Dairy Science & Technology

, Volume 90, Issue 2–3, pp 181–210 | Cite as

One-dimensional simulation of co-current, dairy spray drying systems — pros and cons

  • Kamlesh Patel
  • Xiao Dong Chen
  • Romain Jeantet
  • Pierre Schuck
Review

Abstract

One-dimensional (1-D) simulation is a useful technique for the evaluation of dryer operating parameters and product properties before conducting real spray drying trials. The main advantage of a 1-D simulation tool is its ability to perform fast calculations with significant simplicity. Mathematical models can be formulated using heat, mass and momentum balances at the droplet level to estimate time-dependent gas and droplet parameters. One of the purposes of this paper is to summarize key mathematical models that may be used to perform 1-D simulation for spray drying processes, predict essential product-drying gas parameters, assess the accuracy of prediction using pilot-scale spray drying data and perhaps most importantly address the main benefits and limitations of the 1-D simulation technique in relation to industrial spray drying operations. The results of a recent international collaborative study on the development of spray drying process optimization software for skim milk manufacture are presented as an example of the application of 1-D simulation in milk processing.

spray drying one-dimensional simulation modeling drying kinetics dairy product droplet drying 

Nomenclature

Letters

aw

water activity (−)

A

surface area (m2)

AC

cross-section area of atomizer pipe (channel) (m2)

b

thickness of liquid jet at the orifice (m)

C

GAB isotherm model parameter (−)

C0

GAB isotherm model constant (−)

CD

drag coefficient (−)

Cp

specific heat capacity (J·kg−1·K−1)

dp

diameter of droplet or particle (m)

D3/2

Sauter mean diameter (m)

DC

diameter of atomizer pipe (channel) (m)

De

effective diameter of drying chamber (m)

DO

orifice diameter (m)

Dv

air-vapor diffusion coefficient (m2·s−1)

Eisi

kinetic constant from solubility model (J·mol−1)

ΔEv

apparent activation energy (J·mol−1)

ΔEv,b

equilibrium activation energy (J·mol−1)

g

universal gravitational constant (= 9.8 m·s−2)

h

convective heat-transfer coefficient (W·m−2·K−1)

hm

mass-transfer coefficient (m·s−1)

H

enthalpy (J·kg−1)

ΔH1

enthalpy parameter from GAB model (J·kg−1)

ΔH2

enthalpy parameter from GAB model (J·kg−1)

ΔHL

latent heat of vaporization (J·kg−1)

k

thermal conductivity (W·m−1·K−1)

K

GAB isotherm model parameter (−)

K0

GAB isotherm model constant (−)

kg

constant from the Gordon-Taylor model

kisi

kinetic constant from solubility model (mL·s−1)

l

axial distance in dryer (m)

m

mass (kg)

mo

monolayer moisture content (kg·kg−1)

m

mass-flow rate (kg·h−1)

M

molecular weight (g·mol−1)

Nu

Nusselt number (−)

P

pressure (kPa)

Pr

Prandtl number (−)

risi

rate of insoluble material formation (mL·s−1)

Rg

universal gas constant (= 8.314 J·mol−1·K−1)

RH

relative humidity (%)

Re

Reynolds number (−)

Sc

Schmidt number (−)

Sh

Sherwood number (−)

t

time (s)

T

temperature (K)

Tg

glass-transition temperature (K)

T

room temperature (K)

v

velocity (m·s−1)

V

volumetric-flow rate (m3·s−1)

U

overall heat-transfer coefficient for heat loss (W·m−2K−1)

X

average droplet moisture content (dry basis) (kg·kg−1)

X0

initial moisture content (dry basis) (kg·kg−1)

Xb

equilibrium moisture content (dry basis) (kg·kg−1)

Y

air absolute humidity (dry basis) (kg·kg−1)

Greek symbols

β

shrinkage model constant (−)

ω

weight fraction (−)

θ

number of droplets/particles (−)

μ

viscosity (Pa·s)

ρ

density (kg·m−3)

ρv

vapor density (kg·m−3)

