Dairy Science & Technology

, Volume 90, Issue 5, pp 477–508 | Cite as

Determination of the diffusion coefficients of small solutes in cheese: A review

  • Juliane Floury
  • Sophie Jeanson
  • Samar Aly
  • Sylvie Lortal
Review

Abstract

In cheese technology, the mass transfer of small solutes, such as salt, moisture and metabolites during brining and ripening, is very important for the final quality of the cheese. This paper has the following objectives: (i) to review the data concerning the diffusion coefficients of solutes in different cheese types; (ii) to review the experimental methods available to model the mass transfer properties of small solutes in complex matrices such as cheese; and (iii) to consider some potential alternative approaches. Numerous studies have reported the transfer of salt in cheese during brining and ripening. Regardless of the type of cheese and its composition, the effective diffusion coefficients of salt have been reported to be between 1 and 5.3 × 10−10 m2·s−1 at 10–15 °C. However, few papers have dealt with the mass transfer properties of other small solutes in cheese. Most of the reported effective diffusion coefficient values have been obtained by macroscopic and destructive concentration profile methods. More recently, some other promising techniques, such as nuclear magnetic resonance, magnetic resonance imaging or fluorescence recovery after photobleaching, are currently being developed to measure the mass transfer properties of solutes in heterogeneous media at microscopic scales. However, these methods are still difficult to apply to complex matrices such as cheese. Further research needs to focus on: (i) the development of nondestructive techniques to determine the mass transfer properties of small solutes at a microscopic level in complex matrices such as cheese; and (ii) the determination of the mass transfer properties of metabolites that are involved in enzymatic reactions during cheese ripening.

cheese mass transfer diffusion modelling solute 

Détermination des coefficients de diffusion de petits solutés dans le fromage : une synthèse

Résumé

En technologie fromagère, le transfert de petits solutés, tels que le sel, l’eau et les métabolites au cours du saumurage et de l’affinage, joue un rôle majeur sur la qualité finale du fromage. Cette revue bibliographique a pour objectifs principaux : (i) de faire le bilan des valeurs publiées des coefficients de diffusion de différents solutés dans les fromages; (ii) de passer en revue les méthodes expérimentales disponibles pour déterminer les propriétés de transfert des petits solutés dans des milieux complexes comme le fromage; (iii) de considérer les méthodes alternatives potentiellement applicables aux fromages. Dans la littérature, de nombreuses études ont été publiées au sujet du transfert de sel dans les fromages au cours du saumurage et de l’affinage. En fonction du type de fromage et de sa composition, les coefficients de diffusion effectifs du sel sont compris entre 1 et 5,3 × 10−10 m2·s−1 à des températures comprises entre 10 et 15 °C. Très peu d’études concernant les propriétés de transfert d’autres petits solutés dans les fromages ont été publiées. La plupart des coefficients de diffusion effectifs ont été obtenus à l’aide de la méthode classique dite « des profils de concentration », méthode macroscopique présentant l’inconvénient d’être destructive. D’autres techniques, telles que la résonance magnétique nucléaire, l’imagerie par résonance magnétique ou la redistribution de fluorescence après photo-blanchiment sont actuellement développées pour mesurer des propriétés de transfert de matière de solutés à une échelle microscopique. Cependant, elles sont encore difficilement applicables aux matrices complexes comme le fromage. Les perspectives en matière de recherche dans ce domaine sont donc les suivantes : (i) le développement de nouvelles techniques expérimentales pour modéliser à l’échelle microscopique les propriétés de transfert de solutés dans des milieux complexes comme le fromage; (ii) la détermination des propriétés de transfert des métabolites impliqués dans les réactions enzymatiques pendant l’affinage du fromage.

