Dairy Science & Technology

, Volume 90, Issue 1, pp 87–98

Milk protein-iron complexes: Inhibition of lipid oxidation in an emulsion

  • Maya Sugiarto
  • Aiqian Ye
  • Michael W. Taylor
  • Harjinder Singh
Original Article


Fortification of foods with iron is a common vehicle for delivering iron in required quantities to the consumer. However, many technological problems occur when food products are fortified with minerals, due mainly to the many reactions of minerals with other food components, e.g. fat oxidation. In the present study, the binding of iron (ferrous sulphate) to common milk protein products, sodium caseinate, whey protein isolate (WPI) and milk protein concentrate (MPC), to form protein-iron complexes was characterized by the amount of iron binding and the turbidity as functions of the iron concentration. In an emulsion containing linoleic acid, the oxidation activity of these protein-iron complexes was compared with that of the iron in its free state. The affinities of caseinate and MPC to bind iron were higher than that of WPI. These differences were attributed to the presence of clusters of phosphoserine residues in casein molecules, that are known to bind divalent cations strongly. Lipid oxidation experiments showed that the ability of iron to catalyse lipid oxidation was reduced significantly when iron was bound to protein compared with when it was in its free form. This suggests that the formation of milk protein-iron complexes could be a novel way of incorporating iron into food products with high bioavailability, good flavour and no solubility problems.

sodium caseinate whey protein isolate milk protein concentrate protein-iron complex emulsion oxidation 

Complexes protéines laitières-fer: inhibition de l’oxydation des lipides dans une émulsion


La fortification en fer des aliments est utilisée couramment pour apporter aux consommateurs les quantités nécessaires en fer. Cependant, beaucoup de problèmes technologiques surviennent quand les produits alimentaires sont fortifiés avec des minéraux, principalement en raison de nombreuses réactions des minéraux avec les autres composants des aliments, par exemple l’oxydation de la matière grasse. Dans la présente étude, la liaison du fer (sulfate de fer) à des produits protéiques laitiers courants, caséinate de sodium, isolat de protéines de lactosérum et concentré de protéines laitières, pour former des complexes protéines-fer a été caractérisée par la quantité de fer lié et la turbidité en fonction de la concentration en fer. Dans une émulsion contenant de l’acide linoléique, l’activité oxydante de ces complexes protéines-fer a été comparée avec l’activité oxydante du fer à l’état libre. Les affinités du caséinate et du concentré de protéines laitières pour lier le fer étaient plus élevées que celle de l’isolat de protéines de lactosérum. Ces différences ont été attribuées à la présence dans les molécules de caséine d’amas de résidus phosphosérine qui sont connus pour lier fortement les cations divalents. Les essais d’oxydation des lipides ont montré que la capacité du fer à catalyser l’oxydation des lipides était significativement réduite quand le fer était lié aux protéines par rapport à celle obtenue quand le fer était à l’état libre. Ceci suggère que les complexes protéines laitières-fer pourraient devenir une nouvelle voie d’incorporation de fer dans les produits alimentaires.

