Advertisement

Apidologie

, Volume 38, Issue 4, pp 390–410 | Cite as

Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance

  • Susan W. CobeyEmail author
Original Article

Abstract

Instrumental insemination, a reliable method to control honey bee mating, is an essential tool for research and stock improvement. A review of studies compare colony performance of instrumentally inseminated queens, IIQs, and naturally mated queens, NMQs. Factors affecting queen performance are also reviewed. The collective results of the data demonstrate that the different methodologies used, in the treatment of queens, has a significant affect on performance rather than the insemination procedure. Beekeeping practices can optimize or inhibit performance. The competitive performance of IIQs is demonstrated when queens are given proper care. The advantage of selection and a known semen dosage can result in higher performance levels of IIQs.

Apis mellifera queen honey bees instrumental insemination colony performance 

Études comparatives sur des reines d’abeilles après insémination artificielle ou accouplement naturel et facteurs agissant sur leurs performances

Apis mellifera reine d’abeilles insémination artificielle performance de la colonie 

Vergleichende Untersuchungen an instrumenteil besamten und natürlich begatteten Honigbienenköniginnen und zu Faktoren, die deren Leistungsfähigkeit beeinflussen

Zusammenfassung

Die instrumenteile Besamung ist eine zuverlässige Methode, um die Paarung bei Honigbienen zu kontrollieren. Sie bietet damit ein unverzichtbares Verfahren für die Forschung und die Bienenzucht. Dieses Review der Forschungsarbeiten von 1946 bis heute vergleicht die Leistung von Bienenvölkern mit instrumentell besamten Königinnen (IIQs) und natürlich begatteten Königinnen (NM-Qs) sowie Faktoren, von denen die Leistungsfähigkeit der Königinnen beeinflusst wird.

In den Studien wurden verschiedene Leistungsparameter der Königinnen verglichen: Produktivität des Bienenvolkes, Lebensdauer der Königin und Aufbewahrung der Spermien. In Tabelle I sind die Ergebnisse dieser Studien in Gruppen zusammengefasst: Gruppe I mit 6 Untersuchungen zeigt gleiche Leistungsfähigkeit von IIQs und NMQs; Gruppe II mit 7 Untersuchungen zeigt eine höhere Leistung bei IIQs; Gruppe III enthält eine Studie mit höherer Leistung bei NMQs.

Eine detaillierte Analyse dieser Studien zeigt eindeutig, dass die Leistungsfähigkeit der Königin signifikant von der Durchführung der Besamung abhängt. Die Ergebnisse in Gruppe III können demnach auf unterschiedliche Behandlung der Königinnen zurückgeführt werden. Die IIQs in den Gruppen I und II wurden in einem Alter zwischen 5 und 12 Tagen mit einer Samenmenge von 8–12 μL besamt. Diese Königinnen wurden in Jungvölker oder „package bees“ eingeweiselt, ohne zuvor über längere Zeit gekäfigt in weisellosen Völkern aufbewahrt worden zu sein. In der Gruppe III wurden die Königinnen dagegen in einem Alter von 2–3 Wochen mit einer relativ geringen Samenmenge (zweimal 2,7 μL) besamt und zusätzlich über 2–3 Wochen in anderen Völkern aufbewahrt, bevor sie in größere Bienenvölker oder „package bees“ eingeweiselt wurden.

Die geringe Anzahl an Spermien sowie die geringere Produktivität und Überlebensraten der IIQs in Gruppe III kann ebenfalls mit der verwendeten Methode bei der Besamung erklärt werden. Wenn Königinnen vor dem Zeitpunkt ihrer ersten aufnahmefähigen Paarung besamt werden, speichern sie weniger Samen. Das Käfigen nach der Besamung reduziert ebenfalls die Speicherfähigkeit für die Spermien und führt zudem häufig zu Verletzungen der Königin durch aggressive Arbeiterinnen.

Bienenköniginnen durchlaufen dramatische physiologische Veränderungen während der Vorbereitung zur Eilage. Viele Faktoren beeinflussen diese Veränderungen und damit auch die Leistungsfähigkeit der Königin. NMQs, die sich frühzeitig paaren, sich frei bewegen können und gut von Arbeitsbienen versorgt werden, paaren sich mit mehr Drohnen und speichern mehr Spermien.

Es wurden einige geringe Unterschiede zwischen IIQs und NMQs beobachtet. So können die höhere Variationsbreite beim Beginn der Eiablage sowie eine langsamere Produktion des Königinnenpheromons das Einweisein von IIQs erschweren. Diese Unterschiede minimieren sich aber bei einer guten imkerlichen Praxis.

Andere vom Imker zu verantwortende Faktoren wie die Art der künstlichen Besamung und die Behandlung des Samens beeinflussen ebenfalls die spätere Leistungsfähigkeit der Königin. Die imkerliche Praxis kann somit die Leistungsfähigkeit der Königin verbessern oder verschlechtern. Es konnte aber klar gezeigt werden, dass bei guter imkerlicher Praxis die Leistungsfähigkeit von IIQs und NMQs vergleichbar sind. Dieses Review soll den Imkern Vertrauen in die instrumenteile Besamung geben und darüber hinaus zeigen, welche methodischen Details dabei die Leistungsfähigkeit der Königinnen verbessern können.

Apis mellifera Honigbienenkönigin künstliche Besamung Leistungsfähigkeit des Bienenvolkes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida R., Soares A.E.E. (2002) Usage of green coconut water and different tissue culture media for in vitro honey bee semen storage (Apis mellifera), Interciencia 27, 317–321.Google Scholar
  2. Apoegait V., Skirkevicius A. (1995) Quantitative and qualitative composition of extracts from virgin and mated honey bee queens (Apis mellifera L), Pheromones 5, 23–36.Google Scholar
  3. Austin G.H. (1955) Effects of carbon dioxide anesthesia on bee behavior and expectation of life, Bee World 36, 45–47.Google Scholar
  4. Boigenzahn C., Pechhacker H. (1993) Über die Art der Anpaarung, Bienenvater 114, 151–152.Google Scholar
  5. Bienkowska M., Panasiuk B. (2006) Influence of the diameter of the inseminating needle tip on the results of bee queens’ fertilization, J. Apic. Sci. 50, 137–145.Google Scholar
  6. Bolten A.B., Harbo J.R. (1982) Numbers of spermatozoa in the spermatheca of the queen honeybee after multiple insemination with small volumes of semen, J. Apic. Res. 21, 7–10.Google Scholar
  7. Čermák K. (2004) Evaluation of artificially inseminated and naturally mated bee queens in Zubri, Czech Republic (in Czech), Vcelarstvi 57, 148–149.Google Scholar
  8. Chuda-Mickiewicz B., Prabucki J., Samborski J. (2003) Onset of oviposition in honey bee queens kept in boxes with non-free flying bees, J. Apic. Sci. 47, 27–30.Google Scholar
  9. Cobey S. (1983) The development of instrumental insemination, Am. Bee J. 123, 108–111.Google Scholar
  10. Cobey S. (1998) A Comparison Of Colony Performance Of Instrumentally Inseminated and Naturally Mated Honey Bee Queens. Proc. American Bee Research Conference, Colorado Springs, CO, Am. Bee J. 138, 292.Google Scholar
  11. Collins A.M. (2000a) Relationship between semen quality and performance of instrumentally inseminated honey bee queens, Apidologie 31, 421–429.CrossRefGoogle Scholar
  12. Collins A.M. (2000b) Survival of honey bee (Hymenoptera: Apidae) spermatozoa stored at above freezing temperatures, J. Econ. Entomol. 93, 568–571.PubMedCrossRefGoogle Scholar
  13. Collins A.M. (2003) A scientific note on the effect of centrifugation on pooled honey bee semen, Apidologie 34, 469–470.CrossRefGoogle Scholar
  14. Currie R.W. (1987) The biology and behavior of drones, Bee World 68, 129–143.Google Scholar
  15. Ebadi R., Gary N.E. (1980) Factors effecting the survival, migration of spermatozoa and onset of oviposition in instrumentally inseminated queen honey bees, J. Apic. Res. 19, 196–204.Google Scholar
  16. Fischer F. (1990) External influences on the filling of the spermatheca with sperm, Apidologie 21, 359–360.Google Scholar
  17. Free J.B., Ferguson A.W, Simpkins J.R. (1992) The behavior of queen honey bees and their attendants, Physiol. Entomol. 17, 43–55.CrossRefGoogle Scholar
  18. Fuchs S., Schade V. (1994) Lower performance in honey bee colonies of uniform paternity, Apidologie 24, 155–168.CrossRefGoogle Scholar
  19. Gerinsz G., Bienkowska M. (2002) Effect of injury to honey bee queens on egg laying rate and colony strength, J. Apic. Sci. 46, 75–83.Google Scholar
  20. Gerula D. (1999) Comparison of honey production of caucasian and carniolan bees in years with nectar flow and honeydew flow, Pszcelnicze Zeszyty Naukowe 43, 59–69.Google Scholar
  21. Gontarz A., Bienkowska M., Loc K. (2005) Effect of queen caging conditions on insemination results, J. Apic. Sci. 49, 5–15.Google Scholar
  22. Guler A., Alpay H. (2005) Reproductive characteristics of some honey bee (Apis mellifera L.) Genotypes, J. Anim. Vet. Adv. 4, 864–870.Google Scholar
  23. Haarman T., Spivak M., Weaver D., Weaver B., Glenn T. (2002) Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations, J. Econ. Entomol. 95, 28–35.CrossRefGoogle Scholar
  24. Harbo J.R. (1979a) Storage of honey bee spermatozoa at −196 °C, J. Apic. Res. 18, 57–63.Google Scholar
  25. Harbo J.R. (1979b) Egg hatch of honey bees fertilized with frozen spermatozoa, Ann. Entomol. Soc. Am. 72, 516–518.Google Scholar
  26. Harbo J.R. (1981) Viability of honey bee eggs from progeny of frozen spermatozoa, J. Apic. Res. 74, 482–486.Google Scholar
  27. Harbo J.R. (1986a) Oviposition rates of instrumentally inseminated and naturally mated queen honey bees fertilized by artificial insemination, Ann. Entomol. Soc. Am. 79, 112–115.Google Scholar
  28. Harbo J.R. (1986b) Propagation and instrumental insemination, in: Rinderer T.E. (Ed.), Bee Breeding and Genetics, Academic Press, Inc., pp. 361–389.Google Scholar
  29. Harbo J.R. (1990) Artificial mixing of spermatozoa from honey bees and evidence for sperm competition, J. Apic. Res. 29, 151–158.Google Scholar
  30. Harbo J.R. (2005) Personal Communication. USDA Bee Lab. Baton, Rouge, LA.Google Scholar
  31. Harbo J.R., Szabo T.J. (1984) A comparison of instrumentally inseminated and naturally mated queens, J. Apic. Res. 23, 31–36.Google Scholar
  32. Harbo J.R., Williams J.L. (1987) Effect of above freezing temperature on temporary storage of hone bee spermatozoa, J. Apic. Res. 26, 53–56.Google Scholar
  33. Harizanis P.C., Gary N.E. (1984) The quality of insemination of queen honey bees mated under commercial conditions, Am. Bee J. 124, 385–387.Google Scholar
  34. Jasinski Z. (1987) Injuries of queens caged in queenless honey bee colonies, Proc. XXXIst International Apimondia Congress, Warsaw, 126.Google Scholar
  35. Jasnousek J. (1987) Effect of carbon dioxide on initial oviposition of inseminated queens, Vedecke Prace Vyzkumneho Ustavu Vcelarskeho v Dole 9, 57–64.Google Scholar
  36. Jhajj H.S., Vchahal B.S., Brar H.S. (1992) Fabrication of queen trap for Apis mellifera L. and studies on the premating period, Indian Bee J. 5, 63–67.Google Scholar
  37. Kaftanoglu O., Peng Y.S. (1980) A washing technique for collection of honey bee semen, J. Apic. Res. 23, 205–211.Google Scholar
  38. Kaftanoglu O., Peng Y.S. (1982) Effects of insemination on the initiation of oviposition in the queen honey bee, J. Apic. Res. 21, 3–6.Google Scholar
  39. Koeniger G. (1986) Reproduction and mating behavior, in: Rinderer T.E. (Ed.), Bee Breeding and Genetics, Academic Press, Inc., pp. 235–252.Google Scholar
  40. Konopacka Z. (1987) Biological quality of instrumentally inseminated queens, Proc. XXX 1st International Apimondia Congress, Warsaw, pp. 163–167.Google Scholar
  41. Konopacka Z. (1991) Effect of CO2 and N2O an aesthetics on the results of instrumental insemination of queen honey bees, Pszcelnicze Zeszyty Naukowe 35, 3–18.Google Scholar
  42. Konopacka Z., Bienkowska M. (1995) The results of queen insemination with the semen stored in glass capillaries, Pszcelnicze Zeszyty Naukowe 39, 213–217.Google Scholar
  43. Kühnert M., Carrrick M.J., Allan L.E (1989) Use of homogenized drone semen in a bee breeding program in Western Australia, Apidologie 20, 371–381.CrossRefGoogle Scholar
  44. Laidlaw H.H. (1987) Instrumental Insemination of honey bee queens: Its origin and development, Bee World 68, 17–38, 71–88.Google Scholar
  45. Lensky Y., Slabezky Y.J. (1981) The inhibitory effect of queen bees (Apis mellifera) footprint pheromone on the construction of swarming cups, J. Insect Physiol. 27, 313–323.CrossRefGoogle Scholar
  46. Locke S.J., Peng Y.S. (1993) The effects of drone age, semen storage and contamination on semen quality in the honey bee, Physiol. Entomol. 18, 144–148.CrossRefGoogle Scholar
  47. Lodesani M., Balduzzi D., Galli A. (2004) Functional characterization of semen in honey bee queens (A.m. ligustica S.) spermatheca and efficiency of the diluted semen technique in instrumental insemination, Ital. J. Anim. Sci. 3, 385–392.Google Scholar
  48. Mackensen O. (1947) Effect of carbon dioxide on initial oviposition of artificially inseminated and virgin queen bees, J. Econ. Entomol. 40, 344–349.PubMedGoogle Scholar
  49. Mackensen O. (1955) Experiments in the technique of artificial insemination of queen bees, J. Econ. Entomol. 48.Google Scholar
  50. Mackensen O. (1964) Relation of semen volume to success in artificial insemination of queen honey bees, J. Econ. Entomol. 57, 581–583.Google Scholar
  51. Mackensen O., Roberts W.C. (1948) A Manual for the artificial insemination of queen bees: US Bur. Entomol. Plant Quar. ET-250.Google Scholar
  52. Moritz R.F.A. (1983) Homogeneous mixing of honey bee semen by centrifugation, J. Apic. Res. 22, 249–255.Google Scholar
  53. Moritz R.F.A. (1984) The effect of different diluents on insemination success in the honey bee using mixed semen, J. Apic. Res. 23, 164–167.Google Scholar
  54. Moritz R.F.A., Kühnert M. (1984) Seasonal effects of artificial insemination of honey bee queens (Apis mellifera L.), Apidologie 15, 223–231.CrossRefGoogle Scholar
  55. Nelson D.L. (1989) Assessment of queen quality in honey bee queens, Can. Beekeeper 14, 207–208.Google Scholar
  56. Nelson D.L., Laidlaw H.H. (1988) An evaluation of instrumentally inseminated queens shipped in packages, Am. Bee J. 128, 279–280.Google Scholar
  57. Oertel E. (1940) Mating flights of the queen bee, Glean, Bee Culture 68, 292–293.Google Scholar
  58. Otten C., Otto A., Renner, R. (1998) Artificial Insemination: Methodological influences on the results, Apidologie 29, 467.Google Scholar
  59. Page R.E., Laidlaw H.H. (1985) Closed Population Honeybee Breeding, Bee World 66, 63–72.Google Scholar
  60. Palmer K.A., Oldroyd B.P. (2000) Evolution of multiple mating in the genus Apis, Apidologie 31, 235–248.CrossRefGoogle Scholar
  61. Pankiw T. (2004) Cued In: honey bee pheromones as information flow and collective decision-making, Apidologie 35, 217–226.CrossRefGoogle Scholar
