Apidologie

, Volume 42, Issue 2, pp 150–161

Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch

  • Irati Miguel
  • Michel Baylac
  • Mikel Iriondo
  • Carmen Manzano
  • Lionel Garnery
  • Andone Estonba
Original Article
  • 168 Downloads

Abstract

Traditional morphometrics, allozymes, and mitochondrial data have supported a close relationship between the M branch subspecies A. m. iberiensis and the North African subspecies (A branch). However, studies using nuclear DNA markers have revealed a clear distinction between the latter and the two European M branch subspecies. In help resolve this paradox, we analyzed 663 colonies from six European and African subspecies. A geometric morphometrics approach was applied to the analysis of wing shape, and the results were compared with data of six microsatellite loci. Both data sets were found to be highly consistent and corroborated a marked divergence of West European subspecies from North African ones. This supports the hypothesis that the presence of the African lineage mitotype in Iberian honey bee populations is likely the consequence of secondary introductions, with a minimal African influence within the current Iberian genetic background. Wing geometric morphometrics appears more appropriate than mitochondrial DNA analysis or traditional morphometrics in the screening and identification of the Africanization process.

Keywords

honeybee evolutionary branch wing morphology geometric morphometrics microsatellite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams D.C., Rohlf F.J., Slice D.E. (2004) Geometric morphometrics: ten years of progress following the revolution, Ital. J. Zool. 71, 5–16.CrossRefGoogle Scholar
  2. Arias M.C., Sheppard W.S. (1996) Molecular phylogenetics of honey bee subespecies (Apis mellifera), Mol. Phylogenet. Evol. 5, 557–566.PubMedCrossRefGoogle Scholar
  3. Arias M.C., Rinderer T.E., Sheppard W.S. (2006) Further characterization of honey bees from the Iberian Peninsula by allozyme, morphometric and mtDNA haplotype analyses, J. Apic. Res. 45, 188–196.CrossRefGoogle Scholar
  4. Baylac M., Daufresne T. (1996) Wing venation variability in Monarthropalpus buxi (Diptera, Cecidomyiidae) and the quaternary coevolution of box (Buxus sempervirens L.) and its midge: A GeometricalMorphometric Analysis, in: Advances in Morphometrics, NATO-ASI Series A, Plenum Press, pp. 285–301.Google Scholar
  5. Baylac M., Friess M. (2005) Fourier descriptors, Procrustes superimposition, and data dimensionality: an example of cranial shape analysis in modern human populations, in: Slice D.E. (Ed.), Modern Morphometrics in Physical Anthropology, Kluwer, pp. 145–165.Google Scholar
  6. Baylac M., Penin X. (1998) Wing static allometry in Drosophila simulans males (Diptera, Drosophilidae) and its relationships with developmental compartments, Acta Zool. 44, 97–112.Google Scholar
  7. Baylac M., Garnery L., Tharavy D., Pedraza-Acosta J., Rortais A., Arnold G. (2008) ApiClass, an automatic wing morphometric expert system for honeybee identification, [online] http://apiclass.mnhn.fr.
  8. Baylac M., Villemant C., Simbolotti G. (2003) Combining Geometric Morphometrics with Pattern Recognition for the investigation of Species Complexes, Biol. J. Linn. Soc. 80, 89–98.CrossRefGoogle Scholar
  9. Bonnet E., Van de Peer Y. (2002) ZT: a software tool for simple and partialMantel tests, J. S. S. 7, 1–12.Google Scholar
  10. Bookstein F. (1991) Morphometric tools for landmark data: geometry and biology, Cambridge University Press, Cambridge.Google Scholar
  11. Bookstein F.L., Chernoff B., Elder R.L., Humphries J.M., Smith G.R., Strauss R.E. (1985) Morphometrics in evolutionary biology: the geometry of size and shape change, with examples from fishes, Academy of Natural Sciences of Philadelphia, No. 15.Google Scholar
  12. Canovas F., De la Rua P., Serrano J., Galian J. (2007) Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae), J. Zool. Syst. Evol. Res. 46, 24–30.Google Scholar
  13. Cornuet J.M., Fresnaye J. (1989) Etude biométrique de colonies d’abeilles d’Espagne et du Portugal, Apidologie 20, 93–101.CrossRefGoogle Scholar
  14. Darroch J.N., Mosimann J.E. (1985) Canonical and principal components of shape, Biometrika 72, 241–252.CrossRefGoogle Scholar
  15. Diniz-Filho J.A., Fuchs S., Arias M.C. (1999) Phylogeographical autocorrelation of phenotypic evolution in honey bees (Apis mellifera L.), Heredity 83, 671–680.PubMedCrossRefGoogle Scholar
  16. Dryden I.L., Mardia K.V. (1998) Statistical shape analysis, John Wiley & Sons.Google Scholar
  17. Estoup A., Garnery L., Solignac M., Cornuet J.M. (1995) Microsatellite variation in honey bee (Apis mellifera) populations:hierarchical genetic structure and test of infinitemodels, Genetics 140, 679–695.PubMedGoogle Scholar
  18. Evin A., Baylac M., Ruedi M., Mucceda M., Pons J.P. (2008) Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): a geometric morphometric appraisal, Biol. J. Linn. Soc. 95, 529–538.CrossRefGoogle Scholar
  19. Franck P., Garnery L., Solignac M., Cornuet J.M. (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data, Evolution 52, 1119–1134.CrossRefGoogle Scholar
  20. Franck P., Garnery L., Solignac M., Cornuet J.M. (2000) Molecular confirmation of a fourth lineage in honeybees from Near East, Apidologie 31, 167–180.CrossRefGoogle Scholar
  21. Franck P., Garnery L., Loiseau A., Oldfroyd B.P., Hepburn H.R., Solignac M., Cornuet J.M. (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data, Heredity 86, 420–430.PubMedCrossRefGoogle Scholar
  22. Francoy T.M., Prado P.R.R., Gonçalves L.S., da Fontoura Costa L., De Jong D. (2006) Morphometric differences in a single wing cell can discriminate Apis mellifera racial types, Apidologie 37, 91–97.CrossRefGoogle Scholar
  23. Francoy T.M., Wittmann D., Drauschke M., Müller S., Steinhage V., Bezerra-Laure M.A.F., De Jong D., Concalves, L.S. (2008) Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures, Apidologie 39, 488–494.CrossRefGoogle Scholar
  24. Francoy T.M., Wittmann D., Steinhage V., Drauschke M., Müller M., Cunha D.R., Nascimento A.M., Figueiredo V.L.C., Simoes Z.L.P., De Jong D., Arias M.C., Gonçalves L.S. (2009) Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization, Genet. Mol. Res. 8, 709–717.PubMedCrossRefGoogle Scholar
  25. Garnery L., Cornuet J.M., Solignac M. (1992) Evolutionary history of the honey bee (Apis mellifera L.) inferred from mitochondrial DNA analysis, Mol. Ecol. 1, 145–154.PubMedCrossRefGoogle Scholar
  26. Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998a) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). I. Mitochondrial DNA, Genet. Sel. Evol. 30, S31–S47.CrossRefGoogle Scholar
  27. Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998b) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). II. Microsatellite loci, Genet. Sel. Evol. 30, S49–S74.CrossRefGoogle Scholar
