Dairy Science & Technology

, Volume 90, Issue 1, pp 47–73 | Cite as

ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties

  • Robert Sieber
  • Ueli Bütikofer
  • Charlotte Egger
  • Reto Portmann
  • Barbara Walther
  • Daniel Wechsler
Review

Abstract

During the ripening of cheese, a large number of peptides are formed from casein. Some of these peptides have been shown to exert an antihypertensive effect due to their angiotensin-I-converting enzyme (ACE)-inhibitory activity. Recently, several studies have investigated the ACE-inhibiting potential of cheese, and various ACE-inhibiting peptides have been isolated and identified from different cheese varieties. The present review focuses on the occurrence of two tripeptides, Val-Pro-Pro and Ile-Pro-Pro, in cheese. These tripeptides were first described in fermented-milk products and have been demonstrated to exert a blood pressure-lowering effect in humans with mild hypertension. The influence of cheesemaking and ripening on the release of ACE-inhibiting peptides is revealed. Finally, the antihypertensive potential of cheese with high ACE-inhibitory activity is discussed with regard to the bioavailability of the peptides involved.

ACE-inhibitory activity ACE-inhibiting peptide tripeptide VPP IPP cheese cheese ripening 

Abbreviation

ACE

angiotensin-converting enzyme

CN

casein

DBP

diastolic blood pressure

FAPGG

furanacryloyl-phenylalanyl-glycyl-glycine

HHL

hippuryl-histidyl-leucyl-OH

HPLC

high-performance liquid chromatography

IPP

isoleucyl-prolyl-proline

MS

mass spectrometry

SBP

systolic blood pressure

SHR

spontaneously hypertensive rats

VPP

valyl-prolyl-proline

ACE ACE

Abstract

I (ACE) ACE ACE Val-Pro-Pro (VPP) Ile-Pro-Pro (IPP) ACE ACE

ACE ACE VPP IPP 

Activité inhibitrice et peptides inhibiteurs de l’ACE dans différentes sortes de fromage

Résumé

Au cours de la maturation du fromage, un grand nombre de peptides sont formés à partir de la caséine. Quelques-uns d’entre eux sont réputés exercer des effets antihypertenseurs en raison de l’activité inhibitrice de l’enzyme de conversion de l’angiotensine I (ACE). Récemment, plusieurs études ont examiné le potentiel inhibiteur d’ACE du fromage, et divers peptides inhibiteurs de l’ACE ont été isolés de différentes sortes de fromage puis identifiés. La présente revue porte sur la présence de deux tripeptides Val-Pro-Pro (VPP) et Ile-Pro-Pro (IPP) dans le fromage. Ces tripeptides sont parmi les premiers à avoir été décrits dans les produits laitiers fermentés et sont réputés exercer un effet antihypertenseur chez les patients présentant une légère hypertension. Cette revue porte aussi sur l’influence de la fabrication et de l’affinage du fromage sur la libération des peptides inhibiteurs de l’ACE, sur le potentiel antihypertenseur du fromage avec une activité inhibitrice élevée de l’ACE de même que la biodisponibilité des peptides en question.