caséinate de sodium isolat de protéines de lactosérum concentré de protéines laitières complexe protéine-fer oxydation dans les émulsions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allen J.C., Wrieden W.L., Influence of milk-proteins on lipid oxidation in aqueous emulsion. 1. Casein, whey-protein and alpha-lactalbumin, J. Dairy Res. 49 (1982) 239–248.CrossRefGoogle Scholar
  2. [2]
    Carmichael D., Christopher J., Hegenauer J., Saltman P., Effect of milk and casein on absorption of supplemental iron in mouse and chick, Am. J. Clin. Nutr. 28 (1975) 487–493.Google Scholar
  3. [3]
    Douglas F.W., Rainey N.H., Wong N.P., Edmondson L.F., Lacroix D.E., Color, flavor, and iron bioavailability in iron-fortified chocolate milk, J. Dairy Sci. 64 (1981) 1785–1793.CrossRefGoogle Scholar
  4. [4]
    Eriksson C.E., Lipid oxidation catalysts and inhibitors in raw-materials and processed foods, Food Chem. 9 (1982) 1–2.CrossRefGoogle Scholar
  5. [5]
    Gaucheron F., Le Graet Y., Raulot K., Piot M., Physicochemical characterisation of iron-supplemented skim milk, Int. Dairy J. 7 (1997) 141–148.CrossRefGoogle Scholar
  6. [6]
    Hegenauer J., Saltman P., Ludwig D., Ripley L., Ley A., Iron-supplemented cow milk — identification and spectral properties of iron bound to casein micelles, J. Agric. Food Chem. 27 (1979) 1294–1301.CrossRefGoogle Scholar
  7. [7]
    Hekmat S., McMahon D.J., Distribution of iron between caseins and whey proteins in acidified milk, Lebensm. Wiss. Technol. 31 (1998) 632–638.CrossRefGoogle Scholar
  8. [8]
    Hurrell R.F., Cook J.D., Strategies for iron fortification of foods, Trends Food Sci. Technol. 9 (1990) 56–61.CrossRefGoogle Scholar
  9. [9]
    Inoue T., Ando K., Kikugawa K., Specific determination of malonaldehyde by N-methyl-2-phenylindone or thiobarbituric acid, J. Am. Oil Chem. Soc. 75 (1998) 597–600.CrossRefGoogle Scholar
  10. [10]
    Labuza T.P., Kinetics of lipid oxidation in foods, CRC Crit. Rev. Food Technol. 2 (1971) 355–404.CrossRefGoogle Scholar
  11. [11]
    Manson W., Cannon J., Reaction of α-s1 and β-casein with ferrous ions in presence of oxygen, J. Dairy Res. 45 (1978) 59–67.CrossRefGoogle Scholar
  12. [12]
    McClements D.J., Decker E.A., Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems, J. Food Sci. 65 (2000) 1270–1282.CrossRefGoogle Scholar
  13. [13]
    Mulvihill D.M., Production, functional properties and utilization of milk protein products, in: Fox P.F. (Ed.), Advanced Dairy Chemistry — 1. Proteins, Elsevier Applied Science Publishers, London, UK, 1992, pp. 369–405.Google Scholar
  14. [14]
    O’Connor T.P., O’Brien N.M., Lipid oxidation, in: Fox P.F. (Ed.), Advanced Dairy Chemistry, Vol. 2, Chapman and Hall, London, UK, 1995, pp. 309–347.Google Scholar
  15. [15]
    Perrin D., Dempsey B., Buffers for pH and Metal Ion Control, Chapman and Hall, London, UK, 1974.Google Scholar
  16. [16]
    Richardson T., Korycka-Dahl M., Lipid oxidation, in: Fox P.F. (Ed.), Developments in Dairy Chemistry, Vol. 1, Elsevier Applied Science Publishers, London, UK, 1983, pp. 241–363.Google Scholar
  17. [17]
    Sugiarto M., Ye A., Singh H., Characterization of binding of iron to sodium caseinate and whey protein isolate, Food Chem. 114 (2009) 1007–1013.CrossRefGoogle Scholar
  18. [18]
    Taylor M.J., Richardson T., Antioxidant activity of skim milk: effect of heat and resultant sulfhydryl groups, J. Dairy Sci. 63 (1980) 1783–1795.CrossRefGoogle Scholar
  19. [19]
    Tong L.M., Sasaki S., McClements D.J., Decker E.A., Mechanisms of the antioxidant activity of a high molecular weight fraction of whey, J. Agric. Food Chem. 48 (2000) 1473–1478.CrossRefGoogle Scholar
  20. [20]
    Ye A., Interfacial composition and stability of emulsions made with mixtures of sodium caseinate and whey protein concentrate, Food Chem. 110 (2008) 946–952.CrossRefGoogle Scholar
  21. [21]
    Yee J.J., Shipe W.F., Effects of sulfhydryl compounds on lipid oxidations catalyzed by copper and heme, J. Dairy Sci. 65 (1982) 1414–1420.CrossRefGoogle Scholar
  22. [22]
    Yen G.C., Chen H.Y., Lee C.E., Measurement of antioxidative activity in metal ion-induced lipid peroxidation systems, J. Sci. Food Agric. 79 (1999) 1213–1217.CrossRefGoogle Scholar

Copyright information

© INRA, EDP Sciences 2009

Authors and Affiliations

  • Maya Sugiarto
    • 1
  • Aiqian Ye
    • 1
  • Michael W. Taylor
    • 1
  • Harjinder Singh
    • 1
  1. 1.Riddet InstituteMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations