, Volume 39, Issue 1, pp 75–85 | Cite as

Phylogeny of the Xeromelissinae (Hymenoptera: Colletidae) Based upon Morphology and Molecules

  • Eduardo A. B. AlmeidaEmail author
  • Laurence Packer
  • Bryan N. Danforth
Original Article


We present the results of a combined analysis of 248 morphological characters and sequences from 3 genes for 29 species of Xeromelissinae and 7 outgroup taxa including representatives of the colletid subfamilies Colletinae, Euryglossinae, Hylaeinae, Paracolletinae, and Scrapterinae. The paracolletine genus Trichocolletes was used to root the tree. The results agree with most of those obtained in an earlier, entirely morphological analysis. Noteworthy are (1) the paraphyly of Chilimelissa in relation to Xeromelissa, and (2) the lack of sister group relationship between Hylaeinae and Xeromelissinae. Other than minor rearrangements resulting from swapping adjacent nodes, the only major difference is the placement of one species of Chilicola, C. aenigma, which no longer groups within C. (Chilioediscelis), but instead appears to be closer to Xenochilicola. The influence upon phylogenetic results caused by highly morphologically autapomorphic taxa is discussed.

bee Colletidae phylogeny Neotropical Xeromelissinae 

Une phylogénie des Xeromelissinae (Hymenoptera: Colletidae) basée sur les caractères morphologiques et moléculaires

Colletidae abeille phylogénie Xeromelissinae région néotropicale 

Eine Phylogenie der Xeromelissinae (Hymenoptera: Colletidae), basierend auf morphologischen und molekularen Merkmalen


Die Xeromelissinae bilden eine Subfamilie der Colletidae. Sie umfasst etwa 200 Art mittelgrosser Bienen, die in ihrer Verbreitung alle auf die Neue Welt bechränkt sind. Wie der Namen bereits besagt, handelt es sich hierbei um Bienen, die im allgemeinen in Trockenhabitaten vorkommen, vor allem im südlichen Südamerika. Xeromelissinen sind typischerweise klein bis sehr klein und im allgemeinen von schlanker Gestalt. In der vorliegenden Arbeit präsentieren wir die Ergebnisse einer kombinierten Analyse von 248 morphologischen Merkmalen und den Sequenzen von drei Genen. Die Analyse umfasst 29 Arten, die alle Genera der Xeromelissinae repräsentieren, sowie 7 Taxa mit Vertretern der Colletiden-Subfamilien Colletinae, Euryglossinae, Hylaeinae, Paracolletinae und Scrapterinae als Aussengruppen. Der molekulare Datensatz bestand aus den Sequenzen von zwei Kerngenen (Elongationsfaktor 1 alpha (F2-Kopie) und 28S rRNA) und einem mitochondrialen Gen (Cytochromoxidase 1). Die Wurzel des Stammbaums wurde mithilfe der Merkmale des Genus Trichocolletes (Paracolletinae) definiert. Die Ergebnisse stimmen in den meisten Punkten mit den Befunden einer früheren Analyse überein. Bemerkenswert sind (1) die Paraphylie von Chilimelissa in Bezug zu Xeromelissa und (2) das Fehlen einer Schwestergruppenbeziehung zwischen Hylaeinae und Xeromelissinae. Ausser kleineren Veränderungen in der Stammbaumtopologie, die aus der Verschiebung benachbarter Knotenpunkte herrühten, lag der einzige grössere Unterschied in der Positionierung einer Art des Genus Chilicola, C. aenigma. Diese gruppierte nicht mehr innerhalb von C. (Chilioediscelis), sondern erschien enger verwandt mit Xenochilicola. Neben diesen Ergebnissen diskutieren wir den Einfluss von morphologisch stark autapomorphen Taxa mit wenigen gemeinsamen Merkmalen auf die phylogenetischen Beziehungen mit anderweitig weniger aussergewöhnlichen Arten.

Biene Colletidae Phylogenie neotropisch Xeromelissinae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida E.A.B. (2007) Systematics and Biogeography of Colletidae (Hymenoptera: Apoidea), unpublished PhD Dissertation, Cornell University, Ithaca.Google Scholar
  2. Altekar G., Dwarkadas S., Huelsenbeck J.P., Ronquist F. (2004) Parallel Metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference, Bioinformatics 20, 407–415.PubMedCrossRefGoogle Scholar
  3. Beishaw R., Quicke D.L.J. (1997) A molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae), Mol. Phylogenet. Evol. 7, 281–293.CrossRefGoogle Scholar
  4. Bergsten J. (2005) A review of long-branch attraction, Cladistics 21, 163–193.CrossRefGoogle Scholar
  5. Danforth B.N. (1999) Phylogeny of the bee genus Lasioglossum (Hymenoptera: Halictidae) based on mitochondrial cytochrome oxidase, Syst. Entomol. 24, 377–393.CrossRefGoogle Scholar
  6. Danforth B.N., Sauquet H., Packer L. (1999) Phylogeny of the bee genus Halictus (Hymenoptera: Halictidae), based on parsimony and likelihood analyses of nuclear EF-1α sequence data, Mol. Phylogenet. Evol. 13, 605–618.PubMedCrossRefGoogle Scholar
  7. Danforth B.N., Brady S.G., Sipes S.D., Pearson A. (2004) Single-copy nuclear genes recover Cretaceous-age divergences in bees, Syst. Biol. 55, 309–326.CrossRefGoogle Scholar
  8. Danforth B.N., Fang J., Sipes S. (2006a) Analysis of family-level relationships in bees (Hymenoptera: Apiformes) using 28S and two previously unexplored nuclear genes: CAD and RNA polymerase II, Mol. Phylogenet. Evol. 39, 358–372.PubMedCrossRefGoogle Scholar
  9. Danforth B.N., Sipes S., Fang J., Brady S.G. (2006b) The history of early bee diversification based on five genes plus morphology, Proc. Natl. Acad. Sci. USA 103, 15118–15123PubMedCrossRefGoogle Scholar
  10. Doyle J.J., Doyle J.L. (1990) A rapid total DNA preparation procedure for fresh plant tissue, Focus 12, 13–15.Google Scholar
  11. Engel M.S. (2005) Family-group names for bees (Hymenoptera: Apoidea), Am. Mus. Novit. 3476, 1–33.CrossRefGoogle Scholar
  12. Farris J.S. (1989) The retention index and the rescaled consistency index, Cladistics 5, 417–419.CrossRefGoogle Scholar
  13. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. (1994) DNA primers for amplification of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol. 3, 294–299.PubMedGoogle Scholar
  14. Goloboff P.A., Farris J.S., Källersjö M., Oxelman B., Ramırez M.J., Szumik C.A. (2003) Improvements to resampling measures of group support, Cladistics 19, 324–332.CrossRefGoogle Scholar
  15. Goloboff P.A., Farris J.S., Nixon K.C. (2004) TNT: Tree analysis using new technology, computer program distributed by the authors at (accessed on 8 November 2007).Google Scholar
  16. Huelsenbeck J.P., Ronquist F. (2005) MRBAYES: Bayesian inference of phylogeny, Bioinformatics 17, 754–755.CrossRefGoogle Scholar
  17. Maddison D.R., Maddison W.P. (2005) MacClade 4.08. Sinauer Associates, Sunderland.Google Scholar
  18. Mardulyn P., Whitfield J.B. (1999) Phylogenetic signal in the COI, 16S, and 28S genes for inferring relationships among genera of microgastrinae (Hymenoptera: Braconidae): Evidence of a high diversification rate in this group of parasitoids, Mol. Phylogenet. Evol. 12, 282–294.PubMedCrossRefGoogle Scholar
  19. Michener C.D. (1995) A classification of the bees of the subfamily Xeromelissinae, J. Kans. Entomol. Soc. 68, 332–345.Google Scholar
  20. Michener C.D. (2000) The Bees of the World, John Hopkins University Press, Baltimore.Google Scholar
  21. Michener C.D., Rozen J.G. Jr. (1999) A new ground-nesting genus of Xeromelissine bee from Argentina and the tribal classification of the subfamily (Hymenoptera: Colletidae), Am. Mus. Novit. 3281, 1–10.Google Scholar
  22. Minin V., Abdo Z., Joyce P., Sullivan J. (2003) Performance-based selection of likelihood models for phylogeny estimation, Syst. Biol. 52, 674–683.PubMedCrossRefGoogle Scholar
  23. Morgenstern B. (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment, Bioinformatics 15, 211–218.PubMedCrossRefGoogle Scholar
  24. Nixon K.C. (2002) WINCLADA v.1.00.08, computer program distributed by the author at (accessed on 8 November 2007).Google Scholar
  25. Nylander J.A.A. (2004) Computer program distributed by the author at: (accessed on 8 November 2007).Google Scholar
  26. Packer L. (2008) Phylogeny and classification of the Xeromelissinae (Hymenoptera: Apoidea, Colletidae) with special emphasis upon the genus Chilicola, Syst. Entomol., 33, 72–96. [Published article online: 6 September, 2007: doi: 10.1111/j.1365-3113.2007.00398.x].Google Scholar
  27. Schulmeister S., Wheeler W.C., Carpenter J.M. (2004) Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis, Cladistics 18, 455–484.Google Scholar
  28. Toro H., Moldenke A. (1979) Revisión de los Xeromelissinae Chilenos, An. Mus. Hist. Natur., Valparaiso 12, 95–182.Google Scholar
  29. Ward P.S., Brady S.G. (2003) Phylogeny and biogeography of the ant subfamily Myrmeciinae (Hymenoptera: Formicidae), Invertebr. Syst. 17, 361–386.CrossRefGoogle Scholar


  1. Ascher J.S., Engel M.S. (2006) On the availability of family-group names based on Scrapter (Hymenoptera: Colletidae), Entomol. News 117, 117–119.CrossRefGoogle Scholar
  2. ICZN (1999) International Code of Zoological Nomenclature, 4th Ed., International Trust for Zoological Nomenclature, London.Google Scholar
  3. Engel M.S. (2005) Family-group names for bees (Hymenoptera: Apoidea), Am. Mus. Novit. 3476, 1–33.CrossRefGoogle Scholar
  4. Melo G.A.R., Gonçalves R.B. (2005) Revised bee classifications (Hymenoptera, Apoidea, Apidae sensu lato), Rev. Bras. Zool. 22, 153–159.CrossRefGoogle Scholar
  5. Michener C.D. (1989) Classification of American Colletinae (Hymenoptera, Apoidea), Univ. Kans. Sci. Bull. 53, 622–703.Google Scholar
  6. Michener C.D. (2000) The Bees of the World, John Hopkins University Press, Baltimore.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Eduardo A. B. Almeida
    • 1
    Email author
  • Laurence Packer
    • 2
  • Bryan N. Danforth
    • 1
  1. 1.Department of EntomologyCornell UniversityIthacaUSA
  2. 2.Department of BiologyYork UniversityTorontoCanada

Personalised recommendations