activité inhibitrice de l’ACE peptide inhibiteur de l’ACE tripeptide VPP IPP fromage affinage de fromage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Addeo F., Chianese L., Sacchi R., Musso S.S., Ferranti P., Malorni A., Characterization of the oligopeptides of Parmigiano-Reggiano cheese soluble in 120 g trichloroacetic acid, J. Dairy Res. 61 (1994) 365–374.Google Scholar
  2. [2]
    Ai L.Z., Guo B.H., Zhang H., Wu Z.J., Chen W., Wang Y.Y., Tang J.A., Isolation and antihypertensive effect of exopolysaccharides from Lactobacillus casei LC2W, Milchwissenschaft-Milk Sci. Int. 63 (2008) 3–6.Google Scholar
  3. [3]
    Aihara K., Kajimoto O., Hirata H., Takahashi R., Nakamura Y., Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension, J. Am. Coll. Nutr. 24 (2005) 257–265.Google Scholar
  4. [4]
    Apostolidis E., Kwon Y.I., Shetty K., Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension, Innovat. Food Sci. Emerg. Technol. 8 (2007) 46–54.Google Scholar
  5. [5]
    Appel L.J., Moore T.J., Obarzanek E., Vollmer W.M., Svetkey L.P., Sacks F.M., Bray G.A., Vogt T.M., Cutler J.A., Windhauser M.M., Lin P.H., Karanja N., A clinical trial of the effects of dietary patterns on blood pressure, N. Engl. J. Med. 336 (1997) 1117–1124.Google Scholar
  6. [6]
    Ashar M.N., Chand R., Antihypertensive peptides purified from milks fermented with Lactobacillus delbrueckii ssp. bulgaricus, Milchwissenschaft-Milk Sci. Int. 59 (2004) 14–17.Google Scholar
  7. [7]
    Bachmann H.P., Bütikofer U., Badertscher R., Dalla Torre M., Lavanchy P., Bühler-Moor U., Nick B., Jimeno J., Warmke R., Grosch W., Sieber R., Bosset J.O., Reifungsverlauf von in Folien verpacktem Emmentaler Käse mit und ohne Zusatz von Lactobacillus casei subsp. casei. I. Mikrobiologische, chemische, rheologische und sensorische Untersuchungen, Lebensm.-Wiss. Technol. 30 (1997) 417–428.Google Scholar
  8. [8]
    Bachmann H.P., Bütikofer U., Meyer J., Prediction of flavour and texture development in Swiss-type cheeses, Food Sci. Technol.-Lebensm.-Wiss. Technol. 32 (1999) 284–289.Google Scholar
  9. [9]
    Bachmann H.P., Bütikofer U., Sieber R., Über das Vorkommen von bioaktiven Peptiden in Käse, Mitt. Lebensmittelunters. Hyg. 94 (2003) 136–154.Google Scholar
  10. [10]
    Bernard B.K., Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl-L-proline): I. Executive summary, Int. J. Toxicol. 24 (2005) 1–3.Google Scholar
  11. [11]
    Bernard B.K., Nakamura Y., Aihara K., Mennear J.H., Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl-L-proline): IX. Evaluation of the mutagenic potential of synthesized L-valyl-L-prolyl-L-proline in the Salmonella-Escherichia coli/microsome, incorporation assay, Int. J. Toxicol. 24 (2005) 107–113.Google Scholar
  12. [12]
    Bernard B.K., Nakamura Y., Bando I., Mennear J.H., Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl-L-proline): II. Introduction, Int. J. Toxicol. 24 (2005) 5–11.Google Scholar
  13. [13]
    Boelsma E., Kloek J., Lactotripeptides and antihypertensive effects: a critical review, Br. J. Nutr. 101 (2009) 776–786.Google Scholar
  14. [14]
    Bütikofer U., Baumann E., Sieber R., Bosset J.O., Ripening of Emmental cheese wrapped in foil with and without addition of Lactobacillus casei subsp. casei. IV. HPLC separation of water soluble peptides, Food Sci. Technol.-Lebensm.-Wiss. Technol. 31 (1998) 297–301.Google Scholar
  15. [15]
    Bütikofer U., Meyer J., Sieber R., Walther B., Wechsler D., Occurrence of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in different cheese varieties of Swiss origin, J. Dairy Sci. 91 (2008) 29–38.Google Scholar
  16. [16]
    Bütikofer U., Meyer J., Sieber R., Wechsler D., Quantification of the angiotensin-converting enzmye-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses, Int. Dairy J. 17 (2007) 968–975.Google Scholar
  17. [17]
    Cadée J.A., Chang C.Y., Chen C.W., Huang C.N., Chen S.L., Wang C.K., Bovine casein hydrolysate (C12 peptide) reduces blood pressure in prehypertensive subjects, Am. J. Hypertens. 20 (2007) 1–5.Google Scholar
  18. [18]
    Cheung H.S., Cushman D.W., Inhibition of homogeneous angiotensin-converting enzyme of rabbit lung by synthetic venom peptides of Bothrops jararaca, Biochim. Biophys. Acta-Enzymol. 293 (1973) 451–463.Google Scholar
  19. [19]
    Christensen J.E., Dudley E.G., Pederson J.A., Steele J.L., Peptidases and amino acid catabolism in lactic acid bacteria, Antonie van Leeuwenhoek, Int. J. Gen. Molec. Microbiol. 76 (1999) 217–246.Google Scholar