fromage transfert de matière diffusion modélisation soluté 

Abstract

1 ∼ 5.3 × 10−10 m2·s−1 (10 ∼ 15 °C) (i) (ii)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aguilera J.M., Why food microstructure? J. Food Eng. 67 (2005) 3–11.CrossRefGoogle Scholar
  2. [2]
    Aldarf M., Fourcade F., Amrane A., Prigent Y., Diffusion of lactate and ammonium in relation to growth of Geotrichum candidum at the surface of solid media, Biotechnol. Bioeng. 87 (2004) 69–80.CrossRefGoogle Scholar
  3. [3]
    Aldarf M., Fourcade F., Amrane A., Prigent Y., Substrate and metabolite diffusion within model medium for soft cheese in relation to growth of Penicillium camembertii, J. Ind. Microbiol. Biotechnol. 33 (2006) 685–692.CrossRefGoogle Scholar
  4. [4]
    Amrane A., Aldarf M., Fourcade F., Prigent Y., Substrate and metabolite diffusion within solid medium in relation to growth of Geotrichum candidum, in: FOODSIM 2006, 4th International Conference Simulation Modelling in the Food and Bio Industry, Naples, Italy, June 15–17, 2006, pp. 179–186.Google Scholar
  5. [5]
    Axelrod D., Koppel D.E., Schlessinger J., Elson E., Webb W., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16 (1976) 1055–1069.CrossRefGoogle Scholar
  6. [6]
    Bailey J.E., Diffusion of grouped multicomponent mixtures in uniform and nonuniform media, Aiche J. 21 (1975) 192–194.CrossRefGoogle Scholar
  7. [7]
    Baroni A.F., Menezes M.R., Adell E.A.A., Ribeiro E.P., Modeling of Prato cheese salting: fickian and neural network approaches, in: Welti-Chanes J., Velez-Ruiz J.F., Barbosa-Canovas G.V. (Eds.), Transport Phenomena in Food Processing, CRC Press, Boca Raton, USA, 2003, pp. 192–212.Google Scholar
  8. [8]
    Bona E., Borsato D., da Silva R.S.S.F., Silva L.H.M., Multicomponent diffusion during simultaneous brining of Prato Brazilian cheese, Cienc. Tecnol. Aliment. 25 (2005) 394–400.CrossRefGoogle Scholar
  9. [9]
    Bona E., Carneiro R.L., Borsato D., da Silva R.S.S.F., Fidelis D.A.S., Silva L.H.M., Simulation of NaCl and KCl mass transfer during salting of Prato cheese in brine with agitation: a numerical solution, Braz. J. Chem. Eng. 24 (2007) 337–349.CrossRefGoogle Scholar
  10. [10]
    Bona E., da Silva R.S.S.F., Borsato D., Silva L.H.M., Fidelis D.A.D., Multicomponent diffusion modeling and simulation in prato cheese salting using brine at rest: the finite element method approach, J. Food Eng. 79 (2007) 771–778.CrossRefGoogle Scholar
  11. [11]
    Bressan J.A., Carroad P.A., Merson R.L., Dunkley W.L., Modelling of isothermal diffusion of whey components from small curd cottage cheese during washing, J. Food Sci. 47 (1982) 84–88.CrossRefGoogle Scholar
  12. [12]
    Broyart B., Boudhrioua N., Bonazzi C., Daudin J.-D., Modelling of moisture and salt transport in gelatine gels during drying at constant temperature, J. Food Eng. 81 (2007) 657–671.CrossRefGoogle Scholar
  13. [13]
    Callaghan P.T., Jolley K.W., Humphrey R.S., Diffusion of fat and water in cheese as studied by pulsed field gradient nuclear magnetic resonance, J. Colloid Interface Sci. 93 (1983) 521–529.CrossRefGoogle Scholar
  14. [14]
    Carreroa G., McDonald D., Crawford E., de Vries G., Hendzel M.J., Using FRAP and mathematical modelling to determine the in vivo kinetics of nuclear proteins, Methods 29 (2003) 14–28.CrossRefGoogle Scholar
  15. [15]
    Cayot N., Dury-Brun C., Karbowiak T., Savary G., Voilley A., Measurement of transport phenomena of volatile compounds: a review, Food Res. Int. 41 (2008) 349–362.CrossRefGoogle Scholar
  16. [16]
    Colsenet R., Soderman O., Mariette F., Effect of casein concentration in suspensions and gels on poly(ethylene glycol)s NMR self-diffusion measurements, Macromolecules 38 (2005) 9171–9179.CrossRefGoogle Scholar
  17. [17]
    Crank J., The Mathematics of Diffusion, Oxford University Press, Oxford, UK, 1975.Google Scholar
  18. [18]
    Crank J., Park G.S., Methods of measurement, in: Crank J., Park G.S. (Eds.), Diffusion in Polymers, Academic Press, Inc., London, UK, 1968, pp. 1–39.Google Scholar
  19. [19]
    Cussler E.W., Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge, UK, 1976.Google Scholar
  20. [20]
    Djelveh G., Gros J.B., Bories B., An improvement of the cell diffusion method for the rapid determination of diffusion constants in gels or foods, J. Food Sci. 54 (1989) 166–169.CrossRefGoogle Scholar
  21. [21]
    Doulia D., Tzia K., Gekas V., A knowledge base for the apparent mass diffusion coefficient (D-eff) of foods, Int. J. Food Prop. 3 (2000) 1–14.CrossRefGoogle Scholar
  22. [22]
    Feunteun S., Mariette F., Impact of casein gel microstructure on self-diffusion coefficient of molecular probes measured by 1H PFG-NMR, J. Agric. Food Chem. 55 (2007) 10764–10772.CrossRefGoogle Scholar
  23. [23]
    Floury J., Rouaud O., le Poullennec M., Famelart M.H., Reducing salt level in food. Part 2: Modelling salt diffusion in model cheese systems with regards to their composition, LWT-Food Sci. Technol. 42 (2009) 1621–1628.CrossRefGoogle Scholar
  24. [24]
    Frias J.M., Foucat L., Bimbenet J.J., Bonazzi C., Modeling of moisture profiles in paddy rice during drying mapped with magnetic resonance imaging, Chem. Eng. J. 86 (2002) 173–178.CrossRefGoogle Scholar
  25. [25]
    Gerla P.E., Rubiolo A.C., A model for determination of multicomponent diffusion coefficients in foods, J. Food Eng. 56 (2003) 401–410.CrossRefGoogle Scholar
  26. [26]
    Geurts T.G., Oortwijn H., Transport phenomena in butter, its relation to its structure, Neth. Milk Dairy J. 29 (1975) 253–262.Google Scholar
  27. [27]
    Geurts T., Walstra P., Mulder H., Transport of salt and water during salting of cheese. I. Analysis of the processes involved, Neth. Milk Dairy J. 28 (1974) 102–129.Google Scholar
  28. [28]
    Gomes A.M.P., Vieira M.M., Malcata F.X., Survival of probiotic microbial strains in a cheese matrix during ripening: simulation of rates of salt diffusion and microorganism survival, J. Food Eng. 36 (1998) 281–301.CrossRefGoogle Scholar
  29. [29]
    Gros J.B., Rüegg M., Determination of the apparent diffusion coefficient of sodium chloride in model foods and cheese, in: Jowitt R. (Ed.), Physical Properties of Foods, Vol. 2, Elsevier Applied Science, London, UK, 1987, pp. 71–108.Google Scholar
  30. [30]
    Guiheneuf T.M., Gibbs S.J., Hall L.D., Measurement of the inter-diffusion of sodium ions during pork brining by one-dimensional 23Na Magnetic Resonance Imaging (MRI), J. Food Eng. 31 (1997) 457–471.CrossRefGoogle Scholar
  31. [31]
    Guinee T.P., Studies on the movements of sodium chloride and water in cheese and the effects on cheese ripening, Ph.D. Thesis, National University of Ireland, Cork, 1985.Google Scholar
  32. [32]
    Guinee T.P., Salting and the role of salt in cheese, Int. J. Dairy Technol. 57 (2004) 99–109.CrossRefGoogle Scholar
  33. [33]
    Guinee T.P., Fox P.F., Sodium-chloride and moisture changes in Romano-type cheese during salting, J. Dairy Res. 50 (1983) 511–518.CrossRefGoogle Scholar
  34. [34]
    Guinee T.P., Fox P.F., Influence of cheese geometry on the movement of sodiumchloride and water during brining, Ir. J. Food Sci. Technol. 10 (1986) 73–96.Google Scholar
  35. [35]
    Guinee T.P., Fox P.F., Influence of cheese geometry on the movement of sodiumchloride and water during ripening, Ir. J. Food Sci. Technol. 10 (1986) 97–118.Google Scholar
  36. [36]