  62. Pankiw T., Winston M.L., Plettner E., Slessor K.N., Pettis J.S., Taylor O.R.J. (1996) Mandibular components of European and Africanized honey bee queens, J. Chem. Ecol. 22, 605–616.CrossRefGoogle Scholar
  63. Phiancharoen M., Wongsiri S., Koeniger N., Koeniger G. (2004) Instrumental insemination of Apis mellifera queens with hetero- and conspecific spermatozoa results in different sperm survival, Apidologie 35, 503–511.CrossRefGoogle Scholar
  64. Prabucki J., Jasinski Z., Chuda-Mickiewicz B. (1987) The results of mass insemination of bee queen inseminated onefold and twofold and stocked in different ways, Proc. XXX1 st International Apimondia Congress, Warsaw, Poland, pp. 169–174.Google Scholar
  65. Pritsch G., Bienefeld K. (2002) Comparison of performance of bee colonies with naturally mated and artificially inseminated queens (A.m. carnica), Apidologie 33, 513.Google Scholar
  66. Rhodes J.W., Somerville D.C. (2003) Introduction and early performance of queen bees, Report: Rural Industries Research & Development Corporation, NSW Agriculture Pub # 03/049. Project # DAN-182A.Google Scholar
  67. Rhodes J.W., Somerville D.C., Harden S. (2004) Queen honey bee introduction and early survival-effects of queen age at introduction, Apidologie 35, 383–388.CrossRefGoogle Scholar
  68. Richard F.-J., Fan Y., Grozinger C. (2005) Effect of mating number on pheromone profiles of inseminated honey bee queens, Proc. Entomol. Soc. Am. Annu. Meeting #0760 [online] http: //esa.confex.com / esa/ 2005 / techprogram / paper_20617.htm (accessed 26 June 2007).Google Scholar
  69. Rinderer T.E., De Guzman L., Lancaster V.A., Delatte G.T., Stelzer J.A. (1998) Varroa in the mating yard: I. The effect of Varroa jacobsoni and Apistan on drone honey bees, Am. Bee J. 139, 134–139.Google Scholar
  70. Roberts W.C. (1946) Performance of the queen bee, Am. Bee J. 85, 185–186, 211.Google Scholar
  71. Ruttner F., Koeniger G. (1971) The filling of the spermatheca of the honey bee queen: active migration or passive transport of the spermatozoa? Z. Vergl. Physiol. 72, 411–422.CrossRefGoogle Scholar
  72. Ruttner F., Tryasko V.V. (1976) Anatomy and physiology of reproduction, in: Ruttner F. (Ed.), The instrumental insemination of the queen bee, Apimondia, Bucharest, pp. 11–24.Google Scholar
  73. Severson D.W., Erickson E.H. (1989) Seasonal constraints on mating and insemination of queen honeybees in a continental climate, Apidologie 20, 21–27.CrossRefGoogle Scholar
  74. Skowronek W. (1976) Mating behavior of queen honey bees after carbon dioxide anaesthesia, Pszcelnicze Zeszyty Nnaukowe 20, 99–115.Google Scholar
  75. Skowronek W., Jaycox E.R. (1974) Effects of carbon dioxide on honey bee workers, Pszcelnicze Zeszyty Nnaukowe 18, 107–119.Google Scholar
  76. Skowronek W., Konopacka Z. (1983) The effect of inseminating queen honey bees with semen stored under laboratory conditions, Pszcelnicze Zeszyty Nnaukowe 27, 3–12.Google Scholar
  77. Skowronek W., Kruk C., Klopot J. (2002) Factors affecting oviposition of artificially inseminated honey bee queens, J. Apic. Sci. 46, 85–95.Google Scholar
  78. Slessor K.N., Kaminski L.A., Borden J.H., Winston M.L. (1988) Semiochemical basis of the retinue response to queen bees, Nature 332, 354–356.CrossRefGoogle Scholar
  79. Slessor K.N., Kaminski L.A., King G.G.S., Winston M.L. (1990) Semiochemicals of the honey bee queen mandibular glands, J. Chem. Ecol. 16, 851–860.CrossRefGoogle Scholar
  80. Smith R.K., Spivak M., Taylor O.R. (1991) Chemical differences between naturally mated and instrumentally enseminated queens, Proc. Am. Bee Res., Conf. Am. Bee J. 13, 781.Google Scholar