  20. [20]
    Curtis J.M., Dennis D., Waddell D.S., MacGillivray T., Ewart H.S., Determination of angiotensin-converting enzyme inhibitory peptide Leu-Lys-Pro-Asn-Met (LKPNM) in bonito muscle hydrolysates by LC-MS/MS, J. Agric. Food Chem. 50 (2002) 3919–3925.Google Scholar
  21. [21]
    Cushman D.W., Cheung H.S., Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung, Biochem. Pharmacol. 20 (1970) 1637–1648.Google Scholar
  22. [22]
    Dent M.P., O’Hagan S., Braun W.H., Schaetti P., Marburger A., Vogel O., A 90-day subchronic toxicity study and reproductive toxicity studies on ACE-inhibiting lactotripeptide, Food Chem. Toxicol. 45 (2007) 1468–1477.Google Scholar
  23. [23]
    Engberink M.F., Schouten E.G., Kok F.J., van Mierlo L.A.J., Brouwer I.A., Geleijnse J.M., Lactotripeptides show no effect on human blood pressure. Results from a double-blind randomized controlled trial, Hypertension 51 (2008) 399–405.Google Scholar
  24. [24]
    FitzGerald R.J., Murray B.A., Bioactive peptides and lactic fermentations, Int. J. Dairy Technol. 59 (2006) 118–125.Google Scholar
  25. [25]
    FitzGerald R.J., Murray B.A., Walsh D.J., Hypotensive peptides from milk proteins, J. Nutr. 134 (2004) 980S-988S.Google Scholar
  26. [26]
    Foltz M., Meynen E.E., Bianco V., van Platerink C., Koning T.M.M.G., Kloek J., Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation, J. Nutr. 137 (2007) 953–958.Google Scholar
  27. [27]
    Fuglsang A., Nilsson D., Nyborg N.C.B., Cardiovascular effects of fermented milk containing angiotensin-converting enzyme inhibitors evaluated in permanently catheterized, spontaneously hypertensive rats, Appl. Environ. Microbiol. 68 (2002) 3566–3569.Google Scholar
  28. [28]
    Gagnaire V., Mollé D., Herrouin M., Léonil J., Peptides identified during Emmental cheese ripening: origin and proteolytic systems involved, J. Agric. Food Chem. 49 (2001) 4402–4413.Google Scholar
  29. [29]
    Gavras H., Brunner H.R., Role of angiotensin and its inhibition in hypertension, ischemic heart disease, and heart failure, Hypertension 37 (2001) 342–345.Google Scholar
  30. [30]
    Gobbetti M., Ferranti P., Smacchi E., Goffredi F., Addeo F., Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4, Appl. Environ. Microbiol. 66 (2000) 3898–3904.Google Scholar
  31. [31]
    Gómez-Ruiz J.Á., Ramos M., Recio I., Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures, Int. Dairy J. 12 (2002) 697–706.Google Scholar
  32. [32]
    Gómez-Ruiz J.Á., Ramos M., Recio I., Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion, Int. Dairy J. 14 (2004) 1075–1080.Google Scholar
  33. [33]
    Gómez-Ruiz J.Á., Ramos M., Recio I., Identification and formation of angiotensin-converting enzyme-inhibitory peptides in Manchego cheese by high-performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 1054 (2004) 269–277.Google Scholar
  34. [34]
    Gómez-Ruiz J.Á., Taborda G., Amigo L., Ramos M., Molina E., Sensory and mass spectrometric analysis of the peptidic fraction lower than one thousand daltons in Manchego cheese, J. Dairy Sci. 90 (2007) 4966–4973.Google Scholar
  35. [35]
    Gómez-Ruiz J.Á., Taborda G., Amigo L., Recio I., Ramos M., Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry, Eur. Food Res. Technol. 223 (2006) 595–601.5.Google Scholar
  36. [36]
    Haque E., Chand R., Antihypertensive and antimicrobial bioactive peptides from milk proteins, Eur. Food Res. Technol. 227 (2008) 7–15.Google Scholar
  37. [37]
    Hata Y., Yamamoto M., Ohni M., Nakajima K., Nakamura Y., Takano T., A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects, Am. J. Clin. Nutr. 64 (1996) 767–771.Google Scholar
  38. [38]
    Hernández-Ledesma B., Amigo L., Ramos M., Recio I., Angiotensin converting enzyme inhibitory activity in commercial fermented products, Formation of peptides under simulated gastrointestinal digestion, J. Agric. Food Chem. 52 (2004) 1504–1510.Google Scholar
  39. [39]
    Inoue K., Shirai T., Ochiai H., Kasao M., Hayakawa K., Kimura M., Sansawa H., Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives, Eur. J. Clin. Nutr. 57 (2003) 490–495.Google Scholar
  40. [40]
    Jang A., Lee M., Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates, Meat Sci. 69 (2005) 653–661.Google Scholar
  41. [41]
    Jauhiainen T., Blood pressure lowering effects of Lactobacillus helveticus fermented milk containing bioactive peptides Ile-Pro-Pro and Val-Pro-Pro: mechanistic, kinetic and clinical studies, Diss. University Helsinki, 2007, pp. 1–100.Google Scholar