  28. Garnery L., Mosshine E.H., Oldroyd B.P., Cornuet J.M. (1995) Mitochondrial DNA variation in Moroccan and Spanish honey bee populations, Mol. Ecol. 4, 465–471.CrossRefGoogle Scholar
  29. Gould S.J. (1966) Allometry and size in ontogeny and phylogeny, Biol. Rev. 41, 587–640.PubMedCrossRefGoogle Scholar
  30. Hamon L.J., Gibson, R. (2006) Multivariate phenotypic evolution among island and mainland populations of the ornate day gecko, Phelsuma ornata, Evolution 60, 2622–2632.Google Scholar
  31. Hepburn H.R., Radlof S.E. (1996) Morphometric and pheromonal analysis of Apis mellifera L. along a transect from the Sahara to the Pyrenees, Apidologie 27, 35–45.CrossRefGoogle Scholar
  32. Hepburn H.R., Radloff S.E. (1998) Honeybee of Africa, Springer, Berlin.Google Scholar
  33. Klingenberg C.P., Badyaev A.V., Sowry S.M., Beckwith N.J. (2001) Inferring developmental modularity from morphological integration: Analysis of individual variation and asymmetry in bumblebee wings, Am. Nat. 157, 11–23.PubMedCrossRefGoogle Scholar
  34. Langella O. (2002) Populations, 1.2.28, Copyright (C) 1999, CNRS UPR9034.Google Scholar
  35. Lobo J.A., Krieger H. (1992) Maximum likelihood estimates of gene frequencies and racial admixture in Apis mellifera L. (Africanized honeybees), Heredity 68, 441–448.Google Scholar
  36. Mahalanobis P.C. (1936) On the generalized distance in statistics, Proc. Acad. Natl. Sci. 12, 49–55.Google Scholar
  37. Marroig G., Cheverud J. (2004) Cranial evolution in sakis (Pithecia, Platyrrhini) I: Interspecific differentiation and allometric patterns, Am. J. Phys. Anthropol. 125, 266–278.PubMedCrossRefGoogle Scholar
  38. Mattu V.K., Verma L.R. (1983) Comparative morphometric studies on the Indian honeybee of the North-west Himalaya 1. Tongue and Antenna, J. Apic. Res. 22, 79–85.Google Scholar
  39. Meixner M., Ruttner F., Koeniger N., Koeniger G. (1989) The mountain bees of the Kilimanjaro region and their relation to neighboring bee populations, Apidologie 20, 165–174.CrossRefGoogle Scholar
  40. Meixner M., Sheppard W.S., Dietz A., Krell R. (1994) Morphological and allozyme variability in honey bees from Kenya, Apidologie 25, 188–202.CrossRefGoogle Scholar
  41. Miguel I., Iriondo M., Garnery L., Sheppard W.S., Estonba A. (2007) Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post glacial re-colonization routes in the western Europe, Apidologie 38, 141–155.CrossRefGoogle Scholar
  42. Monteiro L.R. (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape, Syst. Biol. 48, 192–199.PubMedCrossRefGoogle Scholar
  43. Monteiro, L.R., Bordin B., DosReis S.F. (2000) Shape distances, shape spaces and the comparison of morphometric methods, TREE 15, 217–220.PubMedGoogle Scholar
  44. Monteiro L.R., Diniz-Filho J.A.F. dos Reis S.F., Araújo E. (2002) Geometric Estimates of Heritability in Biological Shape, Evolution 56, 563–572.PubMedGoogle Scholar
  45. Mosimann J.E., James F.C. (1979) New statistical methods for allometry with application to Florida red-winged blackbirds, Evolution 33, 444–459.CrossRefGoogle Scholar
  46. Neff N.A., Smith G.R. (1979) Multivariate Analysis of Hybrid Fishes, Syst. Zool. 28, 176–196.CrossRefGoogle Scholar
  47. Nei M., Tajima F., Tateno Y. (1983) Accuracy of estimated phylogenetic trees from molecular data, J. Mol. Evol. 19, 153–170.PubMedCrossRefGoogle Scholar