    Guinee T.P., Fox P.F., Salt in Cheese: Physical, Chemical and Biological Aspects, in: Fox P.F. (Ed.), Cheese: Chemistry, Physics and Microbiology: General Aspects, Vol. 1, Chapman & Hall, London, UK, 1993, pp. 257–302.Google Scholar
  37. [37]
    Guinee T.P., Fox P.F., Salt in cheese: physical, chemical and biological aspects, in: Fox P.F., McSweeney P.L.H., Cogan T.M., Guinee T.P. (Eds.), Cheese: Chemistry, Physics and Microbiology: General Aspects, Vol. 1, Elsevier Applied Science, London, UK, 2004, pp. 207–259.CrossRefGoogle Scholar
  38. [38]
    Gutenwik J., Nilsson B., Axelsson A., Determination of protein diffusion coefficients in agarose gel with a diffusion cell, Biochem. Eng. J. 19 (2009) 1–7.CrossRefGoogle Scholar
  39. [39]
    Hallström B., Skjöldebrand C., Trägardh C., Heat transfer and food products, in: Handbook of Chemistry and Physics, Elsevier Applied Science, London, UK, 1988, pp. 1–29.Google Scholar
  40. [40]
    Han J.H., Floros J.D., Potassium sorbate diffusivity in American processed and Mozzarella cheeses, J. Food Sci. 63 (1998) 435–437.CrossRefGoogle Scholar
  41. [41]
    Hardy J., Étude de la diffusion du sel dans les fromages à pâte molle de type camembert. Comparaison du salage à sec et du salage en saumure, Ph.D. Thesis, Université Nancy 1, France, 1976.Google Scholar
  42. [42]
    Ishida N., Kobayashi T., Kano H., Nagai S., Ogawa H., Na-23-NMR imaging of foods, Agric. Biol. Chem. 55 (1991) 2195–2200.CrossRefGoogle Scholar
  43. [43]
    Karbowiak T., Hervet H., Leger L., Champion D., Debeaufort F., Voilley A., Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageenan biopolymer films for edible coating application, Biomacromolecules 7 (2006) 2011–2019.CrossRefGoogle Scholar
  44. [44]
    Kovaleski J.M., Wirth M.J., Applications of fluorescence recovery after photobleaching, Anal. Chem. 69 (1997) 600–605.CrossRefGoogle Scholar
  45. [45]
    Kuo M.I., Anderson M., Gunasekaran S., Determining effects of freezing on pasta filata and non-pasta filata Mozzarella cheeses by nuclear magnetic resonance imaging, J. Dairy Sci. 86 (2003) 2525–2536.CrossRefGoogle Scholar
  46. [46]
    Lauverjat C., Compréhension des mécanismes impliqués dans la mobilité et la libération du sel et des composés d’arôme et leur rôle dans la perception. Cas de matrices fromagères modèles, Ph.D. Thesis, AgroParisTech, France, 2009.Google Scholar
  47. [47]
    Lauverjat C., de Loubens C., Déléris I., Tréléa I.C., Souchon I., Rapid determination of partition and diffusion properties for salt and aroma compounds in complex food matrices, J. Food Eng. 4 (2009) 407–415.CrossRefGoogle Scholar
  48. [48]
    Lawrence R.C., Gilles J., Factors that determine the pH of young Cheddar cheese, N. Z. J. Dairy Sci. Technol. 17 (1982) 1–14.Google Scholar
  49. [49]
    Lebrun L., Junter G.A., Diffusion of sucrose and dextran through agar-gel membranes, Enzym. Microb. Technol. 15 (1993) 1057–1062.CrossRefGoogle Scholar
  50. [50]
    Lucas T., Bohuon Ph., Model-free estimation of mass-fluxes based on concentration profiles. I. Presentation of the method and of a sensitivity analysis, J. Food Eng. 70 (2005) 129–137.CrossRefGoogle Scholar
  51. [51]
    Luna J.A., Bressan J.A., Mass-transfer during brining of Cuartirolo Argentino cheese, J. Food Sci. 51 (1986) 829–831.CrossRefGoogle Scholar
  52. [52]
    Luna J.A., Bressan J.A., Mass-transfer during ripening of Cuartirolo Argentino cheese, J. Food Sci. 52 (1987) 308–311.CrossRefGoogle Scholar
  53. [53]
    Luna J.A., Chavez M.S., Mathematical-model for water diffusion during brining of hard and semi-hard cheese, J. Food Sci. 57 (1992) 55–58.CrossRefGoogle Scholar
  54. [54]
    Mammarella E.J., Rubiolo A.C., Predicting the packed-bed reactor performance with immobilized microbial lactase, Process Biochem. 41 (2006) 1627–1636.CrossRefGoogle Scholar