  42. [42]
    Jauhiainen T., Vapaatalo H., Poussa T., Kyrönpalo S., Rasmussen M., Korpela R., Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement, Am. J. Hypertens. 18 (2005) 1600–1605.Google Scholar
  43. [43]
    Jauhiainen T., Wuolle K., Vapaatalo H., Kerojoki O., Nurmela K., Lowrie C., Korpela R., Oral absorption, tissue distribution and excretion of a radiolabelled analog of a milk-derived antihypertensive peptide, Ile-Pro-Pro, in rats, Int. Dairy J. 17 (2007) 1216–1223.Google Scholar
  44. [44]
    Kajimoto O., Aihara K., Hirata H., Takahashi R., Nakamura Y., Safety evaluation of excessive intake of the tablet containing “Lactotripeptides (VPP, IPP)” on healthy volunteers, J. Nutr. Food 4 (2001) 37–46.Google Scholar
  45. [45]
    Kamath V., Niketh S., Chandrashekar A., Rajini P.S., Chymotryptic hydrolysates of α-kafirin, the storage protein of sorghum (Sorghum bicolor) exhibited angiotensin converting enzyme inhibitory activity, Food Chem. 100 (2007) 306–311.Google Scholar
  46. [46]
    Katayama K., Anggraeni H.E., Mori T., Ahhmed A.M., Kawahara S., Sugiyama M., Nakayama T., Maruyama M., Muguruma M., Porcine skeletal muscle troponin is a good source of peptides with angiotensin-I converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats, J. Agric. Food Chem. 56 (2008) 355–360.Google Scholar
  47. [47]
    Katayama K., Jamhari, Mori T., Kawahara S., Miake K., Kodama Y., Sugiyama M., Kawamura Y., Nakayama T., Maruyama M., Muguruma M., Angiotensin-I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its antihypertensive activity in spontaneously hypertensive rats, J. Food Sci. 72 (2007) S702-S706.Google Scholar
  48. [48]
    Kenny O., FitzGerald R.J., O’Cuinn G., Beresford T., Jordan K., Growth phase and growth medium effects on the peptidase activities of Lactobacillus helveticus, Int. Dairy J. 13 (2003) 509–516.Google Scholar
  49. [49]
    Kilpi E.E.R., Kahala M.M., Steele J.L., Pihlanto A.M., Joutsjoki V.V., Angiotensin I-converting enzyme inhibitory activity in milk fermented by wild-type and peptidase-deletion derivatives of Lactobacillus helveticus CNRZ32, Int. Dairy J. 17 (2007) 976–984.Google Scholar
  50. [50]
    Korhonen H., Milk-derived bioactive peptides: From science to applications, J. Funct. Foods 1 (2009) 177–187.Google Scholar
  51. [51]
    Kurosaki T., Maeno M., Mennear J.H., Bernard B.K., Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl-L-proline): VI. Effects of Lactobacillus helveticus-fermented milk powder on fertility and reproductive performance of rats, Int. J. Toxicol. 24 (2005) 61–89.Google Scholar
  52. [52]
    Leclerc P.L., Gauthier S.F., Bachelard H., Santure M., Roy D., Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus, Int. Dairy J. 12 (2002) 995–1004.Google Scholar
  53. [53]
    Li G.H., Le G.W., Shi Y.H., Shrestha S., Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects, Nutr. Res. 24 (2004) 469–486.Google Scholar
  54. [54]
    Lo W.M.Y., Li-Chan E.C.Y., Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein, J. Agric. Food Chem. 53 (2005) 3369–3376.Google Scholar
  55. [55]
    Maeno M., Mizuno S., Mennear J.H., Bernard B.K., Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl-L-proline): VIII. Assessment of cytotoxicity and clastogenicity of tripeptides-containing casein hydrolysate and Lactobacillus helv- eticus-fermented milk powders in Chinese hamster lung cells, Int. J. Toxicol. 24 (2005) 97–105.Google Scholar
  56. [56]
    Maeno M., Nakamura Y., Mennear J.H., Bernard B.K., Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl-L-proline): III. Single- and/or repeated-dose toxicity of tripeptides-containing Lactobacillus helveticus-fermented milk powder and casein hydrolysate in rats, Int. J. Toxicol. 24 (2005) 13–23.Google Scholar
  57. [57]
    Maeno M., Yamamoto N., Takano T., Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790, J. Dairy Sci. 79 (1996) 1316–1321.Google Scholar
  58. [58]
    Mäkinen S., Kelloniemi J., Pihlanto A., Mäkinen K., Korhonen H., Hopia A., Valkonen J.P.T., Inhibition of angiotensin converting enzyme I caused by autolysis of potato proteins by enzymatic activities confined to different parts of the potato tuber, J. Agric. Food Chem. 56 (2008) 9875–9883.Google Scholar
  59. [59]
    Masuda O., Nakamura Y., Takano T., Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats, J. Nutr. 126 (1996) 3063–3068.Google Scholar
  60. [60]
