Advertisement

Apidologie

, Volume 42, Issue 2, pp 214–222 | Cite as

Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil

  • Natália de Campos Muradas Cerântola
  • Cíntia Akemi Oi
  • Marcelo Cervini
  • Marco Antonio Del Lama
Original Article

Abstract

Males and females of Euglossa cordata collected inside flowers of Thevetia peruviana in urban areas of eleven cities of the state of São Paulo were analysed using allozymes and nine microsatellite loci. The analyses revealed that these populations have a high genetic diversity and are under genetic equilibrium, showing low population structuring and rare diploid males; consequently, high gene flow and effective population size (Ne) are inferred. These findings corroborate previous biological observations and phylogeographic evidence that report dispersion over long distances of Euglossini species in South America.

Keywords

genetic diversity gene flow euglossine bees microsatellites allozymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augusto S.C., Garófalo C.A. (2009) Bionomics and sociological aspects of Euglossa fimbriata (Apidae, Euglossini), Genet. Mol. Res. 8, 525–538.PubMedCrossRefGoogle Scholar
  2. Búrquez A. (1997) Distributional limits of euglossine and meliponine bees (Hymenoptera: Apidae) in northwestern Mexico, Pan-Pac. Entomol. 73, 137–140.Google Scholar
  3. Cameron S.A. (2004) Phylogeny and biology of Neotropical orchid bees (Euglossini), Annu. Rev. Entomol. 49, 377–404.PubMedCrossRefGoogle Scholar
  4. Cameron S.A., Ramírez S. (2001) Nest architecture and nesting ecology of orchid bee Eulaema meriana (Hymenoptera: Apidae: Euglossini), J. Kans. Entomol. Soc. 74, 142–165.Google Scholar
  5. Cancine A.D.M., Damon A. (2007) Fragrance analysis of Euglossini bee pollinated orchids from Soconusco, South-East Mexico, Plant Species Biol. 22, 127–132.Google Scholar
  6. Cane J.H. (2005) Bees needs challenged by urbanization, in: Johnson E.A., Klemens M.W. (Eds.), Nature in fragments: The legacy of sprawl, Columbia University Press, New York, pp. 109–124.Google Scholar
  7. Cook J.M., Crozier R.H. (1995) Sex determination and population biology in the Hymenoptera, Tree 10, 281–286.PubMedGoogle Scholar
  8. Dick C.W., Roubik D.W., Gruber K.F., Bermingham E. (2004) Long distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography, Mol. Ecol. 13, 3775–3785.PubMedCrossRefGoogle Scholar
  9. Dressler R.L. (1982) Biology of the orchid bees (Euglossini), Annu. Rev. Ecol. Syst. 13, 373–394.CrossRefGoogle Scholar
  10. Eltz T., Roubik D.W., Whitten M.W. (2003) Fragrances, male display and mating behavior of Euglossa hemichlora — a flight cage experiment, Physiol. Entomol. 28, 251–260.CrossRefGoogle Scholar
  11. Excoffier L., Laval G., Schneider S. (2005) Arlequin 3.1: An integrated software package for population genetics data analysis, Evol. Bioinform. Online 1, 47–50.PubMedGoogle Scholar
  12. Farias R.C.A.P., Madeira da Silva M.C., Pereira-Peixoto M.H., Martins C. (2008) Composição e sazonalidade de espécies de Euglossina (Hymenoptera: Apidae) em mata e duna na Área de Proteção Ambiental da Barra do Rio Mamanguape, Rio Tinto, PB, Neotrop. Entomol. 37, 253–258.PubMedCrossRefGoogle Scholar
  13. Garófalo C.A. (1992) Comportamento de nidificação e estrutura de ninhos de Euglossa cordata (Hymenoptera: Apidae: Euglossini), Rev. Bras. Biol. 52, 187–198.Google Scholar
  14. Goudet J. (1995) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2), J. Hered. 86, 485–486.Google Scholar
  15. Grixti J.C., Wonga L.T., Cameron S.A., Favreta C. (2009) Decline of bumble bees (Bombus) in the North American Midwest, Biol. Conserv. 142, 75–84.CrossRefGoogle Scholar
  16. Guimarães E., Di Stasi L.C., Maimoni-Rodella R.C.S. (2008) Pollination biology of Jacaranda oxyphylla with an emphasis on staminode function, Ann. Bot. 102, 699–711.PubMedCrossRefGoogle Scholar
  17. Hartl D.L., Clark A.G. (2007) Principles of Population Genetics, 4th ed., Sinauer, Sunderland, MA.Google Scholar
  18. Janzen D.H. (1971) Euglossine bees as long-distance pollinators of tropical plants, Science 171, 203–205.PubMedCrossRefGoogle Scholar
  19. López-Uribe M.M., Del Lama M.A. (2007) Molecular identification of females of Euglossa spp. Latreille (Hymenoptera: Apidae: Euglossini) floral visitors of Thevetia peruviana (Apocynaceae) in urban areas, Neotrop. Entomol. 36, 712–720.PubMedCrossRefGoogle Scholar
  20. López-Uribe M.M., Almanza M.T., Marina Ordoñez M. (2007) Diploid male frequencies in Colombian populations of euglossine bees, Biotropica 39, 660–662.CrossRefGoogle Scholar
