Advertisement

Apidologie

, Volume 38, Issue 3, pp 247–258 | Cite as

Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini)

  • José Javier G. Quezada-Euán
  • Robert J. Paxton
  • Kellie A. Palmer
  • William de J. May Itzá
  • Wee Tek Tay
  • Benjamin P. Oldroyd
Original Article

Abstract

Morphometrics and DNA microsatellites were used to analyse the genetic structure of populations of the stingless bee M. beecheii from two extremes of its geographic range. The results showed that populations from Costa Rica and Yucatan exhibit substantial phenotypic and molecular differentiation. Bees from Yucatan were smaller and paler than those from Costa Rica. The value of multilocus F ST = 0.280 (P < 0.001) confirmed that there were significant molecular genetic differences between the two populations. Populations showed significant deviation from Hardy Weinberg equilibrium and the values of F IS (the inbreeding coefficient) were positive for Costa Rica = 0.416 and the Yucatan Peninsula = 0.193, indicating a lack of hétérozygotes in both populations possibly due to inbreeding. The DNA sequence of 678 bp of the mitochondrial gene COI differed between populations by 1.2%. The results of this study should be considered in conservation programmes, particularly with regard to the movement of colonies between regions.

stingless bee Melipona population analysis Yucatan Costa Rica genetic diversity 

Les caractères morphologiques et moléculaires révèlent une différenciation chez l’abeille sociale néotropical Melipona beecheii (Apidae, Meliponini)

Melipona abeille sans aiguillon structure population variabilité génétique Yucatan Costa-Rica 

Morphologische und molekulare Marker weisen auf eine Differenzierung in Populationen der neotropischen Stachellosen Biene Melipona beecheii (Apidae: Meliponini) hin

Zusammenfassung

Die über 400 Arten umfassenden pantropisch verbreiteten Meliponini sind vergleichsweise wenig untersucht, insbesondere gibt es nur wenige Studien zur Populationsstruktur. Die Art Melipona beechei weist eine geographische Verbreitung von Mexiko bis Costa Rica auf (Abb. 1), so dass es möglich ist, dass lokal adaptierte Ökotypen existieren. Wir nutzen einen morphometrischen Ansatz, sowie DNA Mikrosatellitenloci und Gensequenzen mitochondrialer DNA um die Populationsstruktur von M. beecheii an den Extrempunkten der geographischen Verbreitung zu untersuchen.

Die Bienen wurden 1998 an sieben Orten auf der Halbinsel Yucatan (65 Völker) und an einem Ort in Costa Rica (15 Völker) gesammelt. Elf Morphometriemerkmale am Kopf, an Flügeln und Beinen wurden an 10–12 Arbeiterinnen pro Volk vermessen und die einzelnen Standorte wurden mittels ANOVA (gefolgt von Tukey post hoc Tests) verglichen. Populationsunterschiede in Farbmarken am Kopf (Abb. 2) wurden mittels Kontingenz G-Test herausgearbeitet. Anschliessend wurde eine Hauptkomponentenanalyse (PCA auf der Basis einer Korrelationsmatrix) mit allen log-transformierten metrischen Merkmalen durchgeführt.

Sechs Mikrosatellitenloci (T4, T7, Mbill, Mb201, B116 und B124) wurden an jeweils einer Arbeiterin pro Volk untersucht. Zusätzlich wurden 678 Basenpaare des mitochondrialen Gens COI für jeweils zwei Individuen aus Costa Rica und Yucatan sequenziert. Die Verknüpfung (linkage) der Mikrosatellitenloci wurde mittels des Programmpakets GENEPOP Version 3.1. getestet. Die Allelfrequenzen und beobachtete sowie Nei’s (1978) unabhängige Erwartungswerte für Heterozygotie an jedem Mikrosatellitenlocus wurden für jede Population mittels des FSTAT Programmpakets ermittelt. Die effektive Anzahl an Allelen (n a ) wurde als n a = 1/gSp i 2 berechnet, wobei p i die Frequenz des i-ten Allels darstellt. Abweichungen vom Hardy-Weinberg-Gleichgewicht an jedem Locus und für jede Population wurden mittels in GENEPOP verfügbaren exakten Tests in einem Markov Ketten-Ansatz ermittelt. Der unabhängige Multilocus-Schätzwert für F ST zwischen Populationen wurde benutzt, um die Signifikanz der genetischen Differenzierung mittels FSTAT herauszuarbeiten und um den jeweiligen Inzuchtgrad F IS und seine Konfidenzintervalle zu berechnen.

Die Populationen aus Costa Rica und Yucatan zeigten eine erhebliche phänotypische und genetische Differenzierung. Dabei bildeten die Völker aus Yucatan eine homogene Gruppe, die sich deutlich (als kleiner und weniger farbkräftig) von den Costa Rica Völkern unterschied (Tab. I, II; Abb. 3). Der Multilocus Wert für F ST = 0,280 (P < 0,001) belegt die signifikante molekulargenetische Differenzierung zwischen den beiden Populationen (Tab. IV). Beide Populationen zeigten erhebliche Abweichungen vom Hardy-Weinberg Gleichgewicht. Die F IS — Werte für Costa Rica = 0,416 (P < 0,05) und Yucatan = 0,193 (P < 0,05) waren hochsignifikant, was auf ein vermutlich inzuchtbedingtes Fehlen an Heterozygoten hinweist. In den DNA-Sequenzen für COI unterschieden sich die beiden Populationen um 1,2 %. Die Ergebnisse der vorliegenden Studie sollten in Konservierungsprogramme Eingang finden, vor allem dann, wenn der Austausch von Völkern zwischen Regionen in Betracht gezogen wird.

Stachellose Bienen Melipona Populationsanalyse Yucatan Costa Rica Genetische Diversität 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala R. (1999) Revision de las abejas sin aguijón de México (Hymenoptera: Apidae: Meliponini), Folia Entomol. Mex. 106, 1–123.Google Scholar
  2. Berstch A., Schweer H., Titze A., Tanaka H. (2005) Male labial gland secretions and mitochondrial DNA markers support species status of Bombus cryptarum and B. magnus (Hymenoptera, Apidae), Insectes Soc. 52, 45–54.CrossRefGoogle Scholar
  3. Biesmeijer J.C. (1997) The organisation of foraging in stingless bees of the genus Melipona, Ph.D. Thesis, Universität Utrecht.Google Scholar
  4. Brown J.C., Albrecht C. (2001) The effect of tropical deforestation on stingless bees of the genus Melipona (Insecta: Hymenoptera: Apidae: Meliponini) in central Rondonia, Brazil. J. Biogeogr. 28, 623–634.Google Scholar
  5. Camargo J.M.F., Moure J.S., Roubik D.W. (1988) Melipona yucatanica new species (Hymenoptera: Apidae; Meliponinae); stingless bee dispersal across the Caribbean arc and Post-Eocene vicariance, Pan-Pacific Entomol. 64, 147–157.Google Scholar
  6. Carrillo A., Quezada-Euán J.J.G., Moo-Valle J.H. (2001) Estudio preliminar sobre la variabilidad morfológica de Melipona beecheii (Apidae: Meliponini) en su rango de distribución de México, América Central y el Caribe, in: Quezada-Euán J.J.G., May-Itzá W. de J., Moo-Valle H., Chab-Medina J.C. (Eds.), II Seminario Mexicano sobre abejas sin aguijon, Mérida Yucatán, México, pp. 73–78.Google Scholar
  7. Carvalho G.A., Kerr W.E., Nascimento V.A. (1995) Sex determination in bees. XXXVII. Decrease of Xo heteroalleles in a finite population of Melipona scutellaris, (Apidae, Meliponini), Brazil. J. Genet. 18, 13–16.Google Scholar
  8. Castanheira E.B., Contel E.P.B. (2005) Geographic variation in Tetragonisca angustula (Hymenoptera, Apidae, Meliponinane), Apic. Res. 44, 101–105.Google Scholar
  9. Dick C.W., Roubik D.W., Gruber K.E., Bermingham E. (2004) Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae, Euglossini) revealed by comparative mitochondrial DNA phylogeography, Mol. Ecol. 13, 3775–3785.PubMedCrossRefGoogle Scholar