  55. [55]
    Mariette F., Topgaard D., Jonsson B., Soderman O., 1H NMR diffusometry study of water in casein dispersions and gels, J. Agric. Food Chem. 50 (2002) 4295–4302.CrossRefGoogle Scholar
  56. [56]
    Metais A., Cambert M., Riaublanc A., Mariette F., Effects of casein and fat content on water self-diffusion coefficients in casein systems: a pulsed field gradient nuclear magnetic resonance study, J. Agric. Food Chem. 52 (2004) 3988–3995.CrossRefGoogle Scholar
  57. [57]
    Meyvis T.K.L., De Smedt S.C., Van Oostveldt P., Demeester J., Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research, Pharm. Res. 16 (1999) 1153–1162.CrossRefGoogle Scholar
  58. [58]
    Moraine R.A., Rogovin P., Kinetics of polysaccharide B-1459 fermentation, Biotechnol. Bioeng. 8 (1996) 511–524.CrossRefGoogle Scholar
  59. [59]
    Nagata T., Chuda Y., Yan X., Suzuki M., Kawasaki K., The state analysis of NaCl in snow crab (Chionoecetes japonicus) meat examined by 23Na and 35Cl nuclear magnetic resonance (NMR) spectroscopy, J. Sci. Food Agric. 80 (2000) 1151–1154.CrossRefGoogle Scholar
  60. [60]
    Pajonk A.S., Saurel R., Andrieu J., Experimental study and modelling of effective NaCl diffusion coefficients values during Emmental cheese brining, J. Food Eng. 60 (2003) 307–313.CrossRefGoogle Scholar
  61. [61]
    Payne M.R., Morison K.R., A multi-component approach to salt and water diffusion in cheese, Int. Dairy J. 9 (1999) 887–894.CrossRefGoogle Scholar
  62. [62]
    Ramos-Cabrer P., Van Duynhoven J.P.M., Timmer H., Nicolay K., Monitoring of moisture redistribution in multicomponent food systems by use of magnetic resonance imaging, J. Agric. Food Chem. 54 (2006) 672–677.CrossRefGoogle Scholar
  63. [63]
    Renou J.-P., Benderbous S., Bielicki G., Foucat L., Donnat J.-P., 23Na magnetic resonance imaging: distribution of brine in muscle, MRI 12 (1994) 131–137.CrossRefGoogle Scholar
  64. [64]
    Resmini P., Volonterio G., Annibaldi S., Ferri G., Study of salt diffusion in Parmigiano-Reggiano cheese using Na36Cl, Sci. Tec. Latt.-Casearia 25 (1974) 149–166.Google Scholar
  65. [65]
    Ruiz-Cabrera M.A., Gou P., Foucat L., Renou J.P., Daudin J.D., Water transfer analysis in pork meat supported by NMR imaging, Meat Sci. 67 (2005) 169–178.CrossRefGoogle Scholar
  66. [66]
    Schwartzberg H.G., Chao R.Y., Solute diffusivities in leaching processes, Food Technol. 36 (1982) 73–86.Google Scholar
  67. [67]
    Seiffert S., Oppermann W., Systematic evaluation of FRAP experiments performed in a confocal laser scanning microscope, J. Microsc. Oxford 220 (2005) 20–30.CrossRefGoogle Scholar
  68. [68]
    Sherwood T.G., Pigford R.L., Wilke C.R., Mass transfer, in: Clark B.J., Maisel J.W. (Eds.), McGraw-Hill Inc., New York, USA, 1975, pp. 39–43.Google Scholar
  69. [69]
    Simal S., Sanchez E.S., Berna A., Mulet A., Simulation of counter-diffusional mass transfer, Chem. Eng. Commun. 189 (2002) 173–183.CrossRefGoogle Scholar
  70. [70]
    Simal S., Sanchez E.S., Bon J., Femenia A., Rossello C., Water and salt diffusion during cheese ripening: effect of the external and internal resistances to mass transfer, J. Food Eng. 48 (2001) 269–275.CrossRefGoogle Scholar
  71. [71]
    Stephan J., Couriol C., Fourcade F., Amrane A., Prigent Y., Diffusion of glutamic acid in relation to growth of Geotrichum candidum and Penicillium camembertii at the surface of a solid medium, J. Chem. Technol. Biotechnol. 79 (2004) 234–239.CrossRefGoogle Scholar
  72. [72]
    Takeuchi S., Maeda M., Gomi Y., Fukuoka M., Watanabe H., The change of moisture distribution in a rice grain during boiling as observed by NMR imaging, J. Food Eng. 33 (2008) 281–297.CrossRefGoogle Scholar
