
    Xu P., Ray M.B., Mujumdar A.S., Yu B., Design and optimize hydrocyclones with CFD model, in: Proceedings of 8th World Congress of Chemical Engineering, 23–27 August 2009, Montreal, Canada (to appear).Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Arun S. Mujumdar
    • 1
  • Li-Xin Huang
    • 2
  • Xiao Dong Chen
    • 3
    Email author
  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.Institute of Chemical Industries of Forestry ProductsNanjingP. R. China
  3. 3.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations