, Volume 42, Issue 2, pp 128–139 | Cite as

Phoretic mites (Acari: Chaetodactylidae) associated with the solitary bee Tetrapedia diversipes (Apidae: Tetrapediini)

  • Guaraci Duran Cordeiro
  • Mariana Taniguchi
  • Carlos Holger Wenzel Flechtmann
  • Isabel Alves-dos-Santos
Original Article


Solitary bees of the genus Tetrapedia have a specific association with mites of the genus Roubikia (Chaetodactylidae). These mites are frequently found attached to active Tetrapedia bees. We quantified the number of mites on individuals of Tetrapedia diversipes Klug and examined the interaction between these species. Nests of T. diversipes were obtained from trap-nests placed in four localities in São Paulo, Brazil. The study lasted from March 2007 to February 2009. Out of a total of 650 nests with emergences, 118 were infested with mites (Roubikia sp.). From these nests, 176 individuals of T. diversipes emerged with mites on their bodies. Additionally, six individuals of Coelioxoides waltheriae, the specific kleptoparasitic bee to T. diversipes, emerged. Mites were attached mainly to the mesosoma. All nests infected with mites did not presented mortality of the immature. The mortality rate of nests was inversely related to the level of mite infestation, suggesting a mutualistic interaction in which mites may remove fungi from the nests, while the bees would provide the mites with transport, dispersal, and shelter.


