Apidologie

, Volume 38, Issue 1, pp 30–37 | Cite as

A Nosema ceranae isolate from the honeybee Apis mellifera

  • Wei-Fone Huang
  • Jing-Hao Jiang
  • Yue-Wen Chen
  • Chung-Hsiung Wang
Original Article

Abstract

Microsporidiosis (nosema disease) of the honeybee, Apis mellifera, has spread worldwide and caused heavy economic losses in apiculture. We obtained a spore isolate from worker ventriculi of A. mellifera colonies kept on the campus of National Taiwan University and sequenced the ribosomal genes. The entire length of the ribosomal DNA is about 3828 bp and the organization is similar to that of Nosema apis. However, the SSUrRNA, ITS, and LSUrRNA sequences have comparatively low identities with those of N. apis (92, 52, and 89%, respectively) and the SSUrRNA has a 99% identity with Nosema ceranae. These results indicate that this isolate is not N. apis, but N. ceranae. Moreover, the morphological characteristics are identical to those of N. ceranae. These results show that nosema disease of the honeybee, A. mellifera, may not be caused solely by the infection of N. apis.

Nosema ceranae rRNA nosema disease Microsporidia 

Un isolat de Nosema ceranae provenant d’Apis mellifera

Nosema ceranae nosémose ARNr Taïwan microsporidie 

Ein Isolat von Nosema ceranae aus der Honigbiene Apis mellifera

Zusammenfassung

Nosema-Erkrankungen (Mikrosporidien) bei Honigbienen, Apis mellifera, sind weltweit verbreitet und verursachen erhebliche wirtschaftliche Schäden in der Imkerei. Die Nosemose verbreitete sich nach 1972 in ganz Taiwan und konnte in einer bis 1980 dauernden Untersuchung in sämtlichen Frühjahrs- und Herbstuntersuchungen nachgewiesen werden. Aufbauend auf diesen Untersuchungen amplifizierten und sequenzierten wir die ribosomalen Gene von Sporen aus dem Verdauungstrakt von Arbeiterinnen, die aus Bienenvölkern auf dem Campus der National Taiwan Universität stammten. Die vollständige Sequenz der ribosomalen DNA beträgt 3.828 Basenpaare und ähnelt der von Nosema apis (Abb. 1). Allerdings weist die SSUrRNA-Sequenz eine 99 %ige Übereinstimmung mit der von N. ceranae auf und die SSUrRNA-, ITS- und LSUrRNA-Sequenzen haben eine verhältnismäßig geringe Ähnlichkeit mit denen von N. apis (92, 52 bzw. 89 %). Zudem stimmen bei den untersuchten Sporenisolaten auch die morphologischen Charakteristika, die Größe der lebenden Sporen sowie die Struktur des Polfadens im Längsschnitt (Abb. 3) mit denen von N. ceranae überein. All diese Ergebnisse zeigen, dass diese Sporen nicht von N. apis sondern von N. ceranae stammen. Bei der phylogenetischen Analyse zeigen sowohl der SSUrRNAals auch der LSUrRNA-Stammbaum (Abb. 4), dass N. ceranae und N. apis phylogenetisch gut zu trennen sind. Daher muss für Nosema-Erkrankungen bei Honigbienen (A. mellifera) nicht ausschließlich N. apis verantwortlich sein. Der Erreger der Nosemose sollte in zukünftigen Untersuchungen daher eindeutig bestimmt werden.

