Apidologie

, Volume 39, Issue 1, pp 163–175 | Cite as

Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae)

  • Atsushi Kawakita
  • John S. Ascher
  • Teiji Sota
  • Makoto Kato
  • David W. Roubik
Original Article

Abstract

The corbiculate bees comprise four tribes, the advanced eusocial Apini and Meliponini, the primitively eusocial Bombini, and the solitary or communal Euglossini. Recovering a robust phylogeny for the four tribes is of considerable importance for understanding the evolution of eusociality, yet previous morphological and molecular studies reached strikingly different conclusions. We study an expanded data set consisting of 12 nuclear genes to explore lines of support for the molecular hypothesis. Results corroborate previous molecular studies; support increases as more genes are added. Across genes, support for the molecular hypothesis is positively correlated with the number of informative sites and the relative substitution rate. Phylogenetic signals supporting the molecular tree rest almost entirely upon synonymous changes at the first and third codon positions. We discuss possible future approaches for resolving the frustratingly persistent corbiculate bee controversy.

advanced eusociality bumble bee corbiculate bee honey bee nuclear genes orchid bee phylogeny stingless bee 

Analyse phylogénétique des tribus d’abeilles corbiculées sur la base de 12 gènes nucléaires codant pour des protéines (Hymenoptera: Apoidea: Apidae)

abeille domestique Apini bourdon Bombini abeille sans aiguillon Meliponini abeille euglossine Euglossini abeille corbiculée gène nucléaire phylogenèse eusocialité avancée 

Phylogenetische Analyse der corbiculaten Bienen auf der Grundlage von 12 Kernprotein-Genen (Hymenoptera: Apoidea: Apidae)

Zusammenfassung

Die Völker der hocheusozialen Honigbienen und der Stachellosen Bienen zählen zu den höchstentwickelten Insektensozietäten. In diesen Völkern fällt den morphologisch differenzierten Königinnen die Aufgabe der Reproduktion zu, während die nichtreproduktiven Arbeiterinnen die Larven füttern, das Nest bauen und verteidigen und mittels fortgeschrittener Kommunikationssysteme Futter sammeln. Die Honigbienen und Stachellosen Bienen sind eng verwandt mit den primitiv eusozialen Hummeln und den solitären oder kommunalen Prachtbienen. Diese vier Gruppen bilden die corbiculaten Bienen, benannt nach der auf Pollentransport spezialisierten Struktur auf den Hinterbeinen, dem Pollenkörbchen oder Corbicula. Die Aufdeckung der Beziehungen innerhalb dieser vier Gruppen mittels einer robusten Phylogenie ist wichtig für das Verständnis des Ursprungs der fortgeschrittenen Eusozialität. Morphologische, paläontologische, molekulare und Verhaltensstudien kamen hier jedoch zu sehr unterschiedlichen Schlüssen. Während die nichmolekularen Studien im allgemeinen eine Schwestergruppenbeziehung von Honigbienen und Stachellosen Bienen stützen und damit auf einen einmaligen Ursprung fortgeschrittener Sozialverhaltens verweisen, lieferten molekulare Studien Hinweise auf eine enge Beziehung von Hummeln und Stachellosen Bienen und damit auf einen zweifachen Ursprung hoher Eusozialität. Wir führten hier eine molekulare phylogenetische Analyse mit einem erweiterten Set aus 12 für Kernproteine kodierenden Genen durch. Die Ergebnisse bestätigen nicht nur die früheren molekularen Analysen, sondern dieses erweiterte Genset erhöht sogar die Signifikanzwerte für die Richtigkeit der molekularen Hypothese. Die Schwestergruppenbeziehung von Hummeln und Stachellosen Bienen ist positiv korreliert mit der Zahl phylogenetisch informativer Positionen und mit den relativen Basensubstitutionsraten. Das phylogenetische Signal, das die Hummeln + Stachellosen Bienen Gruppierung stützt, beruht vor allem auf der ersten und dritten Kodon-Position, mit geringem Beitrag seitens der zweiten Position. Auch die Aminosäurensequenzen liefern keine starke Unterstützung für diese Gruppierung. Der grösste Teil der phylogenetischen Information kommt daher von synonymen Basensubstitutionen in der ersten und zweiten Position, die keine Veränderungen in der Aminosäurensequenz zur Folge haben. Wir diskutieren mögliche zukünftige Ansätze für die Klärung dieser frustrierenden Kontroverse zur Phylogenie der corbiculaten Bienen, die aus der Inkongruenz zwischen Morphologie (einschliesslich Verhalten und Paläontologie) und DNA hervorgeht.