  10. Diniz-Filho J.A., Pignata M.I.B. (1994) Quantitative genetics of multivariate morphometric variation in the neotropical stingless bee Scaptotrigona postica (Hymenoptera: Meliponinae), Rev. Bras. Genet. 17, 259–265.Google Scholar
  11. Engels W., Imperatriz-Fonseca V.L. (1990) Caste development, reproductive strategies and control of fertility in honeybees and stingless bees, in: Engels W. (Ed.), Social Insects: an evolutionary approach to castes and reproduction, Berlin, Springer-Verlag, pp. 166–230.Google Scholar
  12. Estoup A., Solignac M., Harry M., Cornuet J.M. (1993) Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris, Nucleic Acid Res. 21, 1427–1431.PubMedCrossRefGoogle Scholar
  13. Estoup A., Garnery L., Solignac M., Cornuet J.M. (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models, Genetics 140, 679–695.PubMedGoogle Scholar
  14. Estoup A., Solignac M., Cornuet J.M., Goudet J., Scholl A. (1996) Genetic differentiation of island and continental populations of Bombus terrestris (Hymenoptera:Apidae) in Europe, Mol. Ecol. 5, 19–31.PubMedCrossRefGoogle Scholar
  15. Francisco F.O., Silvestre D., Arias M.C. (2001) Mitochondrial DNA characterization of five species of Plebeia (Apidae: Meliponinae) RFLP and restriction maps, Apidologie 32, 323–332.CrossRefGoogle Scholar
  16. Franck P., Garnery L., Loiseau A., Oldroyd B.P., Hepburn H.R., Solignac M., Cornuet J.M. (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data, Heredity 86, 420–430.PubMedCrossRefGoogle Scholar
  17. Goldstein D.B., Schlötterer C. (1999) Microsatellites: evolution and applications, Oxford Univ. Press. Inc., New York.Google Scholar
  18. Gomez-Pompa A., Kaus A. (1999) From pre-Hispanic to future conservation alternatives: lessons from Mexico, Proc. Natl. Acad. Sci. (USA) 96, 5982–5986.CrossRefGoogle Scholar
  19. Goudet J. (1996) FSTAT (vers. 1.2): a computer program to calculate F-statistics, Heredity 86, 485–486.Google Scholar
  20. Guo S.W., Thompson E.A. (1992) Performing the exact test of Hardy-Weinberg proportion of multiple alleles, Biometrics 48, 361–372.PubMedCrossRefGoogle Scholar
  21. Hartfelder K., Engels W. (1992) Allometric and multivariate analysis of sex and caste polymorphism in the neotropical stingless bee, Scaptotrigona postic, Insectes Soc. 39, 251–266.CrossRefGoogle Scholar
  22. Hebert P.D.N., Cywinska A., Ball S.L., de Waard J.R. (2003a) Biological identifications through DNA barcodes, Proc. R. Soc. Lond. B 270, 313–321.CrossRefGoogle Scholar
  23. Hebert P.D.N., Ratnasingham S., de Waard J.R. (2003b) Barcoding animal life: cytochrome coxidase subunit I divergences among closely related species, Proc. R. Soc. Lond. B (Suppl.) 270, S96-S99.CrossRefGoogle Scholar
  24. Hebert P.D.N., Penton E.N., Burns J.M., Janzen D.H., Hallwachs W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator, Proc. Natl. Acad. Sci. (USA) 101, 14182–14187.CrossRefGoogle Scholar
  25. Hepburn H.R., Radioff S.E. (1998) Honeybees of Africa, Springer Verlag, Berlin.Google Scholar
  26. Hepburn H.R., Radloff S.E., Verma S., Verma L.R. (2001) Morphometric analysis of Apis cerana populations in the southern Himalayan region, Apidologie 32, 435–447.CrossRefGoogle Scholar