    Matsufuji H., Matsui T., Seki E., Osajima K., Nakashima M., Osajima Y., Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle, Biosci. Biotechnol. Biochem. 58 (1994) 2244–2245.Google Scholar
  61. [61]
    Matsui T., Matsufuji H., Seki E., Osajima K., Nakashima M., Osajima Y., Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle, Biosci. Biotechnol. Biochem. 57 (1993) 922–925.Google Scholar
  62. [62]
    Matsui T., Yukiyoshi A., Doi S., Sugimoto H., Yamada H., Matsumoto K., Gastrointestinal enzyme production of bioactive peptides from royal jelly protein, their antihypertensive ability in SHR, J. Nutr. Biochem. 13 (2002) 80–86.Google Scholar
  63. [63]
    McCarron D.A., Reusser M.E., Finding consensus in the dietary calcium-blood pressure debate, J. Am. Coll. Nutr. 18 (1999) 398S-405S.Google Scholar
  64. [64]
    Meisel H., Goepfert A., Günther S., ACE-inhibitory activities in milk products, Milchwissenschaft-Milk Sci. Int. 52 (1997) 307–311.Google Scholar
  65. [65]
    Meisel H., Walsh D.J., Murray B., Fitz-Gerald R.J., ACE inhibiting peptides, in: Mine Y., Shahidi S. (Eds.), Nutraceutical Proteins and Peptides in Health and Disease, CRC Press, New York, USA, 2006, pp. 269–315.Google Scholar
  66. [66]
    Meyer J., Bütikofer U., Walther B., Wechsler D., Sieber R., Changes in angiotensin-converting enzyme inhibition and concentrations of the tripeptides Val-Pro-Pro and Ile-Pro-Pro during ripening of different Swiss cheese varieties, J. Dairy Sci. 92 (2009) 826–836.Google Scholar
  67. [67]
    Miguel M., Aleixandre A., Antihypertensive peptides derived from egg proteins, J. Nutr. 136 (2006) 1457–1460.Google Scholar
  68. [68]
    Miguel M., Manso M., Aleixandre A., Alonso M.J., Salaices M., López-Fandiño R., Vascular effects, angiotensin I-converting enzyme (ACE)-inhibitory activity, and antihypertensive properties of peptides derived from egg white, J. Agric. Food Chem. 55 (2007) 10615–10621.Google Scholar
  69. [69]
    Minervini F., Algaron F., Rizzello C.G., Fox P.F., Monnet V., Gobbetti A., Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species, Appl. Environ. Microbiol. 69 (2003) 5297–5305.Google Scholar
  70. [70]
    Mito K., Fujii M., Kuwahara M., Matsumura N., Shimizu T., Sugano S., Karaki H., Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides derived from hemoglobin, Eur. J. Pharmacol. 304 (1996) 93–98.Google Scholar
  71. [71]
    Miyoshi S., Kaneko T., Yoshizawa Y., Fukui F., Tanaka H., Maruyama S., Hypotensive activity of enzymatic α-zein hydrolysate, Agric. Biol. Chem. 55 (1991) 1407–1408.Google Scholar
  72. [72]
    Mizuno S., Matsuura K., Gotou T., Nishimura S., Kajimoto O., Yabune M., Kajimoto Y., Yamamoto N., Antihypertensive effect of casein hydrolysate in a placebo-controlled study in subjects with high-normal blood pressure and mild hypertension, Br. J. Nutr. 94 (2005) 84–91.Google Scholar
  73. [73]
    Mizuno S., Mennear J.H., Matsuura K., Bernard B.K., Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline, L-isoleucyl-L-prolyl-L-proline): V. A 13-week toxicity study of tripeptides-containing casein hydrolysate in male and female rats, Int. J. Toxicol. 24 (2005) 41–59.Google Scholar
  74. [74]
    Mizushima S., Ohshige K., Watanabe J., Kimura M., Kadowaki T., Nakamura Y., Tochikubo O., Ueshima H., Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men, Am. J. Hypertens. 17 (2004) 701–706.Google Scholar
  75. [75]
    Möller N.P., Scholz-Ahrens K.E., Roos N., Schrezenmeir J., Bioactive peptides and proteins from foods: indication for health effects, Eur. J. Nutr. 47 (2008) 171–182.Google Scholar
  76. [76]
    Muguerza B., Ramos M., Sanchez E., Manso M.A., Miguel M., Aleixandre A., Delgado M.A., Recio I., Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk, Int. Dairy J. 16 (2006) 61–69.Google Scholar
  77. [77]
    Nakamura Y., Bando I., Mennear J.H., Bernard B.K., Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl-L-proline): IV. Assessment of the repeated-dose toxicological potential of synthesized L-valyl-L-prolyl-L-proline in male and female rats and dogs, Int. J. Toxicol. 24 (2005) 25–39.Google Scholar
  78. [78]
    Nakamura Y., Takano T., Angiotensin converting enzyme inhibitor and method for preparing same, US Patent 5449661, 1995.Google Scholar
  79. [79]
    Nakamura Y., Yamamoto N., Sakai K., Okubo A., Yamazaki S., Takano T., Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk, J. Dairy Sci. 78 (1995) 777–783.Google Scholar
  80. [80]