Subscripts

b

bulk drying gas

p

particle, droplet

s

solids

sat

saturated conditions

v

vapor

w

water

Simulation monodimensionnelle de systèmes de séchage par atomisation de produits laitiers en co-courant — avantages et inconvénients

Résumé

La simulation monodimensionnelle (1-D) est une technique utile pour évaluer les paramètres de séchage et les propriétés des produits avant de conduire les essais de séchage en réel. Le principal avantage de l’outil de simulation 1-D est sa capacité à réaliser des calculs rapidement et avec une grande simplicité. Les modèles mathématiques peuvent être formulés avec les équilibres de chaleur, de masse et de quantité de mouvement à l’échelle de la gouttelette pour estimer les paramètres de vapeur et de gouttelette qui varient au cours du temps. Un des objectifs de cet article est de présenter de façon synthétique les modèles mathématiques clés qui peuvent être utilisés pour réaliser une simulation 1-D, prédire les paramètres de vapeur essentiels pour le séchage du produit, évaluer la précision de la prédiction en utilisant les données du séchage par atomisation obtenues à l’échelle pilote, et enfin d’aborder les principaux bénéfices et limites de la technique de simulation 1-D en relation avec les opérations de séchage par atomisation industrielles. Les résultats d’une récente étude réalisée en collaboration internationale sur le développement d’un logiciel d’optimisation du procédé de séchage par atomisation pour la production de poudre de lait écrémé sont présentés pour illustrer l’application de la simulation 1-D.

séchage par atomisation simulation mono-dimensionnelle modélisation cinétique de séchage produit laitier séchage d’une gouttelette 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adhikari B., Howes T., Bhandari B.R., Troung V., Surface stickiness of drops of carbohydrate and organic acid solutions during convective drying: experiments and modeling, Dry. Technol. 21 (2003) 839–873.CrossRefGoogle Scholar
  2. [2]
    Adhikari B., Howes T., Bhandari B.R., Troung V., Effect of addition of maltodextrin on drying kinetics and stickiness of sugar and acid-rich foods during convective drying: experiments and modelling, J. Food Eng. 62 (2004) 53–68.CrossRefGoogle Scholar
  3. [3]
    Adhikari B., Howes T., Lecomte D., Bhandari B.R., A glass transition temperature approach for the prediction of the surface stickiness of a drying droplet during spray drying, Powder Technol. 149 (2005) 168–179.CrossRefGoogle Scholar
  4. [4]
    Aguerre R.J., Suarez C., Diffusion of bound water in starchy materials: Application to drying, J. Food Eng. 64 (2004) 389–395.CrossRefGoogle Scholar
  5. [5]
    Alamilla-Beltrán L., Chanona-Pérez J.J., Jiménez-Aparicio A.R., Gutiérrez-López G.F., Description of morphological changes of particles along spray drying, J. Food Eng. 67 (2005) 179–184.CrossRefGoogle Scholar
  6. [6]
    Ben-Yoseph E., Hartel R.W., Howling D., Three-dimensional model of phase transition of thin sucrose films during drying, J. Food Eng. 44 (2000) 13–22.CrossRefGoogle Scholar
  7. [7]
    Bernard C., Broyart B., Vasseur J., Relkin P., Production of whey protein powders with controlled end-use properties, 15th International Drying Symposium, Budapest, Hungary, 2006.Google Scholar
  8. [8]
    Bhandari B.R., Howes T., Implication of glass transition for the drying and stability of dried foods, J. Food Eng. 40 (1999) 71–79.CrossRefGoogle Scholar
  9. [9]
    Bhandari B.R., Patel K.C., Chen X.D., Spray drying of food materials — process and product characteristics, in: Chen X.D., Mujumdar A.S. (Eds.), Drying Technologies in Food Processing, Blackwell Publishing, West Sussex, UK, 2008, 113–159.Google Scholar
  10. [10]
    Bimbenet J.J., Schuck P., Roignant M., Brulé G., Méjean S., Heat balance of a multistage spray-dryer: principles and example of application, Lait 82 (2002) 541–551.CrossRefGoogle Scholar
  11. [11]
    Birchal V.S., Huang L., Mujumdar A.S., Passos M.L., Spray dryers: modeling and simulation, Dry. Technol. 24 (2006) 359–371.CrossRefGoogle Scholar
  12. [12]
    Boonyai P., Bhandari B., Howes T., Stickiness measurement techniques for food powders: a review, Powder Technol. 145 (2004) 34–46.CrossRefGoogle Scholar
  13. [13]
    Boonyai P., Bhandari B., Howes T., Measurement of glass-rubber transition temperature of skim milk powder by static mechanical test, Dry. Technol. 23 (2005) 1499–1514.CrossRefGoogle Scholar
  14. [14]
    Bruce L.J., Okos M.R., Moisture diffusivity in pasta during drying, J. Food Eng. 17 (1992) 117–142.CrossRefGoogle Scholar
  15. [15]
    Chen X.D., Heat-mass transfer and structure formation during drying of single food droplets, Dry. Technol. 22 (2004) 179–190.CrossRefGoogle Scholar
  16. [16]
    Chen X.D., Moisture diffusivity in food and biological materials, Dry. Technol. 25 (2007) 1203–1213.CrossRefGoogle Scholar
  17. [17]
    Chen X.D., Lin S.X.Q., Air drying of milk droplet under constant and time-dependent conditions, AIChE J. 51 (2005) 1790–1799.CrossRefGoogle Scholar
  18. [18]
    Chen X.D., Patel K.C., Manufacturing better quality food powders from spray drying and subsequent treatments, Dry. Technol. 26 (2008) 1313–1318.CrossRefGoogle Scholar
  19. [19]