  27. Hepburn H.R., Radloff S.E., Otis G.W., Fuchs E., Verma L.R., Ken T., Chaiyawong T., Tahmasebi G., Ebadi R., Wongsiri S. (2005) Apis florea: morphometrics, classification and biogeography, Apidologie 36, 359–376.CrossRefGoogle Scholar
  28. Kerr W.E. (2002) Extincao de especies: a grande crise biologica do momento e como afeta os meliponinios. Anais do V encontre sobre abelhas, 2002, Riberao Preto, SP Brasil, pp. 4–9.Google Scholar
  29. Kuhlmann M., Else G.R., Dawson A., Quick D.L.J. (2007) Molecular, biogeographical and phenological evidence for the existence of three western European sibling species in the Colletes succinctus group (Hymenoptera: Apidae), Org. Divers. Evol. (in press).Google Scholar
  30. Michener C.D. (2000) The bees of the world. The Johns Hopkins Univ. Press, Baltimore.Google Scholar
  31. Monaghan M.T., Balke M., Gregory T.R., Vogler A.P. (2005) DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers, Phil. Trans. R. Soc. Lond. B 360, 1925–1933.CrossRefGoogle Scholar
  32. Nei M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics 89, 583–590.PubMedGoogle Scholar
  33. Pamilo P., Varvio-Aho S.L., Pekkarinen A. (1984) Genetic variation in bumblebees (Bombus, Psithyrus) and putative sibling species of Bombus lucorum, Hereditas 101, 245–251.CrossRefGoogle Scholar
  34. Paxton R.J., Weißschuh N., Quezada-Euán J.J.G. (1999) Characterization of dinucleotide microsatellite loci for stingless bees, Mol. Ecol. 8, 93–99.Google Scholar
  35. Peters J.M., Queller D.C., Imperatriz-Fonseca V.L., Roubik D.W., Strassman J.E. (1999) Mate number, kin selection and social conflicts in stingless bees and honeybees, Proc. R. Soc. Lond. B 266, 379–384.CrossRefGoogle Scholar
  36. Pinkus-Rendon M.A., Parra-Tabla V., Meléndez-Ramírez V. (2005) Floral resource use and interactions between Apis mellifera and native bees in cucurbit crops in Yucatán, México, Can. Entomol. 137, 441–449.CrossRefGoogle Scholar
  37. Quezada-Euán J.J.G., May-Itza W. de J., Gonzalez-Acereto J.A. (2001) Meliponiculture in México: problems and perspective for development, Bee World 82, 160–167.Google Scholar
  38. Radloff S.E., Hepburn H.R., Fuchs E., Otis G.W., Hadisoesilo S., Hepburn C., Ken T., (2005) Multivariate morphometric analysis of the Apis cerana populations of oceanic Asia, Apidologie 36, 359–376.CrossRefGoogle Scholar
  39. Raymond M., Rousset F. (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism, J. Heredity 86, 248–250.Google Scholar
  40. Roubik D.W. (1989) Ecology and natural history of tropical bees, Cambridge University Press.Google Scholar
  41. Ruttner F. (1988) Biogeography and taxonomy of honeybees, Springer Verlag, Berlin.Google Scholar
  42. Santos-Leal A. (2006) Distribution espacial de los sitios de anidación de abejas eusociales (Hymenoptera-Apidae: Meliponini y Apini) en Sudzal, Yucatan, México, Tesis de Maestria, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatan, México.Google Scholar
  43. Savolainen V., Cowan R.S., Vogler A.P., Roderick G.K., Lane R. (2005) Towards writing the encyclopedia of life: and introduction to DNA barcoding, Phil. Trans. R. Soc. Lond. B 360, 1805–1811.CrossRefGoogle Scholar