solitary bee phoresy trap-nest Atlantic Forest symbiosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves-dos-Santos I., Melo G.A.R., Rozen J.G. (2002) Biology and immature stages of the bee tribe Tetrapediini (Hymenoptera: Apidae), Am. Mus. Novitates 3377, 1–45.CrossRefGoogle Scholar
  2. Baker E.W., Roubik D.W., Delfinado-Baker M. (1987) The developmental stages and dimorphic males of Chaetodactylus panamensis, n. sp. (Acari: Chaetodactylidae) associated with solitary bee (Apoidea: Anthophoridae), Int. J. Acarol. 13, 65–73.CrossRefGoogle Scholar
  3. Biani N.B., Mueller U.G., Wcislo W.T. (2009) Cleaner mites: sanitary mutualism in the miniature ecosystem of neotropical bee bests, Am. Nat. 173, 841–847.PubMedCrossRefGoogle Scholar
  4. Camarotti-de-Lima M.F., Martins C.F. (2005) Biologia de nidificação e aspectos ecológicos de Anthodioctes lunatus (Smith) (Hymenoptera:Megachilidae, Anthidiini) em área de tabuleiro nordestino, PB. Neotrop. Entomol. 34, 375–380.CrossRefGoogle Scholar
  5. Camillo E. (2005) Nesting biology of four Tetrapedia species in trap-nests (Hymenoptera, Apidae, Tetrapediini), Rev. Biol. Trop. 53, 175–186.PubMedGoogle Scholar
  6. Camillo E., Garófalo C.A., Serrano J.C., Mucilo G. (1995) Diversidade e abundância sazonal de abelhas e vespas solitárias em ninhos-armadilhas (Hymenoptera, Apocrita, Aculeata), Rev. Bras. Entomol. 39, 459–470.Google Scholar
  7. Eickwort G.C. (1994) Evolution and life-history patterns of mites associated with bees, in: Houck MA (Ed.), Mites: Ecological and Evolutionary Analyses of Life-History Patterns, New York, Chapman & Hall, pp. 218–251.Google Scholar
  8. Engel M.S. (2001) A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera), Bull. Am. Mus. Nat. Hist. 259, 1–192.CrossRefGoogle Scholar
  9. Fain A. (1966) Notes sur la biologie des acariens du genre Chaetodactylus et en particulier de C. osmiae, parasite des abeilles solitaires Osmia rufa et O. cornuta en Belgique (Sarcoptiformes: Chaetodactylidae), Bull. Ann. Soc. R. Belge Entomol. 102, 249–261.Google Scholar
  10. Fain A. (1981) Notes on the hypopi of the genus Chaetodactylus Rondani, 1866 (Acari, Chaetodactylidae), Bull. Inst. R. Sci. Nat. Belg. Entomol. 53, 1–9.Google Scholar
  11. Flechtmann C.H.W., Camargo C.A. (1974) Acari associated with stingless bees (Meliponidae, Hymenoptera) from Brazil, in: Piffl E. (Ed.), Proc. 4th Int. Congr. Acarol. Budapest, Académiai Kiadó, pp. 315–319.Google Scholar
  12. Garófalo C.A., Martins C.F., Alves-dos-Santos I. (2004) The Brazilian solitary bee species caught in trap nests, in: International Workshop on solitary bees and their role in pollination, Beberibe, CE. Solitary Bees: conservation, rearing and management for pollination, Fortaleza: Impresa Universitária, pp. 77–84.Google Scholar
  13. Houck M.A., O’Connor B.M. (1991) Ecological and evolutionary significance of phoresy in the Astigmata, Annu. Rev. Entomol. 36, 611–636.CrossRefGoogle Scholar
  14. Klimov P.B., O’Connor B.M. (2007) Ancestral area analysis of chaetodactylid mites (Acari: Chaetodactylidae), with description of new early derivative genus and six new species from the Neotropics, Ann. Entomol. Soc. Am. 100, 810–829.CrossRefGoogle Scholar
  15. Klimov P.B., O’Connor B.M. (2008) Morphology, Evolution, and Host Associations of Bee-Associated Mites of the Family Chaetodactylidae (Acari: Astigmata), with a monographic revision of North American taxa, Miscellaneous Publications, Museum of Zoology, University of Michigan 199, pp. 1–243.Google Scholar
  16. Klimov P.B., O’Connor B.M., Knowles L.L. (2007a) Museum specimens and phylogenies elucidate ecology’s role in coevolutionary associations between mites and their bee hosts, Evolution 61, 1368–1379.PubMedCrossRefGoogle Scholar
  17. Klimov P.B., Vinson S.B., O’Connor B.M. (2007b) Acarinaria in associations of apid bees (Hymenoptera) and chaetodactylid mites (Acari), Invertebr. Syst. 21, 109–136.CrossRefGoogle Scholar
  18. Krombein K.V. (1962) Natural history of Plummers Island, Maryland. XVI. Biological notes on Chaetodactylus krombeini Baker, a parasitic mite of the megachilid bee, Osmia (Osmia) lignaria Say (Acarina, Chaetodactylidae), Proc. Biol. Soc. Wash. 75, 237–250.Google Scholar
  19. Menezes C., Coletto-Silva A., Gazeta G.S., Kerr W.E. (2009) Infestation by Pyemotes tritici (Acari, Pyemotidae) causes death of stingless bee colonies (Hymenoptera: Meliponina), Genet. Mol. Res. 8, 630–634.PubMedCrossRefGoogle Scholar
  20. Michener C.D. (2000) The Bees of the World. Baltimore, The John Hopkins University Press.Google Scholar
  21. Morato E.F. (2001) Biologia e ecologia de Anthodioctes morato Urban (Hymenoptera, Megachilidae, Anthidiini) em matas contínuas e fragmentos na Amazônia Central, Brasil. Rev. Bras. Zool. 18, 729–736.CrossRefGoogle Scholar
  22. O’Connor B.M. (1979) Evolutionary origins of astigmatid mites inhabiting stored products, in: Rodriguez J.G. (Ed.), Recent advances in acarology (1), Academic Press, New York, pp. 273–278.Google Scholar
  23. O’Connor B.M. (1993a) The mite community associated with Xylocopa latipes (Hymenoptera: Anthophoridae: Xylocopinae) with description of a new type of acarinarium, Int. J. Acarol. 19, 159–166.CrossRefGoogle Scholar
  24. O’Connor B.M. (1993b) Generic relationships in the Chaetodactylidae (Acari: Astigmata) with description of a new genus, Acarologia 34, 345–362.Google Scholar
  25. O’Connor B.M., Klompen J.S.H. (1999) Phylogenetic perspectives on mite-insect associations: the evolution of acarinaria, in: Needham G.R., Mitchell R., Horn D.J., Welbourn W.C. (Eds.), Acarology IX, Vol. 2, Symposia. Columbus, Ohio, Ohio Biological Survey, pp. 63–71.Google Scholar
  26. Okabe K., Makino S. (2002) Phoretic mite fauna on the large carpenter bee Xylocopa appendiculata circumvolans (Hymenoptera: Apidae) with descriptions of its acarinaria on both sexes, J. Acarol. Soc. Jpn 11, 73–84.CrossRefGoogle Scholar
  27. Oldroyd B.P. (1999) Coevolution while you wait: Varroa jacobsoni, a new parasite of western honeybees, Trends. Ecol. Evol. 14, 312–315.PubMedCrossRefGoogle Scholar
  28. Park Y.L., Kondo V., White J., West T., McConnell B., McCutcheon T. (2009) Nest-to-nest dispersal of Chaetodactylus krombeini (Acari, Chaetodactylidae) associated with Osmia cornifrons (Hym., Megachilidae), J. Appl. Entomol. 133, 174–180.CrossRefGoogle Scholar
  29. Qu D., Maeta Y., Goubara M., Nakatsuka K.J., Kozo J., Kenji K. (2002) Reproductive strategy in the two species of cleptoparasitic astigmatid mites, Chaetodactylus nipponicus and Tortonia sp. (Acari: Chaetodactylidae and Suidasiidae), infesting Osmia cornifrons (Hymenoptera: Megachilidae). I. Invasion/infestation patterns and partial use of the host food, Jpn J. Entomol. 5, 121–141.Google Scholar
  30. Roubik D.W. (1987) Notes on the biology of anthophorid bee Tetrapedia and the mite Chaetodactylus panamensis Baker, Roubik and Delfinado-Baker (Acari: Chaetodactylidae), Int. J. Acarol. 13, 75–76.CrossRefGoogle Scholar
  31. Schwarz H.H., Huck K. (1997) Phoretic mites use flowers to transfer between foraging bumblebees, Insectes Soc. 44, 303–310.CrossRefGoogle Scholar
  32. Trouessart E.L. (1904) Sur la coexistence de deux formes d’Hypopes dans une même espèce, chez la Acariens du genre Trichotarsus,. C. R. Soc. Biol. 56, 234–237.Google Scholar
  33. Vicidomini S. (1996) Biologia di Xylocopa (Xylocopa) violacea (L., 1758) (Hymenoptera: Apidae): interazione con Sennertia (Sennertia) cerambycina (Acari Chaetodactylidae), Boll. Zool. Agr. Bachic. 28, 71–76.Google Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Guaraci Duran Cordeiro
    • 1
  • Mariana Taniguchi
    • 1
  • Carlos Holger Wenzel Flechtmann
    • 2
  • Isabel Alves-dos-Santos
    • 3
  1. 1.Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São Paulo (USP)Ribeirão Preto, SPBrasil
  2. 2.Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz (ESALQ)Universidade de São Paulo (USP)Piracicaba, SPBrasil
  3. 3.Laboratório de Abelhas, Departamento de Ecologia, Instituto de BiociênciasUniversidade de São Paulo (USP)São Paulo, SPBrasil

Personalised recommendations