Fortgeschrittene Eusozialiät Hummeln Corbiculate Bienen Honigbiene Kerngene Prachtbienen Phylogenie Stachellose Bienen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ascher J.S., Danforth B.N., Ji S. (2001) Phylogenetic utility of the major opsin in bees (Hymenoptera: Apoidea): a reassessment, Mol. Phylogenet. Evol. 19, 76–93.PubMedCrossRefGoogle Scholar
  2. Baker R.H., Wilkinson G.S., Desalle R. (2001) Phylogenetic utility of different types of data used to infer evolutionary relationships among stalkeyed flies (Diopsidae), Syst. Biol. 50, 87–105.PubMedCrossRefGoogle Scholar
  3. Bremer K. (1994) Branch support and tree stability, Cladistics 10, 295–304.CrossRefGoogle Scholar
  4. Cameron S.A. (1991) A new tribal phylogeny of the Apidae inferred from mitochondrial DNA sequences, in: Smith D.R. (Ed.), Diversity in the genus, Apis, Westview Press, Oxford, pp. 71–87.Google Scholar
  5. Cameron S.A. (1993) Multiple origins of advanced eusociality in bees inferred from mitochondrial DNA sequences, Proc. Natl. Acad. Sci. USA 90, 8687–8691.PubMedCrossRefGoogle Scholar
  6. Cameron S.A. (2003) Data from the elongation factor-1a gene corroborates the phylogenetic pattern from other genes revealing common ancestry of bumble bees and stingless bees (Hymenoptera: Apinae), III Seminario Mesoamericano sobre Abejas sin Aguijon, Tapachula, Chiapas, Mexico.Google Scholar
  7. Cameron S.A., Mardulyn P. (2001) Multiple molecular data sets suggest independent origins of highly eusocial behavior in bees (Hymenoptera: Apinae), Syst. Biol. 50, 194–214.PubMedCrossRefGoogle Scholar
  8. Cameron S.A., Mardulyn P. (2003) The major opsin gene is useful for inferring higher level phylogenetic relationships of the corbiculate bees, Mol. Phylogenet. Evol. 28, 610–613.PubMedCrossRefGoogle Scholar
  9. Cardinal S., Packer L. (2007) Phylogenetic analysis of the corbiculate Apinae based on morphology of the sting apparatus (Hymenoptera: Apidae), Cladistics 23, 99–118.CrossRefGoogle Scholar
  10. Cha S.Y., Yoon H.J., Lee E.M., Yoon M.H., Hwang J.S., Jin B.R., Han Y.S., Kim I. (2007) The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera: Apidae), Gene 392, 206–220.PubMedCrossRefGoogle Scholar
  11. Chavarría G., Carpenter J.M. (1994) “Total evidence” and the evolution of highly social bees, Cladistics 10, 229–258.Google Scholar
  12. Danforth B.N., Fang J., Sipes S., Brady S.G., Almeida E. (2004) Phylogeny and molecular systematics of bees (Hymenoptera: Apoidea), Cornell University, Ithaca, NY, [online] http:// www.entomology.cornell.edu/BeePhylogeny/ (accessed on 25 October 2007).Google Scholar
  13. Darwin C. (1859) On the origin of species by means of natural selection, John Murray, London.Google Scholar
  14. Engel M.S. (2001a) Monophyly and extensive extinction of advanced eusocial bees: Insights from an unexpected Eocence diversity, Proc. Natl. Acad. Sci. USA 98, 1661–1664.PubMedCrossRefGoogle Scholar
  15. Engel M.S. (2001b) A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera), Bull. Am. Mus. Nat. Hist. 259, 1–192.CrossRefGoogle Scholar
  16. Goloboff P.A. (1991) Homoplasy and the choice among cladograms, Cladistics 7, 215–232.CrossRefGoogle Scholar
  17. Gruber K.F., Voss R.S., Jansa S.A. (2007) Base-compositional heterogeneity in the RAG1 locus among didelphid marsupials: implications for phylogenetic inference and the evolution of GC content, Syst. Biol. 56, 83–96.PubMedCrossRefGoogle Scholar
  18. Kimsey L.S. (1984) A re-evaluation of the phylogenetic relationships in the Apidae (Hymenoptera), Syst. Entomol. 9, 435–441.CrossRefGoogle Scholar
  19. Koulianos S., Schmid-Hempel R., Roubik D.W., Schmid-Hempel P. (1999) Phylogenetic relationships within the corbiculate Apinae (Hymenoptera) and the evolution of eusociality, J. Evol. Biol. 12, 380–384.CrossRefGoogle Scholar