  81. Smith R.K., Spivak M., Taylor O.R., Bennett C., Smith M.L. (1993) Maturation of tergal gland alkenes profiles in European honey bee queens, Apis mellifera L., J. Chem. Ecol. 19, 133–142.CrossRefGoogle Scholar
  82. Szabo T.I., Townsend G.F. (1974) Behavioral studies on queen introduction in the honey bee.1. Effect of the age of workers on their behavior towards an introduced virgin. 2. Effect of age and storage conditions of virgin queens on their attractiveness to workers. 3. Relationship between queen attractiveness to worker and worker aggressiveness toward a queen, J. Apic. Res. 13, 19–25, 127–135, 161–171.Google Scholar
  83. Szabo T.J., Mills P.F., Heikel D.T. (1987) Effects of honey bee queen weight and air temperature on the initiation of oviposition, J. Apic. Res. 26, 73–78.Google Scholar
  84. Szalai E. (1995) Results of instrumental insemination of queen honey bees in Hungary, Pszcelnicze Zeszyty Nnaukowe 39, 61–69.Google Scholar
  85. Taber S.I., Blum M.S. (1960) Preservation of honey bee semen, Science 131, 1734–1735.PubMedCrossRefGoogle Scholar
  86. Tajabadi N., Tahmasbi G., Javaheri D., Yrahmadi S., Adl M.F. (2005) Comparison of colonies with natural mated and inseminated queens in Iran: Animal Science Research Institute of Iran, Final Report of Research Plan.Google Scholar
  87. Tarpy D.R., Fletcher D.J. (1998) Effects or relatedness on queen competition within honey bee colonies, Anim. Behav. 55, 537–543.PubMedCrossRefGoogle Scholar
  88. Tarpy D.R., Page R.E. (2000) No behavioral control over mating frequency in queen honey bees: implications for the evolution of extreme polyandry, Am. Nat. 155, 820–827.PubMedCrossRefGoogle Scholar
  89. Tarpy D.R., Page R.E. (2002) Sex determination and the evolution of polyandry in honey bees, Behav. Ecol. Sociobiol. 52, 143–150.CrossRefGoogle Scholar
  90. Van Eaton C. (1986) Determinants of queen quality in New Zealand commercial queens, New Zealand Beekeeper 28–30.Google Scholar
  91. Verma L.R. (1978) Biology of honey bee (Apis mellifera L.) spermatozoa. 1. effect of different diluents on motility and survival, Apidologie 9, 167–174.CrossRefGoogle Scholar
  92. Vesely V. (1970) Retention of semen in the lateral oviducts in artificially inseminated honey bee queens, Acta Ent. Bohemoslov. 67, 83–92.Google Scholar
  93. Vesely V. (1984) Der Einfluss der künstlichen Besamung auf die Leistungszucht, Bienenvater 105, 332–335, 366–370.Google Scholar
  94. Wilde J. (1987) The development and productivity of honey bee colonies with naturally mated and artificially inseminated queens, Proc. XXX1st International Apimondia Congress, Warsaw, Poland, pp. 442–444.Google Scholar
  95. Wilde J. (1994a) Comparison of the development and productivity of bee colonies with naturally and instrumentally inseminated queens kept in different conditions before and after the insemination, Acta Academiae Agricultural Technicae Olstenensis, Zootechnica 39, 135–152.Google Scholar
  96. Wilde J. (1994b) The effects of keeping queen honey bees after instrumental insemination on their performance, Acta Academiae Agricultural Technicae Olstenensis, Zootechnica 39, 153–166.Google Scholar
  97. Wilde J., Bobrzecki J. (1994) Utility value of honeybee queens beginning to lay in different periods after insemination, Acta Academiae Agricultural Technicae Olstenensis, Zootechnica 39, 205–212.Google Scholar
  98. Woyke J. (1962) Natural and artificial insemination of queen honey bees, Bee World 43, 21–25.Google Scholar