    Nakamura Y., Yamamoto N., Sakai K., Takano T., Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme, J. Dairy Sci. 78 (1995) 1253–1257.Google Scholar
  81. [81]
    Nakano D., Ogura K., Miyakoshi M., Ishii F., Kawanishi H., Kurumazuka D., Kwak C.J., Ikemura K., Takaoka M., Moriguchi S., Iino T., Kusumoto A., Asami S., Shibata H., Kiso Y., Matsumura Y., Antihyperten-sive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats, Biosci. Biotechnol. Biochem. 70 (2006) 1118–1126.Google Scholar
  82. [82]
    Nielsen M.S., Martinussen T., Flambard B., Sørensen K.I., Otte J., Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time, Int. Dairy J. 19 (2009) 155–165.Google Scholar
  83. [83]
    Nussberger J., Blutdrucksenkende Tripeptide aus der Milch, Ther. Umsch. 64 (2007) 177–179.Google Scholar
  84. [84]
    Ohsawa K., Satsu H., Ohki K., Enjoh M., Takano T., Shimizu M., Producibility and digestibility of antihypertensive β-casein tripeptides, Val-Pro-Pro and Ile-Pro-Pro, in the gastrointestinal tract: analyses using an in vitro model of mammalian gastrointestinal digestion, J. Agric. Food Chem. 56 (2008) 854–858.Google Scholar
  85. [85]
    Okamoto A., Hanagata H., Matsumoto E., Kawamura Y., Koizumi Y., Yanagida F., Angiotensin-converting enzyme inhibitory activities of various fermented foods, Biosci. Biotechnol. Biochem. 59 (1995) 1147–1149.Google Scholar
  86. [86]
    Ong L., Henriksson A., Shah N.P., Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probiotic Lactobacillus casei sp., Lait 87 (2007) 149–165.Google Scholar
  87. [87]
    Ong L., Shah N.P., Influence of probiotic Lactobacillus acidophilus and L. helveticus on proteolysis, organic acid profiles, and ACE-inhibitory activity of Cheddar cheeses ripened at 4, 8, and 12 °C, J. Food Sci. 73 (2008) M111-M120.Google Scholar
  88. [88]
    Ong L., Shah N.P., Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheeses, LWT — Food Sci. Technol. 41 (2008) 1555–1566.Google Scholar
  89. [89]
    Pan D., Luo Y., Tanokura M., Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004, Food Chem. 91 (2005) 123–129.Google Scholar
  90. [90]
    Parrot S., Degraeve P., Curia C., Martial-Gros A., In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides, Nahrung-Food 47 (2003) 87–94.Google Scholar
  91. [91]
    Pihlanto A., Akkanen S., Korhonen H.J., ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum), Food Chem. 109 (2008) 104–112.Google Scholar
  92. [92]
    Ponstein-Simarro Doorten A.Y., vdWiel J.A.G., Jonker D., Safety evaluation of an IPP tripeptide-containing milk protein hydrolysate, Food Chem. Toxicol. 47 (2009) 55–61.Google Scholar
  93. [93]
    Pozo-Bayón M.A., Alcaide J.M., Polo M.C., Pueyo E., Angiotensin I-converting enzyme inhibitory compounds in white and red wines, Food Chem. 100 (2007) 43–47.Google Scholar
  94. [94]
    Pripp A.H., Effect of peptides derived from food proteins on blood pressure: a meta-analysis of randomized controlled trials, Food Nutr. Res. 52 (2008) DOI: 10.3402/fnr.v52i0.1641. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596738/pdf/FNR-52-1641.pdf.Google Scholar
  95. [95]
    Pripp A.H., Sørensen R., Stepaniak L., Sørhaug T., Relationship between proteolysis and angiotensin-I-converting enzyme inhibition in different cheeses, LWT — Food Sci. Technol. 39 (2006) 677–683.Google Scholar
  96. [96]
    Prospective Studies Collaboration, Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies, Lancet 360 (2002) 1903–1913.Google Scholar
  97. [97]
    Quirós A., Chichón R., Recio I., López-Fandiño R., The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin, Food Chem. 104 (2007) 1734–1739.Google Scholar
  98. [98]
    Quist E.E., Phillips R.D., Saalia F.K., Angiotensin converting enzyme inhibitory activity of proteolytic digests of peanut (Arachis hypogaea L.) flour, LWT — Food Sci. Technol. 42 (2009) 694–699.Google Scholar
  99. [99]
    Rank T.C., Grappin R., Olson N.F., Secondary proteolysis of cheese during ripening. A review, J. Dairy Sci. 68 (1985) 801–805.Google Scholar
  100. [100]
    Robert M.C., Razaname A., Mutter M., Juillerat M.A., Identification of angiotensin-I-converting enzyme inhibitory peptides derived from sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765, J. Agric. Food Chem. 52 (2004) 6923–6931.Google Scholar
  101. [101]
    Rufián-Henares J.A., Morales F.J., Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins, J. Agric. Food Chem. 55 (2007) 1480–1485.Google Scholar
  102. [102]