  44. Schwarz F.H. (1932) The genus Melipona. The type genus of the Meliponidae or stingless bees, Bull. Am. Mus. Nat. Hist. 63, 231–460Google Scholar
  45. Schwarz F.H. (1948) Stingless bees (Meliponidae) of the Western Hemisphere, Bull. Am. Mus. Nat. Hist. 90, 1–546.Google Scholar
  46. Simon C., Frati F., Beckenback A., Crespi B., Liu H., Flook P. (1994) Evolution, weighing and phylogenetic utility of mitochondrial DNA sequences and a compilation of conserved polymerase chain reaction primers, Ann. Entomol. Soc. Am. 87, 651–701.Google Scholar
  47. Smith D.R. (1991) African bees in the Americas: insights from biogeography and genetics, Trend. Ecol. Evol. 6, 17–21.CrossRefGoogle Scholar
  48. Staden R., Beal K.F., Bonfield J.K. (2000) The Staden package, 1998, Methods in Mol. Biol. 132, 115–130.Google Scholar
  49. Thompson J.D., Higgins D.G., Gibson T.J. (1994) CLUSTAL W: improving the sensitivity of progressing multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22, 4673–4680.PubMedCrossRefGoogle Scholar
  50. Valdovinos-Nuñez G.R., Quezada-Euán J.J.G., Marrufo-Olivares J. (2003) Efecto de la aplicación aérea de permetrina en Apis mellifera y abejas nativas sin aguijon (Hymenoptera: Apidae) en Yucatán, México, XVII Seminario Americano de Apicultura, Aguascalientes, México, pp. 147–149.Google Scholar
  51. Waldschmidt A.M., Barres E.G., Campos L.A.O. (2000) A molecular marker distinguishes the subspecies Melipona quadrifasciata quadrifasciata and Melipona quadrifasciata anthioides (Hymenoptera: Apidae, Meliponinae), Gen. Mol. Biol. 23, 609–611.CrossRefGoogle Scholar
  52. Waldschmidt A.M., Marco-Junior P., Barros E.G., Campos L.A.O. (2002) Genetic analysis of Melipona quadrifasciata Lep. (Hymenoptera: Apidae: Meliponinae) with RAPD markers, Braz. J. Biol. 62, 923–928.PubMedCrossRefGoogle Scholar
  53. Weir B.S., Cockerham C.C. (1984) Estimating F—statistics for the analysis of population structure, Evolution 38, 1358–1370.CrossRefGoogle Scholar
  54. Widmer A., Schmid-Hempel P. (1999) The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae), Mol. Ecol. 8, 387–398.PubMedCrossRefGoogle Scholar
  55. Widmer A., Schmid-Hempel P., Estoup A., Scholls A. (1998) Population genetic structure and colonization history of Bombus terrestris s.I. (Hymenoptera: Apidae) from the Canary Islands and Madeira, Heredity 81, 563–572.CrossRefGoogle Scholar
  56. Wiley E.O. (1981) Phylogenetics, John Wiley and Sons, New York.Google Scholar
  57. Winston M.L. (1987) The biology of the honey bee, Harvard Univ. Press, Cambridge, Massachusetts.Google Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • José Javier G. Quezada-Euán
    • 1
  • Robert J. Paxton
    • 2
  • Kellie A. Palmer
    • 3
  • William de J. May Itzá
    • 1
  • Wee Tek Tay
    • 4
  • Benjamin P. Oldroyd
    • 3
  1. 1.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMérida YucatánMexico
  2. 2.School of Biological SciencesQueen’s University BelfastUK
  3. 3.School of Biological Sciences A12University of SydneyAustralia
  4. 4.ARC Department of Genetics Bio21 Institute of Molecular Science and BiotechnologyThe University of MelbourneVictoriaAustralia

Personalised recommendations