    Chen X.D., Pirini W., Ozilgen M., The reaction engineering approach to modelling drying of thin layer of pulped kiwifruit flesh under conditions of small biot numbers, Chem. Eng. Process 40 (2001) 311–320.CrossRefGoogle Scholar
  20. [20]
    Chen X.D., Xie G.Z., Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model, Food Bioprod. Process 75 (1997) 213–222.CrossRefGoogle Scholar
  21. [21]
    Crowe C.T., Sommerfeld M., Tsuji Y., Fundamentals of Gas-Particle and Gas-Droplet Flows, CRC Press, Boca Raton, USA, 1998.Google Scholar
  22. [22]
    Dalmaz N., Ozbelge H.O., Eraslan A.N., Uludag Y., Heat and mass transfer mechanisms in drying of a suspension droplet: a new computational model, Dry. Technol. 25 (2007) 391–400.CrossRefGoogle Scholar
  23. [23]
    Dolinsky A.A., High-temperature spray drying, Dry. Technol. 19 (2001) 785–806.CrossRefGoogle Scholar
  24. [24]
    Doymaz I., Convective air drying characteristics of thin layer carrots, J. Food Eng. 61 (2004) 359–364.CrossRefGoogle Scholar
  25. [25]
    Efremov G.I., Drying kinetics derived from diffusion equation with flux-type boundary conditions, Dry. Technol. 20 (2002) 55–66.CrossRefGoogle Scholar
  26. [26]
    Efremov G.I., Kudra T., Calculation of the effective diffusion coefficients by applying a quasi-stationary equation for drying kinetics, Dry. Technol. 22 (2004) 2273–2279.CrossRefGoogle Scholar
  27. [27]
    Ferrari G., Meerdink G., Walstra P., Drying kinetics for a single droplet of skim-milk, J. Food Eng. 10 (1989) 215–230.CrossRefGoogle Scholar
  28. [28]
    Fletcher D.F., Guo B., Harvie D.J.E., Langrish T.A.G., Nijdam J.J., Williams J., What is important in the simulation of spray dryer performance and how do current CFD models perform?, Appl. Math. Model. 30 (2006) 1281–1292.CrossRefGoogle Scholar
  29. [29]
    Foster K.D., Bronlund J.E., Paterson A.H.J., Glass transition related cohesion of amorphous sugar powders, J. Food Eng. 77 (2006) 997–1006.CrossRefGoogle Scholar
  30. [30]
    Gauvin W.H., Katta S., Basic concepts of spray dryer design, AIChE J. 22 (1976) 713–724.CrossRefGoogle Scholar
  31. [31]
    Gauvin W.H., Katta S., Knelman F.H., Drop trajectory predictions and their importance in the design of spray dryers, Int. J. Multiphas. Flow. 1 (1975) 793–816.CrossRefGoogle Scholar
  32. [32]
    Groenewold C., Moser C., Groenewold H., Tsotsas E., Determination of single-particle drying kinetics in an acoustic levitator, Chem. Eng. J. 86 (2002) 217–222.CrossRefGoogle Scholar
  33. [33]
    Guo B., Fletcher D.F., Langrish T.A.G., Simulation of the agglomeration in a spray using Lagrangian particle tracking, Appl. Math. Model. 28 (2004) 273–290.CrossRefGoogle Scholar
  34. [34]
    Guo B., Langrish T.A.G., Fletcher D.F., Simulation of gas flow instability in a spray dryer, Chem. Eng. Res. Des. 81 (2003) 631–638.CrossRefGoogle Scholar
  35. [35]
    Harvie D.J.E., Langrish T.A.G., Fletcher D.F., A computational fluid dynamics study of a tall-form spray dryer, Food Bioprod. Process. 80 (2002) 163–175.CrossRefGoogle Scholar
  36. [36]
    Huang L., Kumar K., Mujumdar A.S., Use of computational fluid dynamics to evaluate alternative spray dryer chamber configurations, Dry. Technol. 21 (2003) 385–412.CrossRefGoogle Scholar
  37. [37]
    Huang L.X., Kumar K., Mujumdar A.S., A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations, Chem. Eng. Process. 45 (2006) 461–470.CrossRefGoogle Scholar
  38. [38]
    Huang L.X., Mujumdar A.S., Simulation of an industrial spray dryer and prediction of off-design performance, Dry. Technol. 25 (2007) 703–714.CrossRefGoogle Scholar
  39. [39]
    Incropera F.P., DeWitt D.P., Fundamentals of Heat and Mass Transfer, 5th edn., John Wiley & Sons, New York, USA, 2002.Google Scholar
  40. [40]
    Jeantet R., Ducept R., Dolivet A., Méjean S., Schuck P., Residence time distribution: a tool to improve spray-drying control, Dairy Sci. Technol. 88 (2008) 31–43.CrossRefGoogle Scholar
  41. [41]
    Jin Y., Chen X.D., Numerical study of the drying process of different sized particles in an industrial-scale spray dryer, Dry. Technol. 27 (2009) 371–381.CrossRefGoogle Scholar
  42. [42]
    Kastner O., Brenn G., Rensink D., Tropea C., The acoustic tube levitator — a novel device for determining the drying kinetics of single droplets, Chem. Eng. Technol. 24 (2001) 335–339.CrossRefGoogle Scholar
  43. [43]
    Katekawa M.E., Silva M.A., On the influence of glass transition on shrinkage in convective drying of fruits: a case study of banana drying, Dry. Technol. 25 (2007) 1659–1666.CrossRefGoogle Scholar
  44. [44]
    Ketelaars A.A.J., Pel L., Coumans W.J., Kerkhof P.J.A.M., Drying kinetics: a comparison of diffusion coefficients from moisture concentration profiles and drying curves, Chem. Eng. Sci. 50 (1995) 1187–1191.CrossRefGoogle Scholar
  45. [45]
    Kieviet F.G., Van Raaij J., De Moor P.P.E.A., Kerkhof P.J.A.M., Measurement and modelling of the air flow pattern in a pilot-plant spray dryer, Chem. Eng. Res. Des. 75 (1997) 321–328.CrossRefGoogle Scholar
  46. [46]
    Kuts P.S., Strumillo C., Zbicinski I., Evaporation kinetics of single droplets containing dissolved biomass, Dry. Technol. 14 (1996) 2041–2060.CrossRefGoogle Scholar
  47. [47]
    Langrish T.A.G., Multi-scale mathematical modelling of spray dryers, J. Food Eng. 93 (2009) 218–228.CrossRefGoogle Scholar
  48. [48]
    Langrish T.A.G., Kockel T.K., The assessment of a characteristic drying curve for milk powder for use in computational fluid dynamics modelling, Chem. Eng. J. 84 (2001) 69–74.CrossRefGoogle Scholar
  49. [49]
    Langrish T.A.G., Kota K., A comparison of collision kernels for sprays from one and two-nozzle atomisation systems, Chem. Eng. J. 126 (2007) 131–138.CrossRefGoogle Scholar
  50. [50]
    Langrish T.A.G., Williams J., Fletcher D.F., Simulation of the effects of inlet swirl on gas flow patterns in a pilot-scale spray dryer, Chem. Eng. Res. Des. 82 (2004) 821–833.CrossRefGoogle Scholar
  51. [51]
    Leiterer J., Delißen F., Emmerling F., Thünemann A., Panne U., Structure analysis using acoustically levitated droplets, Anal. Bioanal. Chem. 391 (2008) 1221–1228.CrossRefGoogle Scholar
  52. [52]
    Li Z., Kobayashi N., Determination of moisture diffusivity by thermo-gravimetric analysis under non-isothermal condition, Dry. Technol. 23 (2005) 1331–1342.CrossRefGoogle Scholar
  53. [53]
    Li X., Zbicinski I., A sensitivity study on CFD modeling of cocurrent spray-drying process, Dry. Technol. 23 (2005) 1681–1691.CrossRefGoogle Scholar
  54. [54]
    Lin S.X.Q., Chen X.D., Changes in milk droplet diameter during drying under constant drying conditions investigated using the glass-filament method, Food Bioprod. Process. 82 (2004) 213–218.CrossRefGoogle Scholar
  55. [55]
    Lin S.X.Q., Chen X.D., A model for drying of an aqueous lactose droplet using the reaction engineering approach, Dry. Technol. 24 (2006) 1329–1334.CrossRefGoogle Scholar
  56. [56]
    Lin S.X.Q., Chen X.D., The reaction engineering approach to modelling the cream and whey protein concentrate droplet drying, Chem. Eng. Process. 46 (2007) 437–443.CrossRefGoogle Scholar
  57. [57]
    Lin S.X.Q., Chen X.D., Pearce D.L., Desorption isotherm of milk powders at elevated temperatures and over a wide range of relative humidity, J. Food Eng. 68 (2005) 257–264.CrossRefGoogle Scholar
  58. [58]
    Madamba P.S., Driscoll R.H., Buckle K.A., The thin-layer drying characteristics of garlic slices, J. Food Eng. 29 (1996) 75–97.CrossRefGoogle Scholar
  59. [59]
    Masters K., Spray Drying Handbook, 5th edn., Longman Scientific & Technical, New York, USA, 1991.Google Scholar
  60. [60]
    Meerdink G., Drying of Liquid Food Droplets: Enzyme Inactivation and Multicomponent Diffusion, Wageningen Agriculture University, Netherlands, 1993.Google Scholar
  61. [61]
    Meerdink G., Riet K.V., Prediction of product quality during spray drying, Food Bioprod. Process. 73 (1995) 165–170.Google Scholar
  62. [62]
    Menting L.C., Hoogstad B., Volatiles retention during the drying of aqueous carbohydrate solutions, J. Food Sci. 32 (1967) 87–90.CrossRefGoogle Scholar
  63. [63]
    Mezhericher M., Levy A., Borde I., Heat and mass transfer of single droplet/wet particle drying, Chem. Eng. Sci. 63 (2008) 12–23.CrossRefGoogle Scholar
  64. [64]
    Mezhericher M., Levy A., Borde I., Modeling of droplet drying in spray chambers using 2d and 3d computational fluid dynamics, Dry. Technol. 27 (2009) 359–370.CrossRefGoogle Scholar
  65. [65]
    Mistry V.V., Pulgar J.B., Physical and storage properties of high milk protein powder, Int. Dairy J. 6 (1996) 195–203.CrossRefGoogle Scholar
  66. [66]
    Negiz A., Lagergren E.S., Cinar A., Mathematical models of cocurrent spray drying, Ind. Eng. Chem. Res. 34 (1995) 3289–3302.CrossRefGoogle Scholar
  67. [67]
    Nevers N.D., Physical and Chemical Equilibrium for Chemical Engineers, John Wiley & Sons, New York, USA, 2002.Google Scholar
  68. [68]
    Oakley D.E., Bahu R.E., Computational modelling of spray dryers, Comp. Chem. Eng. 17 (1993) 493–498.Google Scholar
  69. [69]
    Ozmen L., Langrish T.A.G., Comparison of glass transition temperature and sticky point temperature for skim milk powder, Dry. Technol. 20 (2002) 1177–1192.CrossRefGoogle Scholar
  70. [70]
    Parti M., Paláncz B., Mathematical model for spray drying, Chem. Eng. Sci. 29 (1974) 355–362.CrossRefGoogle Scholar
  71. [71]
    Patel K.C., Production of uniform particles via single stream drying and new applications of the reaction engineering approach, Ph.D. Thesis, Monash University, Australia, 2009.Google Scholar
  72. [72]
    Patel K.C., Chen X.D., Mathematical Modelling for Plug-Flow Spray Dryer, Chemeca 2004, Sydney, Australia, 2004.Google Scholar
  73. [73]
    Patel K.C., Chen X.D., Prediction of spray-dried product quality using two simple drying kinetics models, J. Food Process Eng. 28 (2005) 567–594.CrossRefGoogle Scholar
  74. [74]
    Patel K.C., Chen X.D., Sensitivity analysis of the reaction engineering approach to modeling spray drying of whey proteins concentrate, in: Chen G., Mujumdar A.S. (Eds.), The 5th Asia-Pacific Drying Conference, HKUST, Hong Kong, China, 2007, pp. 276–281.CrossRefGoogle Scholar
  75. [75]
    Patel K.C., Chen X.D., Drying of aqueous lactose solutions in a single stream dryer, Food Bioprod. Process. 86 (2008) 185–197.CrossRefGoogle Scholar
  76. [76]
    Patel K.C., Chen X.D., The reaction engineering approach to estimate surface properties of aqueous droplets during convective drying, in: Thorat B., Mujumdar A.S. (Eds.), International Drying Symposium 2008, Hyderabad, India, 2008, pp. 235–241Google Scholar
  77. [77]
    Patel K.C., Chen X.D., Surface-center temperature differences within milk droplets during convective drying and drying-based biot number analysis, AIChE J. 54 (2008) 3273–3290.CrossRefGoogle Scholar
  78. [78]
    Patel K.C., Chen X.D., Kar S., The temperature uniformity during air drying of a colloidal liquid droplet, Dry. Technol. 23 (2005) 2337–2367.CrossRefGoogle Scholar
  79. [79]
    Patel K.C., Chen X.D., Lin S.X.Q., Adhikari B., A composite reaction engineering approach to drying of aqueous droplets containing sucrose, maltodextrin (de6) and their mixtures, AIChE J. 55 (2009) 217–231.CrossRefGoogle Scholar
  80. [80]
    Písecký J., Handbook of Milk Powder Manufacture, Niro A/S, Copenhagen, Denmark, 1997.Google Scholar
  81. [81]
    Raghavan G.S.V., Tulasidas T.N., Sablani S.S., Ramaswamy H.S., A method of determination of concentration dependent effective moisture diffusivity, Dry. Technol. 13 (1995) 1477–1488.CrossRefGoogle Scholar
  82. [82]
    Ratti C., Shrinkage during drying of foodstuffs, J. Food Eng. 23 (1994) 91–105.CrossRefGoogle Scholar
  83. [83]
    Sano Y., Keey R.B., The drying of a spherical particle containing colloidal material into a hollow sphere, Chem. Eng. Sci. 37 (1982) 881–889.CrossRefGoogle Scholar
  84. [84]
    Schadler N., Kast W., A complete model of the drying curve for porous bodies — Experimental and theoretical studies, Int. J. Heat Mass Transf. 30 (1987) 2031–2044.CrossRefGoogle Scholar
  85. [85]
    Schiffter H., Lee G., Single-droplet evaporation kinetics, particle formation in an acoustic levitator. Part 1: Evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories, J. Pharm. Sci. 96 (2007) 2274–2283.CrossRefGoogle Scholar
  86. [86]
    Schiffter H., Lee G., Single-droplet evaporation kinetics, particle formation in an acoustic levitator. Part 2: Drying kinetics and particle formation from microdroplets of aqueous mannitol, trehalose, or catalase, J. Pharm. Sci. 96 (2007) 2284–2295.CrossRefGoogle Scholar
  87. [87]
    Schuck P., Dolivet A., Méjean S., Zhu P., Blanchard E., Jeantet R., Drying by desorption: a tool to determine spray drying parameters, J. Food Eng. 94 (2009) 199–204.CrossRefGoogle Scholar
  88. [88]
    Schuck P., Roignant M., Brulé G., Davenel A., Famelart M.H., Maubois J.L., Simulation of water transfer in spray drying, Dry. Technol. 16 (1998) 1371–1393.CrossRefGoogle Scholar
  89. [89]
    Seydel P., Blomer J., Bertling J., Modeling particle formation at spray drying using population balances, Dry. Technol. 24 (2006) 137–146.CrossRefGoogle Scholar
  90. [90]
    Shrestha A.K., Howes T., Adhikari B.P., Bhandari B.R., Water sorption and glass transition properties of spray dried lactose hydrolysed skim milk powder, LWT — Food Sci. Technol. 40 (2007) 1593–1600.CrossRefGoogle Scholar
  91. [91]
    Shulyak V.A., Izotova L.A., Shrinkage kinetics during convective drying of selected berries, Dry. Technol. 27 (2009) 495–501.CrossRefGoogle Scholar
  92. [92]
    Sloth J., Kiil S., Jensen A.D., Andersen S.K., Jørgensen K., Schiffter H., Lee G., Model based analysis of the drying of a single solution droplet in an ultrasonic levitator, Chem. Eng. Sci. 61 (2006) 2701–2709.CrossRefGoogle Scholar
  93. [93]
    Straatsma J., Van Houwelingen G., Steenbergen A.E., De Jong P., Spray drying of food products: 1. Simulation model, J. Food Eng. 42 (1999) 67–72.CrossRefGoogle Scholar
  94. [94]
    Straatsma J., Van Houwelingen G., Steenbergen A.E., De Jong P., Spray drying of food products: 2. Prediction of insolubility index, J. Food Eng. 42 (1999) 73–77.CrossRefGoogle Scholar
  95. [95]
    Strumillo C., Kudra T., Drying: Principles, Applications, and Design, Gordon and Breach Science Publishers, New York, USA, 1986.Google Scholar
  96. [96]
    Truong V., Bhandari B.R., Howes T., Optimization of co-current spray drying process of sugar-rich foods, Part I. Moisture and glass transition temperature profile during drying, J. Food Eng. 71 (2005) 55–65.CrossRefGoogle Scholar
  97. [97]
