Advertisement

Apidologie

, Volume 39, Issue 6, pp 683–693 | Cite as

Small hive beetle, Aethina tumida, populations II: Dispersal of small hive beetles

  • Sebastian Spiewok
  • Michael Duncan
  • Robert Spooner-Hart
  • Jeff S. Pettis
  • Peter Neumann
Original Article

Abstract

Small hive beetles (= SHB), Aethina tumida, are parasites and scavengers of honeybee colonies and actively disperse for host finding. We investigated the re-infestation levels of SHB-free colonies within ten infested apiaries in South Africa, Australia and the USA. Re-infestation of 95% of the colonies indicates a high SHB exchange between colonies. Colony position and queen status had no influence on colony infestation levels. Spread into apiaries was determined at twelve SHB-free apiaries. While apiaries in Maryland remained un-infested, those in Australia showed high infestation numbers. Apiary density, SHB population levels and ongoing SHB mass reproduction seem to govern SHB infestation of newly installed apiaries. Those located in forested habitats showed higher infestation levels possibly due to the presence of wild/feral colonies. The results elucidate factors influencing SHB dispersal and the role of human-mediated spread, enabling improved control of SHB.

Aethina tumida Apis mellifera dispersal honeybees small hive beetle 

Les populations du Petit coléoptère des ruches, Aethina tumida II: dispersion des Petits coléoptères des ruches

Aethina tumida parasite Apis mellifera dynamique des populations dispersion facteur anthropique 

Populationen des Kleinen Beutenkäfers Aethina tumida II: Ausbreitung des Kleinen Beutenkäfers

Zusammenfassung

Die Kenntnis über die Ausbreitungsfähigkeit von Schadinsekten ist wichtig für deren Kontrolle. Hier berichten wir von der Befallsdynamik von zuvor unbefallenen Kolonien durch Kleine Beutenkäfer (= KBK), Aethina tumida, einem Parasiten von Honigbienenvölkern. Um die Ausbreitung des Kleinen Beutenkäfers zwischen den Völkern eines Bienenstandes zu untersuchen, wurden die Reinfektionsgrade von 71 Käfer-freien Kolonien nach zwei Wochen in zehn kommerziellen Bienenständen in Südafrika, Australien und den USA bestimmt (Abb. 1). Die Reinfektion von 95 % aller Bienenvölker weist auf einen hohen Austausch von KBK zwischen Kolonien desselben Bienenstandes hin (Tab. I). Weisellosigkeit oder Kolonieposition hatten dabei keinen Einfluss auf die Befallsstärke der Völker (Tab. II). Allerdings gab es eine signifikante positive Korrelation zwischen der durchschnittlichen Befallszahl eines Standes und dessen Reinfektionshöhe. Der Zuflug von KBK von außerhalb in die Bienenstände wurde bestimmt, indem die Reinfektionszahlen von zwölf KBK-freien, experimentellen Bienenständen mit je fünf bzw. sechs Kolonien nach zwei Wochen untersucht wurden. Die Ausbreitungsaktivität unterschied sich zwischen den verschiedenen Regionen. Während die experimentellen Bienenstände in Maryland nicht befallen wurden, wurden diese in Australien und Südafrika reinfiziert (Tab. I). Faktoren wie die Dichte von Bienenständen, die KBK-Populationsgröße sowie das Vorkommen von wilden Bienenvölkern scheinen einen Einfluss auf die Ausbreitungsaktivität des KBK zu haben (Tab. III). Der ausbleibende Zuflug von KBK in Maryland deutet daraufhin, dass die Wanderimkerei der Hauptweg für die Ausbreitung des KBK über lange Distanzen ist; insbesondere in Gegenden mit geringen KBK-Populationsgrößen. Während drei aufeinanderfolgenden Inspektionen von Australischen Bienenständen, wies ein Stand auf einer Wiese konstant geringere Befallszahlen auf als die drei übrigen Stände in einem bewaldeten Gebiet. Das Habitat eines Bienenstandes scheint somit dessen Befallszahlen beeinflussen zu können (Tab. IV). Angesichts unserer Ergebnisse, sollte die Behandlung von Völkern gegen KBK an einem Bienenstand stets zeitgleich stattfinden, um eine Reinfektion mit Käfern aus unbehandelten Völkern zu vermeiden. Wenn möglich, sollten zudem die oben genannten Faktoren bei der Einrichtung eines Bienenstandes berücksichtigt werden. Um die Ausbreitung des KBK innerhalb einer Region besser kontrollieren zu können, sollte der Fokus auf die Wanderung mit Bienenvölkern gelegt werden.

Aethina tumida Apis mellifera Ausbreitung Kleiner Beutenkäfer Honigbiene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benecke F.S. (2003) Commercial Beekeeping in Australia. A report for the rural industries research and development corporation. RIRDC Publication No. 03/037, RIRDC, Barton, ACT, Australia.Google Scholar
  2. Buchholz S., Schäfer M.O., Spiewok S., Pettis J.S., Duncan M., Ritter W., Spooner-Hart R., Neumann P. (2008) Alternative food sources of Aethina tumida (Coleoptera: Nitidulidae), J. Apic. Res. 47, 202–209.CrossRefGoogle Scholar
  3. Caron D.M., Park A., Hubner J., Mitchell R., Smith I.B. (2001) Small hive beetle in the Mid-Atlantic states, Am. Bee J. 141, 776–777.Google Scholar
  4. Davis M.A. (1986). Geographic patterns in the flight ability of a monophagous beetle, Oecologia 69, 407–412.CrossRefGoogle Scholar
  5. Delaplane K.S., Harbo, J.R. (1987) Effect of queenlessness on worker survival, honey gain and defence behaviour in honeybees, J. Apic. Res. 26, 37–42.Google Scholar
  6. den Boer P.J. (1971) On the dispersal power of carabid beetles and its possible significance, Miscell. Paper LH Wageningen 14, 90.Google Scholar
  7. Eischen F.A., Westervelt D., Randall C. (1999) Does the small hive beetle have alternate food sources? Am. Bee J. 139, 125.Google Scholar
  8. Ellis J.D., Delaplane K.S. (2006) The effects of habitat type, ApilifeVAR, and screened bottom boards on small hive beetle (Aethina tumida) entry into honey bee (Apis mellifera) colonies, Am. Bee J. 146, 537–539.Google Scholar
  9. Ellis J.D., Delaplane K.S., Hepburn H.R., Elzen P.J. (2003a) Efficacy of modified hive entrances and a bottom screen device for controlling Aethina tumida (Coleoptera: Nitidulidae) infestations in Apis mellifera (Hymenoptera: Apidae) colonies, J. Econ. Entomol. 96, 1647–1652.PubMedCrossRefGoogle Scholar
  10. Ellis J.D., Hepburn H.R., Delaplane K.S., Elzen P.J. (2003b) A scientific note on small hive beetle (Aethina tumida) oviposition and behaviour during European (Apis mellifera) honey bee clustering and absconding events, J. Apic. Res. 42, 47–48.Google Scholar
  11. Elzen P.J., Baxter J.R., Westervelt D., Randall C., Delaplane K.S., Cutts L., Wilson W.T. (1999) Field control and biology studies of a new pest species, Aethina tumida Murray (Coleoptera, Nitidulidae) attacking European honey bees in the Western hemisphere, Apidologie 30, 361–366.CrossRefGoogle Scholar
  12. Elzen P.J., Baxter J.R., Westervelt D., Randall C., Wilson W.T. (2000) A scientific note on observations of the small hive beetle, Aethina tumida Murray (Coleoptera, Nitidulidae) in Florida, USA, Apidologie 31, 593–594.CrossRefGoogle Scholar
  13. Evans J.D., Pettis J., Hood W.M., Shimanuki H. (2003) Tracking an invasive honey bee pest: mitochondrial DNA variation in North American small hive beetles, Apidologie 34, 103–109.CrossRefGoogle Scholar
  14. Greatti M., Milani N., Nazzi F. (1992) Reinfestation of an acaricide-treated apiary by Varroa jacobsoni Oud., Exp. Appl. Acarol. 16, 279–286.CrossRefGoogle Scholar
  15. Grenfell B., Harwood J. (1997) (Meta)population dynamics of infectious diseases, Trends Res. Ecol. Evol. 12, 395–399.CrossRefGoogle Scholar
  16. Hanski I. (1999) Metapopulation ecology, Oxford University Press, New York.Google Scholar
  17. Hepburn H.R., Radloff S.E. (1998) Honeybees of Africa, Springer Verlag, Berlin.Google Scholar
  18. Hood W.M. (2000) Overview of the small hive beetle Aethina tumida in North America, Bee World 81, 129–137.Google Scholar
  19. Igeta Y., Esaki K., Kato K., Kamata N. (2003) Influence of light condition on the stand-level distribution and movement of the ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae), Appl. Entomol. Zool. 38, 167–175.CrossRefGoogle Scholar
  20. Johnson C.G. (1969) Migration and dispersal of insects by flight, Methuen, London.Google Scholar
  21. Krause B., Page R.E. Jr (1995) Effect of Varroajacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California, Environ. Entomol. 24, 1473–1480.Google Scholar
  22. Lawton J.H., Nee S., Letcher A.J., Harvey P.H. (1994) Animal distributions: patterns and processes, in: Edwards P.J., May R.M., Webb N.R. (Eds.), Large-scale Ecology and Conservation Biology, Blackwell, Oxford, pp. 41–58.Google Scholar
  23. Lundie A.E. (1940) The small hive beetle Aethina tumida, Science Bulletin 220, Dept. Agr. Forestry, Government Printer, Pretoria.Google Scholar
  24. Moritz R.F.A., Kraus F.B., Kryger P., Crewe R.M. (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees, J. Insect Conserv. 11, 391–397.CrossRefGoogle Scholar
  25. Mutsaers M. (1991) Bees in their natural environment in South-western Nigeria, Nigerian Field 56, 3–18.Google Scholar
  26. Mutsaers M. (2006) Beekeepers’ observations on the small hive beetle (Aethina tumida) and other pests in bee colonies in West and East Africa, in: Veselý V., Titìra D. (Eds.), Proc. 2nd Eur. Conf. Apidology EurBee, Prague Czech Republic, p. 44 [online] http://www.eurbee.org/Files/Sbornik%20EurBee%20pro%20web250107.pdf (accessed on 16 September 2008).Google Scholar
  27. Nalepa C.A., Kennedy G.G., Brownie C. (2005) Role of visual contrast in the alighting behavior of Harmonia axyridis (Coleoptera: Coccinellidae) at overwintering sites, Environ. Entomol. 34, 425–431.CrossRefGoogle Scholar
  28. Neumann P., Elzen P.J. (2004) The biology of the small hive beetle (Aethina tumida Murray, Coleoptera: Nitidulidae): Gaps in our knowledge of an invasive species, Apidologie 35, 229–247.CrossRefGoogle Scholar
  29. Oldroyd B.P., Thexton E.G., Lawler S.H., Crozier R.H. (1997) Population demography of Australian feral bees (Apis mellifera), Oecologia 111, 381–387.CrossRefGoogle Scholar
  30. Ratnieks F.L.W., Piery M.A., Cuadriello I. (1991) The natural nest and nest density of the Africanized honey bee (Hymenoptera, Apidae) near Tapachula, Chipas, Mexico, Can. Entomol. 123, 353–359.CrossRefGoogle Scholar
  31. Ritter W. (1988) Varroa jacobsoni in Europe, the tropics, and subtropics, in: Needham G.R., Page R.E. Jr, Delfinado-Baker M., Bowman C.E. (Eds.), Africanized honey bees and bee mites, Ellis Horwood Ltd., Chichester, pp. 349–359.Google Scholar