  20. Lin C.P., Danforth B.N. (2003) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analysis of combined datasets, Mol. Phylogenet. Evol. 30, 686–702.CrossRefGoogle Scholar
  21. Lockhart P.J., Cameron S.A. (2001) Trees for bees, Trends Ecol. Evol. 16, 84–88.PubMedCrossRefGoogle Scholar
  22. Maa T. (1953) An inquiry into the systematics of the tribus Apidini or honeybees (Hym.), Treubia 21, 525–640.Google Scholar
  23. Mardulyn P., Cameron S.A. (1999) The major opsin in bees (Insecta: Hymenoptera): a promising nuclear gene for higher level phylogenetics, Mol. Phylogenet. Evol. 12, 168–176.PubMedCrossRefGoogle Scholar
  24. Michener C.D. (1944) Comparative external morphology, phylogeny, and classification of bees, Bull. Am. Mus. Nat. Hist. 82, 151–362.Google Scholar
  25. Michener C.D. (1974) The social behavior of the bees: a comparative study, The Belknap Press, Cambridge, MA.Google Scholar
  26. Michener C.D. (1990) Classification of the Apidae (Hymenoptera), Univ. Kans. Sci. Bull. 54, 75–164.Google Scholar
  27. Michener C.D. (2000) The bees of the world, John Hopkins University Press, Baltimore, MD, pp. xlv + 913.Google Scholar
  28. Nardi F., Spinsanti G., Boore J.L., Carapelli A., Dallai R., Frati F. (2003) Hexapod origins: monophyletic or paraphyletic? Science 299, 1887–1889.PubMedCrossRefGoogle Scholar
  29. Noll F.B. (2002) Behavioral phylogeny of corbiculate Apidae (Hymenoptera; Apinae), with special reference to social behavior, Cladistics 18, 137–153.CrossRefGoogle Scholar
  30. Philippe H., Lartillot N., Brinkmann H. (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protosmia, Mol. Biol. Evol. 22, 1246–1253.PubMedCrossRefGoogle Scholar
  31. Prentice M. (1991) Morphological analysis of the tribes of Apidae, in: Smith D.R. (Ed.), Diversity in the genus Apis, Westview Press, Oxford, pp. 51–69.Google Scholar
  32. Roig-Alsina A., Michener C.D. (1993) Studies of the phylogeny and classification of long-tongued bees (Hymenoptera: Apoidea), Univ. Kans. Sci. Bull. 55, 124–162.Google Scholar
  33. Schultz T.R., Engel M.S., Prentice M. (1999) Resolving conflict between morphological and molecular evidence for the origin of eusociality in the ‘corbiculate’ bees (Hymenoptera: Apidae): a hypothesis-testing approach, Univ. Kans. Nat. Hist. Mus. Spec. Publ. 24, 125–138.Google Scholar
  34. Schultz T.R., Engel M.S., Ascher J.S. (2001) Evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae), J. Kans. Entomol. Soc. 74, 10–16.Google Scholar
  35. Sheppard W.S., McPheron B.A. (1991) Ribosomal DNA diversity in Apidae, in: Smith D.R. (Ed.), Diversity in the genus Apis, Westview Press, Oxford, pp. 89–102.Google Scholar
  36. Shimodaira H., Hasegawa M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference, Mol. Biol. Evol. 16, 114–116.Google Scholar
  37. Simmons M.P. (2000) A fundamental problem with amino-acid-sequence characters for phylogenetic analyses, Cladistics 16, 274–282.CrossRefGoogle Scholar
  38. Simmons M.P., Reeves A., Davis J.I. (2004) Character-state space versus rate of evolution in phylogenetic inference, Cladistics 20, 194–204.CrossRefGoogle Scholar
  39. The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera, Nature 443, 931–949.CrossRefGoogle Scholar
  40. Wilson E.O. (1971) The insect societies, Harvard University Press, Cambridge, MA.Google Scholar
  41. Winston M.L. (1987) The biology of the honey bee, Harvard University Press, Cambridge, MA.Google Scholar
  42. Winston M.L., Michener C.D. (1977) Dual origins of highly social behavior among bees, Proc. Natl. Acad. Sci. USA 74, 1135–1137.PubMedCrossRefGoogle Scholar

References

  1. Arias M.C., Sheppard W.S. (2005) Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data, Mol. Phylogenet. Evol. 37, 25–35.PubMedCrossRefGoogle Scholar
  2. Ascher J.S. (2007) Apoidea species, Discover Life, [online] http://stri.discoverlife.org/mp/ 20q?search=apoidea (accessed on 18 Sep 2007).Google Scholar
  3. Baker R.H., Wilkinson G.S., Desalle R. (2001) Phylogenetic utility of different types of data used to infer evolutionary relationships among stalk-eyed flies (Diopsidae), Syst. Biol. 50, 87–105.PubMedCrossRefGoogle Scholar
  4. Besansky N.J., Fahey G.T. (1997) Utility of white gene in estimating phylogenetic relationships among mosquitoes (Diptera: Culicidae), Mol. Biol. Evol. 14, 442–454.PubMedGoogle Scholar
  5. Bremer K. (1994) Branch support and tree stability, Cladistics 10, 295–304.CrossRefGoogle Scholar
  6. Brower A.V.Z., DeSalle R. (1998) Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference, Insect Mol. Biol. 7, 73–82.PubMedCrossRefGoogle Scholar
  7. Camargo J.M.F., Roubik D.W. (2005) Neotropical Meliponini: Paratrigonoides mayri, new genus and species from western Colombia (Hymenoptera, Apidae, Apinae) and phylogeny of related genera, Zootaxa 1081, 33–46.Google Scholar
  8. Cameron S.A., Mardulyn P. (2001) Multiple molecular data sets suggest independent origins of highly eusocial behavior in bees (Hymenoptera: Apinae), Syst. Biol. 50, 194–214.PubMedCrossRefGoogle Scholar
  9. Cameron S.A., Hines H.M., Williams P.H. (2007) A comprehensive phylogeny of the bumble bees (Bombus), Biol. J. Linn. Soc. 91, 161–188.CrossRefGoogle Scholar
  10. Danforth B.N., Ji S. (1998) Elongation factor-1α occurs as two copies in bees: implications for phylogenetic analysis of EF-1α sequences in insects, Mol. Biol. Evol. 15, 225–235.PubMedGoogle Scholar
  11. Danforth B.N., Brady S.G., Sipes S., Pearson A. (2004a) Single-copy nuclear genes recover Cretaceous-age divergences in bees, Syst. Biol. 53, 309–326.PubMedCrossRefGoogle Scholar
  12. Danforth B.N., Fang J., Sipes S., Brady S.G., Almeida E. (2004b) Phylogeny and molecular systematics of bees (Hymenoptera: Apoidea), Cornell University, Ithaca, NY, [online] http://www.entomology.cornell.edu/ BeePhylogeny/.Google Scholar
  13. Danforth B.N., Lin C.P., Fang J. (2005) How do insect nuclear ribosomal genes compare to protein-coding genes in phylogenetic utility and nucleotide substitution patterns? Syst. Entomol. 30, 549–562.CrossRefGoogle Scholar
  14. Danforth B.N., Sipes S., Fang J., Brady S.G. (2006a) The history of early bee diversification based on five genes plus morphology, Proc. Natl. Acad. Sci. USA 103, 15118–15123.PubMedCrossRefGoogle Scholar
  15. Danforth B.N., Fang J., Sipes S. (2006b) Analysis of family-level relationships in bees (Hymenoptera: Apiformes) using 28S and two previously unexplored nuclear genes: CAD and RNA polymerase II, Mol. Phylogenet. Evol. 39, 358–372.PubMedCrossRefGoogle Scholar
  16. Engel M.S. (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis), J. Hym. Res. 8, 165–196.Google Scholar
  17. Kawakita A., Sota T., Ascher J.S., Ito M., Tanaka H., Kato M. (2003) Evolution and phylogenetic utility of alignment gaps within intron sequences of three nuclear genes in bumble bees (Bombus), Mol. Biol. Evol. 20, 87–92.PubMedCrossRefGoogle Scholar
  18. Kawakita A., Sota T., Ito M., Ascher J.S., Tanaka H., Kato M., Roubik D.W. (2004) Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear genes sequences, Mol. Phylogenet. Evol. 31, 799–804.PubMedCrossRefGoogle Scholar
  19. Keane T.M., Creevey C.J., Pentony M.M., Naughton T.J., McInerney J.O. (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified, BMC Evol. Biol. 6, 29PubMedCrossRefGoogle Scholar
  20. Keane T.M., Naughton T.J., McInerney J.O. (2007) MultiPhyl: A high-throughput phylogenomics webserver using distributed computing, Nucleic Acids Res. 35, W33-W37.PubMedCrossRefGoogle Scholar
  21. Lin C.P., Danforth B.N. (2003) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analysis of combined datasets, Mol. Phylogenet. Evol. 30, 686–702.CrossRefGoogle Scholar
  22. Mardulyn P., Cameron S.A. (1999) The major opsin in bees (Insecta: Hymenoptera): a promising nuclear gene for higher level phylogenetics, Mol. Phylogenet. Evol. 12, 168–176.PubMedCrossRefGoogle Scholar
  23. Michel-Salzat A., Cameron S.A., Oliveira M.L. (2004) Phylogeny of the orchid bees (Hymenoptera: Apinae: Euglossini): DNA and morphology yield equivalent patterns, Mol. Phylogenet. Evol. 32, 309–323.PubMedCrossRefGoogle Scholar
  24. Michener C.D. (2000) The bees of the world, John Hopkins University Press, Baltimore, MD, pp. xlv + 913.Google Scholar
  25. Nylander J.A.A. (2004) MrModeltest, version 2, Uppsala University, Uppsala, Sweden.Google Scholar
  26. Papanicolaou A., Joron M., McMillan O., Blaxter M.L., Jiggins C.D. (2005) Genomic tools and cDNA derived markers for butterflies, Mol. Ecol. 14, 2883–2897.PubMedCrossRefGoogle Scholar
  27. Posada D., Crandall K.A. (1998) Modeltest; testing the model of DNA substitution, Bioinformatics 14, 817–818.PubMedCrossRefGoogle Scholar
  28. Rasmussen C., Cameron S.A. (2007) A molecular phylogeny of the Old World stingless bees (Hymenoptera: Apidae: Meliponini) and the non-monophyly of the large genus Trigona, Syst. Entomol. 32, 26–39.CrossRefGoogle Scholar
  29. Roig-Alsina A., Michener C.D. (1993) Studies of the phylogeny and classification of long-tongued bees (Hymenoptera: Apoidea), Univ. Kans. Sci. Bull. 55, 124–162.Google Scholar
  30. Ronquist F., Huelsenbeck J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics 19, 1572–1574.PubMedCrossRefGoogle Scholar
  31. Roubik D.W., Hanson P.E. (2004) Orchid bees of tropical America. Biology and field guide, Instituto National de Biodiversidad, Santo Domingo de Heredia, Costa Rica, p. 370.Google Scholar
  32. Sakagami S.F., Michener C.D. (1987) Tribes of Xylocopinae and origin of the Apidae (Hymenoptera: Apoidea), Ann. Entomol. Soc. Am. 80, 439–450.Google Scholar
  33. Sorenson M.D. (1999) TreeRot, version 2, Boston University, Boston, MA.Google Scholar
  34. Swofford D.L. (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10, Sinauer Associates, Sunderland, MA.Google Scholar
  35. Williams P.H. (1998) An annotated checklist of bumblebees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini), Bull. Nat. Hist. Mus. Lond. (Entomol.) 67, 79–152.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Atsushi Kawakita
    • 1
  • John S. Ascher
    • 2
  • Teiji Sota
    • 3
  • Makoto Kato
    • 1
  • David W. Roubik
    • 4
  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
  2. 2.Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
  3. 3.Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
  4. 4.Smithsonian Tropical Research InstituteBalboaPanama

Personalised recommendations