    Verdurmen R.E.M., Menn P., Ritzert J., Blei S., Nhumaio G.C.S., Oslash Rensen T.S., Gunsing M., Straatsma J., Verschueren M., Sibeijn M., Schulte G., Fritsching U., Bauckhage K., Tropea C., Sommerfeld M., Watkins A.P., Yule A.J., Schonfeldt H., Simulation of agglomeration in spray drying installations: the edecad project, Dry. Technol. 22 (2004) 1403–1461.CrossRefGoogle Scholar
  98. [98]
    Viollaz P.E., Rovedo C.O., A drying model for three-dimensional shrinking bodies, J. Food Eng. 52 (2002) 149–153.CrossRefGoogle Scholar
  99. [99]
    Walton D.E., The evaporation of water droplets. A single droplet drying experiment, Dry. Technol. 22 (2004) 431–456.CrossRefGoogle Scholar
  100. [100]
    Woo M.W., Daud W.R.W., Mujumdar A.S., Talib M.Z.M., Hua W.Z., Tasirin S.M., Comparative study of droplet drying models for CFD modelling, Chem. Eng. Res. Des. 86 (2008) 1038–1048.CrossRefGoogle Scholar
  101. [101]
    Woo M.W., Daud W.R.W., Mujumdar A.S., Wu Z., Talib M.Z.M., Tasirin S.M., Non-swirling steady and transient flow simulations in short-form spray dryers, Chem. Prod. Process Model. 4 (2009) 1–32.Google Scholar
  102. [102]
    Woo M.W., Daud W.R.W., Tasirin S.M., Talib M.Z.M., Effect of wall surface properties at different drying kinetics on the deposition problem in spray drying, Dry. Technol. 26 (2008) 15–26.CrossRefGoogle Scholar
  103. [103]
    Wulsten E., Lee G., Surface temperature of acoustically levitated water microdroplets measured using infra-red thermography, Chem. Eng. Sci. 63 (2008) 5420–5424.CrossRefGoogle Scholar
  104. [104]
    Yadollahinia A., Jahangiri M., Shrinkage of potato slice during drying, J. Food Eng. 94 (2009) 52–58.CrossRefGoogle Scholar
  105. [105]
    Yarin A.L., Brenn G., Kastner O., Rensink D., Tropea C., Evaporation of acoustically levitated droplets, J. Fluid Mech. 399 (1999) 151–204.CrossRefGoogle Scholar
  106. [106]
    Yarin A.L., Brenn G., Kastner O., Tropea C., Drying of acoustically levitated droplets of liquid-solid suspensions: evaporation and crust formation, Phys. Fluid. 14 (2002) 2289–2298.CrossRefGoogle Scholar
  107. [107]
    Yarin A.L., Brenn G., Rensink D., Evaporation of acoustically levitated droplets of binary liquid mixtures, Int. J. Heat Fluid Flow. 23 (2002) 471–486.CrossRefGoogle Scholar
  108. [108]
    Yarin A.L., Pfaffenlehner M., Tropea C., On the acoustic levitation of droplets, J. Fluid Mech. 356 (1998) 65–91.CrossRefGoogle Scholar
  109. [109]
    Zbicinski I., Development and experimental verification of momentum, heat and mass transfer model in spray drying, Chem. Eng. J. 58 (1995) 123–133.Google Scholar
  110. [110]
    Zbicinski I., Grabowski S., Strumillo C., Kiraly L., Krzanowski W., Mathematical modelling of spray drying, Comp. Chem. Eng. 12 (1988) 209–214.CrossRefGoogle Scholar
  111. [111]
    Zbicinski I., Li X., Conditions for accurate CFD modeling of spray-drying process, Dry. Technol. 24 (2006) 1109–1114.CrossRefGoogle Scholar
  112. [112]
    Zbicinski I., Strumillo C., Delag A., Drying kinetics and particle residence time in spray drying, Dry. Technol. 20 (2002) 1751–1768.CrossRefGoogle Scholar
  113. [113]
    Zogzas N.P., Maroulis Z.B., Effective moisture diffusivity estimation from drying data. A comparison between various methods of analysis, Dry. Technol. 14 (1996) 1543–1573.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Kamlesh Patel
    • 1
  • Xiao Dong Chen
    • 1
  • Romain Jeantet
    • 2
    • 3
  • Pierre Schuck
    • 2
    • 3
  1. 1.Biotechnology and Food Engineering Group, Department of Chemical EngineeringMonash UniversityVictoriaAustralia
  2. 2.INRAUMR1253RennesFrance
  3. 3.AGROCAMPUS OUESTUMR1253RennesFrance

Personalised recommendations