  73. [73]
    Taylor R., Krishna R., Multicomponent Mass Transfer, Wiley, New York, USA, 1993.Google Scholar
  74. [74]
    Turhan M., Modelling of salt transfer in white cheese during short initial brining, Neth. Milk Dairy J. 50 (1996) 541–550.Google Scholar
  75. [75]
    Turhan M., Gunasekaran S., Analysis of moisture transfer in White cheese during brining, Milchwissenschaft 54 (1999) 446–450.Google Scholar
  76. [76]
    Turhan M., Kaletunc G., Modelling of salt diffusion in white cheese during long-term brining, J. Food Sci. 57 (1992) 1082–1085.CrossRefGoogle Scholar
  77. [77]
    Varzakas T.H., Leach G.C., Israilides C.J., Arapoglou D., Theoretical and experimental approaches towards the determination of solute effective diffusivities in foods, Enzym. Microb. Technol. 37 (2005) 29–41.CrossRefGoogle Scholar
  78. [78]
    Vestergaard C., Andersen B.L., Adler-Nissen J., Sodium diffusion in cured pork determined by 22Na radiology, Meat Sci. 76 (2007) 258–265.CrossRefGoogle Scholar
  79. [79]
    Vestergaard C., Risum J., Adler-Nissen J., Na-MRI quantification of sodium and water mobility in pork during brine curing, Meat Sci. 69 (2005) 663–672.CrossRefGoogle Scholar
  80. [80]
    Voilley A., Souchon I., Flavour retention and release from the food matrix: an overview, in: Voilley A., Etievant P. (Eds.), Flavour in Food, Woodhead Publishing Limited, Cambridge, UK, 2006, pp. 117–132.CrossRefGoogle Scholar
  81. [81]
    Warin F., Gekas V., Voirin A., Dejmek P., Sugar diffusivity in agar gel/milk bilayer systems, J. Food Sci. 62 (1997) 454–456.CrossRefGoogle Scholar
  82. [82]
    Welti-Chanes J., Mujica-Paz H., Valdez-Fragoso A., Leon-Cruz R., Fundamentals of Mass Transport, in: Welti-Chanes J., Vélez-Ruiz J.F., Barbosa-Cánovas G.V. (Eds.), Transport Phenomena in Food Processing, CRC Press, Boca Raton, USA, 2003, pp. 11–65.Google Scholar
  83. [83]
    Wesselingh J.A., Krishna R., Mass Transfer in Multicomponent Mixtures, Delft University Press, Delft, Netherlands, 2000.Google Scholar
  84. [84]
    Wesselingh J.A., Vonk P., Kraaijeveld G., Exploring the Maxwell-Stefan description of ion-exchange, Chem. Eng. J. Biochem. Eng. J. 57 (1995) 75–89.CrossRefGoogle Scholar
  85. [85]
    Wilde J., Baumgartner C., Fertsch B., Hinrichs J., Matrix effects on the kinetics of lactose hydrolysis in fermented and acidified milk products, Chem. Biochem. Eng. 15 (2001) 143–147.Google Scholar
  86. [86]
    Wiles P.G., Baldwin A.J., Dry salting of cheese, part I: Diffusion, Food Bioprod. Process. 74 (C3) (1996) 127–132.Google Scholar
  87. [87]
    Yanniotis S., Anifantakis E., Diffusion of salt in dry-salted Feta cheese, in: Jowitt R., Escher F., Hallstrom B., Meffert H.F.T., Spiess W.E.L., Vos G. (Eds.), Physical Properties of Foods, Applied Science Publishers, London, UK, 1983.Google Scholar
  88. [88]
    Zorrilla S.E., Rubiolo A.C., A model for using the diffusion cell in the determination of multicomponent diffusion-coefficients in gels or foods, Chem. Eng. Sci. 49 (1994) 2123–2128.CrossRefGoogle Scholar
  89. [89]
    Zorrilla S.E., Rubiolo A.C., Fynbo cheese NaCl and KCl changes during ripening, J. Food Sci. 59 (1994) 972–975.CrossRefGoogle Scholar
  90. [90]
    Zorrilla S.E., Rubiolo A.C., Modeling NaCl and KCl movement in Fynbo cheese during salting, J. Food Sci. 59 (1994) 976–980.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Juliane Floury
    • 1
    • 2
    • 3
  • Sophie Jeanson
    • 1
    • 2
  • Samar Aly
    • 1
    • 2
  • Sylvie Lortal
    • 1
    • 2
  1. 1.INRAUMR1253RennesFrance
  2. 2.AGROCAMPUS OUESTUMR1253RennesFrance
  3. 3.Université Européenne de BretagneFrance

Personalised recommendations