  99. Woyke J. (1966) Factors that determine the number of spermatozoa in the spermatheca of naturally mated queens, Z. Bienenforsch. 8, 236–247.Google Scholar
  100. Woyke J. (1971) Correlations between the age at which honey bee brood was grafted, characteristics of the resultant queens and results of inseminations, J. Apic. Res. 10, 45–55.Google Scholar
  101. Woyke J. (1979) Effect of the access of worker honey bees to the queen on the results of instrumental insemination, J. Apic. Res. 18, 136–143.Google Scholar
  102. Woyke J. (1983) Dynamics of entry of spermatozoa into the spermatheca of instrumentally inseminated queen honey bees, J. Apic. Res. 22, 150–154.Google Scholar
  103. Woyke J. (1988) Problems with queen banks, Am. Bee J. 128, 276–278.Google Scholar
  104. Woyke J. (1989a) Correct maintenance before and after instrumental insemination, tested in Egypt, J. Apic. Res. 28, 187–190.Google Scholar
  105. Woyke J. (1989b) Maintenance of queens before and after Instrumental Insemination, in: Moritz R.F.A. (Ed.), The Instrumental Insemination of the Queen Bee, Bucharest, Apimondia, pp. 85–91.Google Scholar
  106. Woyke J. (1989c) Results of instrumental insemination, in: Moritz R.F.A. (Ed.), The Instrumental Insemination of the Queen Bee, Bucharest, Apimondia, pp. 93–103.Google Scholar
  107. Woyke J., Jasinski Z. (1973) Influence of external conditions on the number of spermatozoa entering the spermatheca of honey bee queens, J. Apic. Sci. 12, 145–151.Google Scholar
  108. Woyke J., Jasinski Z. (1976) Influence of the age on the results of instrumentally insemination of honey bee queens, Apidologie 7, 301–306.CrossRefGoogle Scholar
  109. Woyke J., Ruttner F. (1976) Results, in: Ruttner F. (Ed.), The instrumental insemination of the queen bee, Apimondia, Bucharest, pp. 87–92.Google Scholar
  110. Woyke J., Jasinski Z. (1978) Influence of age of drones on the results of instrumental insemination of honey bee queens, Apidologie 9, 202–212.CrossRefGoogle Scholar
  111. Woyke J., Jasinski Z. (1980) Influence of the number of attendant workers on the results of instrumental insemination of honey bee queens kept at room temperature, Apidologie 11, 173–179.CrossRefGoogle Scholar
  112. Woyke J., Jasinski Z. (1982) Influence of the number of attendant workers on the number of spermatozoa entering the spermatheca of instrumentally inseminated queens kept outdoors in mating nuclei, J. Apic. Sci. 21, 129–133.Google Scholar
  113. Woyke J., Jasinski Z. (1985) Comparison of the dynamics of entry of spermatozoa into the spermatheca of instrumentally inseminated queen honey bees kept under different conditions, Pszcelnicze Zeszyty Nnaukowe 29, 377–388.Google Scholar
  114. Woyke J., Jasinski Z. (1990) Effect of the number of attendant worker bees on the initiation of egg laying by instrumentally inseminated queens kept in small nuclei, J. Apic. Res. 29, 101–106.Google Scholar
  115. Woyke J., Jasinski Z., Flisziekiewic C. (1995) Further investigation on natural mating of instrumentally inseminated queen bees, J. Apic. Res. 34, 105–106.Google Scholar
  116. Woyke J., Fliszkiewicz C., Jasinski Z. (2001) Prevention of natural mating of instrumentally inseminated queen honey bees by proper method on instrumental insemination, J. Apic. Sci. 45, 101–114.Google Scholar
  117. Zmarlicki C., Morse R.A. (1962) The mating of aged virgin queen honeybees, J. Apic. Res. 1, 62–63.Google Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  1. 1.Department of EntomologyOhio State UniversityColumbusUSA

Personalised recommendations