  48. Piry S., Alapetite A., Cornuet, J.M., Paetkau D., Baudouin L., Estoup A. (2004) GeneClass2: A Software for Genetic Assignment and First-Generation Migrant Detection, J. Hered. 95, 536–539.PubMedCrossRefGoogle Scholar
  49. Pretorius E. (2005) Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera — a case study based on the genus Tachyphex Kohl (Hymenoptra: Sphecidae: Larrinae), Aust. J. Entomol. 44, 113–121.CrossRefGoogle Scholar
  50. Rannala B., Mountain J.L. (1997) Detecting immigration by using multilocus genotypes, Proc. Natl. Acad. Sci. 94, 9197–9221.PubMedCrossRefGoogle Scholar
  51. Ripley B.D. (1996) Pattern recognition and neural networks, Cambridge University Press, Cambridge, G.B.Google Scholar
  52. Roberts W.C. (1961) Heterosis in the Honey bee as shown by morphological characters in inbred and hybrid bees, Ann. Entomol. Soc. Am. 54, 878–882.Google Scholar
  53. Rohlf F.J. (1999) Shape Statistics: Procrustes superimposition and tangent spaces, J. Classif. 16, 197–223.CrossRefGoogle Scholar
  54. Rohlf F.J., Slice D. (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool. 39, 40–59.CrossRefGoogle Scholar
  55. Ruttner F. (1988) Biogeography and taxonomy of honeybees, Springer Verlag, Berlin.Google Scholar
  56. Ruttner F., Tassencourt L., Louveaux J. (1978) Biometrical-statistical analysis of the geographic variability of Apis mellifera L., Apidologie 9, 363–381.CrossRefGoogle Scholar
  57. Ruttner F., Pour-Elmi M., Fuchs S. (2000) Ecoclines in the Near East along 36°N latitude in Apis mellifera L., Apidologie 31, 157–166.CrossRefGoogle Scholar
  58. Sheppard W.S., Arias M.C., Grech A., Meixner M.D. (1997) Apis mellifera ruttneri, a new honey bee subspecies from Malta, Apidologie 28, 287–293.CrossRefGoogle Scholar
  59. Smith D.R., Crespi B.J., Bookstein F.L. (1997) Fluctuating asymmetry in the honey bee, Apis mellifera: effect of ploidy and hybridization, J. Evol. Biol. 10, 551–574.CrossRefGoogle Scholar
  60. Smith D.R, Glenn T.C. (1995) Allozyme polymorphisms in Spanish honeybees (Apis mellifera iberica), J. Hered. 86, 12–16.PubMedGoogle Scholar
  61. Smith D.R., Palopoli M.F., Taylor B.R., Garnery L., Cornuet J.M., Solignac M., Brown W.M. (1991) Geographical overlap of two mitochondrial genomes in Spanish honeybees (Apis mellifera iberica), J. Hered. 82, 96–100.PubMedGoogle Scholar
  62. Sprent P. (1972) The mathematics of size and shape, Biometrics 28, 23–27.PubMedCrossRefGoogle Scholar
  63. Tofilski A. (2008) Using geometric morphometrics and standard morphometrics to discriminate three honeybee subspecies, Apidologie 39, 558–563.CrossRefGoogle Scholar
  64. Updegraff G. (1990) MeasurementTV, version 1.3. Data Crunch 304 avenue Adobe, Dan Clemente, CA 92672, USA.Google Scholar
  65. Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsui N.D. (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera, Science 27, 642–645.CrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Irati Miguel
    • 1
  • Michel Baylac
    • 2
  • Mikel Iriondo
    • 1
  • Carmen Manzano
    • 1
  • Lionel Garnery
    • 3
    • 4
  • Andone Estonba
    • 1
  1. 1.Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and TechnologyUniversity of the Basque CountryLeioaSpain
  2. 2.Muséum National d’Histoire NaturelleCNRS UMR 7205 and UMS 2700, Plate-Forme MorphométrieParisFrance
  3. 3.Laboratoire Évolution, Génomes et SpéciationCNRSGif-sur-Yvette CedexFrance
  4. 4.UFR des sciencesUniversité de Versailles Saint-Quentin-en-YvelinesVersaillesFrance

Personalised recommendations