    Ryhänen E.L., Pihlanto-Leppälä A., Pahkala E., A new type of ripened, low-fat cheese with bioactive properties, Int. Dairy J. 11 (2001) 441–447.Google Scholar
  103. [103]
    Saiga A., Iwai K., Hayakawa T., Takahata Y., Kitamura S., Nishimura T., Morimatsu F., Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate, J. Agric. Food Chem. 56 (2008) 9586–9591.Google Scholar
  104. [104]
    Saiga A., Okumura T., Makihara T., Katsuda S.I., Morimatsu F., Nishimura T., Action mechanism of an angiotensin I-converting enzyme inhibitory peptide derived from chicken breast muscle, J. Agric. Food Chem. 54 (2006) 942–945.Google Scholar
  105. [105]
    Saito T., Nakamura T., Kitazawa H., Kawai Y., Itoh T., Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese, J. Dairy Sci. 83 (2000) 1434–1440.Google Scholar
  106. [106]
    Sano J., Ohki K., Higuchi T., Aihara K., Mizuno S., Kajimoto O., Nakagawa S., Kajimoto Y., Nakamura Y., Safety evaluation of excessive intake of drink containing “lactotripeptides (VPP, IPP)” in subjects with normal blood pressure to mild hypertension, J. Nutr. Food 7 (2005) 17–30.Google Scholar
  107. [107]
    Savijoki K., Palva A., Purification and molecular characterization of a tripeptidase (PepT) from Lactobacillus helveticus, Appl. Environ. Microbiol. 66 (2000) 794–800.Google Scholar
  108. [108]
    Schär H., Glättli H., Moor U., Nick B., Sieber R., Steiger G., Untersuchungen über den Reifungsverlauf von qualitativ gutem Walliser Raclettekäse, Schweiz. Milchwirt. Forsch. 21 (1992) 52–57.Google Scholar
  109. [109]
    Seppo L., Jauhiainen T., Poussa T., Korpela R., A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects, Am. J. Clin. Nutr. 77 (2003) 326–330.Google Scholar
  110. [110]
    Seppo L., Kerojoki O., Suomalainen T., Korpela R., The effect of a Lactobacillus helveticus LBK-16 H fermented milk on hypertension — a pilot study on humans, Milchwissenschaft-Milk Sci. Int. 57 (2002) 124–127.Google Scholar
  111. [111]
    Shalaby S.M., Zakora M., Otte J., Performance of two commonly used angiotensin-converting enzyme inhibition assays using FA-PGG and HHL as substrates, J. Dairy Res. 73 (2006) 178–186.Google Scholar
  112. [112]
    Sheih I.-C., Fang T.J., Wu T.-K., Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste, Food Chem. 115 (2009) 279–284.Google Scholar
  113. [113]
    Shuangquan, Tsuda H., Myamoto T., Angiotensin I-converting enzyme inhibitory peptides in skim milk fermented with Lactobacillus helveticus 130B4 from camel milk in Inner Mongolia, China, J. Sci. Food Agric. 88 (2008) 2688–2692.Google Scholar
  114. [114]
    Sieber R., Käse — ein wertvolles Lebensmittel in der menschlichen Ernährung, Mitt. Lebensm. Hyg. 96 (2005) 141–170.Google Scholar
  115. [115]
    Silva S.V., Pihlanto A., Malcata F.X., Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus, J. Dairy Sci. 89 (2006) 3336–3344.Google Scholar
  116. [116]
    Sipola M., Finckenberg P., Korpela R., Vapaatalo H., Nurminen M.L., Effect of long-term intake of milk products on blood pressure in hypertensive rats, J. Dairy Res. 69 (2002) 103–111.Google Scholar
  117. [117]
    Sipola M., Finckenberg P., Santisteban J., Korpela R., Vapaatalo H., Nurminen M.L., Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats, J. Physiol. Pharmacol. 52 (2001) 745–754.Google Scholar
  118. [118]
    Smacchi E., Gobbetti M., Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, Pseudomonas fluorescens ATCC 948 and to the angiotensin I-converting enzyme, Enzyme Microb. Technol. 22 (1998) 687–694.Google Scholar
  119. [119]
    Sollberger H., Glättli H., Nick B., Rüegg M., Sieber R., Steiger G., Untersuchungen über den Reifungsverlauf guter Sbrinz-Käse, Schweiz. Milchwirt. Forschung 20 (1991) 63–69.Google Scholar
  120. [120]
    Steffen C., Rentsch F., Nick B., Steiger G., Sieber R., Glättli H., Eberhard P., Reifungsverlauf in qualitativ gutem Gruyère, Landwirt. Schweiz 5 (1992) 209–215.Google Scholar
  121. [121]
    Steffen C., Schär H., Eberhard P., Glättli H., Nick B., Rentsch F., Steiger G., Sieber R., Untersuchungen über den Reifungsverlauf von qualitativ gutem Käse: Appenzeller, Schweiz. Milchwirt. Forsch. 21 (1993) 39–45.Google Scholar
  122. [122]
    Steffen C., Schär H., Eberhard P., Glättli H., Nick B., Rentsch F., Steiger G., Sieber R., Untersuchungen über den Reifungsverlauf von qualitativ gutem Käse: Tilsiter aus Rohmilch, Schweiz. Milchwirt. Forsch. 21 (1993) 46–51.Google Scholar
  123. [123]
    Stepaniak L., Jedrychowski L., Wróblewska B., Sørhaug T., Immunoreactivity and inhibition of angiotensin-I converting enzyme and lactococcal oligopeptidase by peptides from cheese, Ital. J. Food Sci. 13 (2001) 373–381.Google Scholar
  124. [124]
    Taubert D., Roesen R., Schömig E., Effect of cocoa and tea intake on blood pressure. A meta-analysis, Arch. Int. Med. 167 (2007) 626–634.Google Scholar
  125. [125]
    Tonouchi H., Suzuki M., Uchida M., Oda M., Antihypertensive effect of an angiotensin converting enzyme inhibitory peptide from enzyme modified cheese, J. Dairy Res. 75 (2008) 284–290.Google Scholar
  126. [126]
    Tossavainen O., Suomalainen T., Sahlstein J., Mäyrä-Mäkinen A., Verfahren zur Herstellung eines Produktes, welches gegen Bluthochdruck gerichtete Tripeptide enthält, Dt. Patent DE 600 10 742 T2 (2005).Google Scholar
  127. [127]
    Townsend R.R., McFadden C.B., Ford V., Cadée J.A., A randomized, double-blind, placebo-controlled trial of casein protein hydrolysate (C12 peptide) in human essential hypertension, Am. J. Hypertens. 17 (2004) 1056–1058.Google Scholar
  128. [128]
    Tuomilehto J., Lindström J., Hyyrynen J., Korpela R., Karhunen M.L., Mikkola L., Jauhiainen T., Seppo L., Nissinen A., Effect of ingesting sour milk fermented using Lactobacillus helveticus bacteria producing tripeptides on blood pressure in subjects with mild hypertension, J. Hum. Hypertens. 18 (2004) 795–802.Google Scholar
  129. [129]
    van der Pijl P.C., Kies A.K., Ten Have G.A.M., Duchateau G.S.M.J.E., Deutz N.E.P., Pharmacokinetics of proline-rich tripeptides in the pig, Peptides 29 (2008) 2196–2202.Google Scholar
  130. [130]
    van der Zander K., Bots M.L., Bak A.A.A., Koning M.M.G., de Leeuw P.W., Enzymatically hydrolyzed lactotripeptides do not lower blood pressure in mildly hypertensive subjects, Am. J. Clin. Nutr. 88 (2008) 1697–1702.Google Scholar
  131. [131]
    van Mierlo L.A.J., Koning M.M.G., van der Zander K., Draijer R., Lactotripeptides do not lower ambulatory blood pressure in untreated whites: results from 2 controlled multicenter crossover studies, Am. J. Clin. Nutr. 89 (2009) 617–623.Google Scholar
  132. [132]
    van Platerink C.J., Janssen H.G., Horsten R., Haverkamp J., Quantification of ACE inhibiting peptides in human plasma using high performance liquid chromatographymass spectrometry, J. Chromatogr. B 830 (2006) 151–157.Google Scholar
  133. [133]
    Vermeirssen V., Van Camp J., Verstraete W., Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides, J. Biochem. Biophys. Methods 51 (2002) 75–87.Google Scholar
  134. [134]
    Wang J., Hu J., Cui J., Bai X., Du Y., Miyaguchi Y., Lin B., Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats, Food Chem. 111 (2008) 302–308.Google Scholar
  135. [135]
    Webb A.J., Patel N., Loukogeorgakis S., Okorie M., Aboud Z., Misra S., Rashid R., Miall P., Deanfield J., Benjamin N., MacAllister R., Hobbs A.J., Ahluwalia A., Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite, Hypertension 51 (2008) 784–790.Google Scholar
  136. [136]
    Xu J.Y., Qin L.Q., Wang P.Y., Li W., Chang C., Effect of milk tripeptides on blood pressure: a meta-analysis of randomized controlled trials, Nutrition 24 (2008) 933–940.Google Scholar
  137. [137]
    Yamamoto N., Akino A., Takano T., Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790, J. Dairy Sci. 77 (1994) 917–922.Google Scholar
  138. [138]
    Yamamoto N., Akino A., Takano T., Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats, Biosci. Biotechnol. Biochem. 58 (1994) 776–778.Google Scholar
  139. [139]
    Yamamoto N., Maeno M., Takano T., Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4, J. Dairy Sci. 82 (1999) 1388–1393.Google Scholar
  140. [140]
    Yang Y., Tao G., Liu P., Liu J., Peptide with angiotensin I-converting enzyme inhibitory activity from hydrolyzed corn gluten meal, J. Agric. Food Chem. 55 (2007) 7891–7895.Google Scholar
  141. [141]
    Yano S., Suzuki K., Funatsu G., Isolation from α-zein of thermolysin peptides with angiotensin I-converting enzyme inhibitory activity, Biosci. Biotechnol. Biochem. 60 (1996) 661–663.Google Scholar

Copyright information

© INRA, EDP Sciences 2009

Authors and Affiliations

  • Robert Sieber
    • 1
  • Ueli Bütikofer
    • 1
  • Charlotte Egger
    • 1
  • Reto Portmann
    • 1
  • Barbara Walther
    • 1
  • Daniel Wechsler
    • 1
  1. 1.Agroscope Liebefeld-Posieux Research Station ALPBerneSwitzerland

Personalised recommendations