  21. López-Uribe M.M., Oi C.A., Del Lama M.A. (2008) Nectar-foraging behavior of Euglossine bees (Hymenoptera: Apidae) in urban areas, Apidologie 39, 410–418.CrossRefGoogle Scholar
  22. McKay J.K., Latta R.G. (2002) Adaptive population divergence: markers, QTL, and traits, Tree 17, 285–291.Google Scholar
  23. Niemelä J. (2000) Is there a need for a theory of urban ecology? Urban Ecosyst. 3, 57–65.CrossRefGoogle Scholar
  24. Oliveira M.L. (2006) Três novas espécies de abelhas da Amazônia pertencentes ao gênero Eulaema (Hymenoptera: Apidae: Euglossini), Acta Amazonica 36, 121–128.CrossRefGoogle Scholar
  25. Oliveira M.L., Nemésio A. (2003) Exaerete lepeletieri (Hymenoptera: Apidae: Euglossina): a new cleptoparasitic bee from Amazônia, Lundiana 4, 117–120.Google Scholar
  26. Porcher E., Giraud T., Lavigne C. (2006) Genetic differentiation of neutral markers and quantitative traits in predominantly selfing metapopulations: confronting theory and experiments with Arabidopsis thaliana, Genet. Res. 87, 1–12.PubMedCrossRefGoogle Scholar
  27. Ramírez S., Dressler R.L., Ospina M. (2002) Abejas euglossinas (Hymenoptera: Apidae) de la región neotropical: listado de especies con notas sobre su biología, Biota Colomb. 3, 7–118.Google Scholar
  28. Rasmussen C. (2009) Diversity and abundance of orchid bees (Hymenoptera: Apidae, Euglossini) in a tropical rainforest sucession, Neotrop. Entomol. 38, 66–73.CrossRefGoogle Scholar
  29. Roubik D.W., Hanson P.E. (2004) Orchid bees from tropical America: biology and field guide. INBio Press, Santo Domingo de Heredia, Costa Rica.Google Scholar
  30. Roubik D.W., Weight L.A., Bonilla M.A. (1996) Population genetics, diploid males, and limits to social evolution of euglossine bees, Evolution 50, 931–935.CrossRefGoogle Scholar
  31. Sandino J.C. (2004) Are there any agricultural effects on the capture rates of male euglossine bees (Apidae: Euglossini)? Rev. Biol. Trop. 52, 115–118.PubMedGoogle Scholar
  32. Santos M.L., Garófalo C.A. (1994) Nesting biology and nest re-use of Eulaema nigrita (Hymenoptera: Apidae, Euglossini), Insectes Soc. 41, 91–110.CrossRefGoogle Scholar
  33. Sheppard W.S., McPheron B.A. (1991) Ribosomal DNA diversity in Apidae, in: Smith D.R. (Ed.), Diversity in the genus Apis, Westview, Boulder (CO), pp. 89–102.Google Scholar
  34. Sofia S.H., Paula F.M., Santos A.M., Almeida F.S., Sodré L.M.K. (2005) Genetic structure analyses of Eufriesea violacea (Hymenoptera, Apidae) populations from southern Brazilian Atlantic rainforest remnants, Genet. Mol. Biol. 28, 479–484.CrossRefGoogle Scholar
  35. Souza R.O., Cervini M., Del Lama M.A., Paxton R.J. (2007) Microsatellite loci for euglossine bees (Hymenoptera: Apidae), Mol. Ecol. Notes 6, 1352–1356.CrossRefGoogle Scholar
  36. Suzuki K.M., Arias M.C., Giangarelli D.C., Freiria G.A., Sofia S.H. (2010) Mitochondrial DNA diversity of orchid bee Euglossa fimbriata (Hymenoptera: Apidae) populations assessed by PCR-RFLP, Biochem. Genet. 48, 326–341.PubMedCrossRefGoogle Scholar
  37. Takahashi N.C., Peruquetti R.C., Del Lama M.A., Campos L.A.O. (2001) A reanalysis of diploid male frequencies in euglossine bees (Hymenoptera: Apidae), Evolution 55, 1897–1899.PubMedCrossRefGoogle Scholar
  38. van Wilgenburg E., Driessen G., L.W., Beukeboom L.W. (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design, Front. Zool. 3, 1–15.PubMedCrossRefGoogle Scholar
  39. Walsh P.S., Metzger D.A., Higuchi R. (1991) Chelexr® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material, BioTech. 10, 506–513.Google Scholar
  40. Weir B., Cockerham C. (1984) Estimating F-statistics for the analysis of population structure, Evolution 38, 1358–1370.CrossRefGoogle Scholar
  41. Zanette L.R.S., Martins R.P., Ribeiro S.P. (2005) Effects of urbanization on Neotropical wasp and bee assemblages in a Brazilian metropolis, Landscape Urban Plan. 71, 105–121.CrossRefGoogle Scholar
  42. Zayed A., Packer L. (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc. Natl. Acad. Sci. 102, 10742–10746.PubMedCrossRefGoogle Scholar
  43. Zayed A., Roubik D.W., Packer L. (2004) Use of diploid male frequency data as an indicator of pollinator decline. Proc. R. Soc. Lond. B 271, S9–S12.CrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Natália de Campos Muradas Cerântola
    • 1
  • Cíntia Akemi Oi
    • 1
  • Marcelo Cervini
    • 2
  • Marco Antonio Del Lama
    • 1
  1. 1.Laboratório de Genética Evolutiva de Himenópteros, Departamento de Genética e EvoluçãoUniversidade Federal de São CarlosSão Carlos, São PauloBrazil
  2. 2.Laboratório de Imunogenética — DNA, Departamento de Genética e EvoluçãoUniversidade Federal de São CarlosSão Carlos, São PauloBrazil

Personalised recommendations