Nosema ceranae Nosemose Mikrosporidie Taiwan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An J.K., Ho K.K. (1980) The seasonal variation of Nosema apis Zander in Taiwan, Honeybee Sci. 1, 157–158.Google Scholar
  2. Baker M.D., Vossbrinck C.R., Maddox J.V., Undeen A.H. (1994) Phylogenetic relationships among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data, J. Invertebr. Pathol. 64, 100–106.PubMedCrossRefGoogle Scholar
  3. Burges H.D., Canning E.U., Hulls I.K. (1974) Ultrastructure of Nosema oryzaephili and the taxanomic value of the polar filament, J. Invertebr. Pathol. 23, 135–139.PubMedCrossRefGoogle Scholar
  4. Canning E.U., Curry A., Cheney S., Lafranchi-Tristem N.J., Haque M.A. (1999) Vairimorpha imperfecta n. sp., a microsporidian exhibiting an abortive octosporous sporogony in Plutella xylostella L. (Lepidoptera: Yponomeutidae), Parasitology 119, 273–286.PubMedCrossRefGoogle Scholar
  5. Fries I. (1989) Observation on the development and transmission of Nosema apis Z. in the ventriculus of the honeybee, J. Apic. Res. 28, 107–117.Google Scholar
  6. Fries I. (1997) Protozoa, in: Morse R.A. (Ed.), Honey bee pests, predators, and diseases, 3rd ed., A.I Root Company, Medina, Ohio, USA, pp. 57–76.Google Scholar
  7. Fries I., Ekbom G. (1984) Nosema apis, sampling techniques and honey yield, J. Apic. Res. 23, 102–105.Google Scholar
  8. Fries I., Feng F., da Silva A., Slemenda S.B., Pieniazek N.J. (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), Morphological and Molecular Characterization of a Microsporidian Parasite of the Asian Honey bee Apis cerana (Hymenoptera, Apidae), Eur. J. Protistol. 32, 356–365.Google Scholar
  9. Gatehouse H.S., Malone L.A. (1998) The ribosomal RNA gene region of Nosema apis (Microspora): DNA sequence for small and large subunit rRNA genes and evidence of a large tandem repeat unit size, J. Invertebr. Pathol. 71, 97–105.PubMedCrossRefGoogle Scholar
  10. Higes M., Martín R., Meana A. (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93–95.PubMedCrossRefGoogle Scholar
  11. Huang H.W., Lo C.F., Tseng C.C., Peng S.E., Chou C.M., Kou C.H. (1998) The small subunit ribosomal RNA gene sequence of Pleistophora anguillarum and the use of PCR primers of diagnostic detection of the parasite, J. Eukaryot. Microbiol. 45, 556–560.CrossRefGoogle Scholar
  12. Huang W.F., Tsai S.J., Lo C.F., Soichi Y., Wang C.H. (2004) The novel organization and complete sequence of the ribosomal gene of Nosema bombycis, Fung. Genet. Biol. 41, 473–481.CrossRefGoogle Scholar
  13. Keeling P.J., Macfadden G.I. (1998) Origins of microsporidia, Trends Microbiol. 6, 19–23.PubMedCrossRefGoogle Scholar
  14. Larsson J.I.R. (2005) Fixation of microsporidian spores for electron microscopy, J. Invertebr. Pathol. 90, 47–50.PubMedCrossRefGoogle Scholar
  15. Lui T.P. (1973) The fine structure of frozen-etched spore of Nosema apis Zander, Tissue and Cell 5, 315–322.CrossRefGoogle Scholar
  16. Lui T.P., Lui H.J. (1974) Evaluation of some morphological characteristics of spore from two species of microsporidia by scanning electron microscope and frozen-etching techniques, J. Morphol. 143, 337–339.CrossRefGoogle Scholar
  17. Matheson A. (1996) World bee health update 1996, Bee World 77, 45–51.Google Scholar
  18. Müller A., Trammer T., Ghioralia G., Seitz H.M., Diehl V., Franzen E. (2000) Ribosomal RNA of Nosema algerae and phylogenetic relationship to other microsporidia, Parasitol. Res. 86, 18–23.PubMedCrossRefGoogle Scholar
  19. Peyretaillade E., Biderre C., Peyret P., Duffieux F., Metenier G., Gouy M., Michot B., Vivares C.P. (1998) Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSUrRNA reduced to the universal core, Nucleic Acids Res. 26, 3513–3520.PubMedCrossRefGoogle Scholar
  20. Reynolds E.S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol. 17, 208–212.PubMedCrossRefGoogle Scholar
  21. Shyamala H., Ames G.F. (1989) Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR, Gene 84, 1–8.PubMedCrossRefGoogle Scholar
  22. Singh Y. (1975) Nosema in Indian honey bee (Apis cerana indica), Am. Bee J. 115, 59.Google Scholar
  23. Slamovits C.H., Willams B.A.P., Keeling P.J. (2004) Transfer of Nosema locustae (Microsporidia) to Antonospora locustae n. comb. Based on molecular and ultrastructure data, J. Eukaryot. Microbiol. 51, 207–213.PubMedCrossRefGoogle Scholar
  24. Swofford D.L. (2003) PAUP*, Phylogenetic analysis using parasimony (* and other methods), Sinauer Associates, Sunderland, MA.Google Scholar
  25. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res. 25, 4876–4882.PubMedCrossRefGoogle Scholar
  26. Tsai S.J., Kou G.H., Lo C.F., Wang C.H. (2002) Complete sequence and structure of ribosomal RNA gene of Heterosporis anguillarum, Dis. Aquat. Org. 49, 199–206.PubMedCrossRefGoogle Scholar
  27. Tsai S.J., Lo C.F., Soichi Y., Wang C.H. (2003) The characterization of Microsporidian isolates (Nosematidae: Nosema) from five important lepidopteran pests in Taiwan, J. Invertebr. Pathol. 83, 51–59.PubMedCrossRefGoogle Scholar
  28. Tsai S.J., Huang W.F., Wang C.H. (2005) Complete sequence and gene organization of Nosema spodopterae rRNA gene, J. Eukaryot. Microbiol. 52, 52–54.PubMedCrossRefGoogle Scholar
  29. Undeen A.H., Cockburn A.F. (1989) The extraction of DNA from microsporidia spores, J. Invertebr. Pathol. 54, 132–133.CrossRefGoogle Scholar
  30. Van de Peer Y., De Rijk P., Wuyts J., Winkelmans T., De Wachter R. (2000) The Europen small subunit ribosomal RNA database, Nucleic Acids Res. 28, 175–176.PubMedCrossRefGoogle Scholar
  31. Vossbrinck C.R., Baker M.D., Didier E.S., Debrunner-Vossbrinck B.A., Shadduck J.A. (1993) Ribosomal DNA sequences of Encephalitozoon hellem and Encephalitozoon cuniculi: species identification and phylogentic construction, J. Eukaryot. Microbiol. 40, 354–362.PubMedCrossRefGoogle Scholar
  32. Weiss L.M., Vossbrinck C.R. (1999) Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the microsporidia, in: Wittner M., Weiss L.M. (Eds.), The Microsporidia and Microsporidiosis, American Society for Microbiology, Washington, DC, pp. 129–171.Google Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • Wei-Fone Huang
    • 1
  • Jing-Hao Jiang
    • 1
  • Yue-Wen Chen
    • 2
  • Chung-Hsiung Wang
    • 1
  1. 1.Department of EntomologyNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Animal ScienceNational I-Lan UniversityI-LanTaiwan

Personalised recommendations