  32. Rijnsdorp A.D. (1980) Pattern of movement in and dispersal from a dutch forest of Carabus problematicus Hbst. (Coleoptera, Carabidae), Oecologia 45, 274–281.CrossRefGoogle Scholar
  33. Solbreck C. (1980) Dispersal distances of migrating pine weevils, Hylobius abietis, Coleoptera: Curculionidae, Entomol. Exp. Appl. 28, 123–131.CrossRefGoogle Scholar
  34. Spiewok S., Neumann P. (2006) Infestation of commercial bumblebee (Bombus impatiens) field colonies by small hive beetles (Aethina tumida), Ecol. Entomol. 31, 623–628.CrossRefGoogle Scholar
  35. Spiewok S., Neumann P., Hepburn H.R. (2006) Preparation of disturbance-induced absconding of Cape honeybee colonies (Apis mellifera capensis Esch.), Insectes Soc. 53, 27–31.CrossRefGoogle Scholar
  36. Spiewok S., Pettis J., Duncan M., Spooner-Hart R., Westervelt D., Neumann P. (2007) Small hive beetle, Aethina tumida, populations I: Infestation levels of honeybee colonies, apiaries and regions, Apidologie 38, 595–605.CrossRefGoogle Scholar
  37. Strom B.L., Rotton L.M., Goyer R.A., Meeker J.R. (1999) Visual and semiochemical disruption of host finding in the southern pine beetle, Ecol. Appl. 9, 1028–1038.CrossRefGoogle Scholar
  38. Suarez A.V., Holway D.A., Case T.J. (2001) Patterns of spread in biological invasions dominated by longdistance jump dispersal: Insights from Argentine ant, Proc. Natl. Acad. Sci. USA 98, 1095–1100.PubMedCrossRefGoogle Scholar
  39. Suazo A., Torto B., Teal P.E.A., Tumlinson J.H. (2003) Response of the small hive beetle (Aethina tumida) to honey bee (Apis mellifera) and beehiveproduced volatiles, Apidologie 34, 525–533.CrossRefGoogle Scholar
  40. Torto B., Suazo A., Alborn H., Tumlinson J.H., Teal P.E.A. (2005) Response of the small hive beetle (Aethina tumida) to a blend of chemicals identified from honeybee (Apis mellifera) volatiles, Apidologie 36, 523–532.CrossRefGoogle Scholar
  41. Torto B., Boucias D.G., Arbogast R.T., Tumlinson J.H., Teal P.E.A. (2007) Multitrophic interaction facilitates parasite— host relationship between an invasive beetle and the honey bee, Proc. Natl. Acad. Sci. USA 104, 8374–8378.PubMedCrossRefGoogle Scholar
  42. Tribe G.D. (2000) A migrating swarm of small hive beetles (Aethina tumida Murray), S. Afr. Bee J. 72, 121–122.Google Scholar
  43. Wenning C.J. (2001) Spread and threat of the small hive beetle, Am. Bee J. 141, 640–643.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Sebastian Spiewok
    • 1
  • Michael Duncan
    • 2
  • Robert Spooner-Hart
    • 2
  • Jeff S. Pettis
    • 3
  • Peter Neumann
    • 4
    • 5
    • 6
  1. 1.Institut für Biologie, Molekulare ÖkologieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  2. 2.Centre for Plant and Food ScienceUniversity of Western SydneyPenrith SouthAustralia
  3. 3.USDA-ARS Bee Research LaboratoryBeltsvilleUSA
  4. 4.Swiss Bee Research CentreAgroscope Liebefeld-Posieux Research Station ALPBernSwitzerland
  5. 5.Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
  6. 6.Eastern Bee Research Institute of Yunnan Agricultural UniversityKunming, Yunnan ProvinceChina

Personalised recommendations