, Volume 42, Issue 1, pp 29–38 | Cite as

Effects of age, season and genetics on semen and sperm production in Apis mellifera drones

  • John W. Rhodes
  • Steven Harden
  • Robert Spooner-Hart
  • Denis L. AndersonEmail author
  • Gretchen Wheen
Original Article


Adult drone honey bees from 4 Australian breeding lines were reared under similar conditions and examined for semen and sperm production when 14, 21 and 35 days old, during spring, summer and autumn. Almost half (40.5%) of all drones examined did not release any semen when manually everted. For those that released semen, the average volume released per drone was 1.09 μL (range 0.72 (±0.04)−1.12 (±0.04) μL) and the average number of sperms in the semen per drone was 3.63 × 106 (range 1.88 (±0.14)−4.11 (±0.17) × 106). The release of semen was dependent on breeding line and age (P < 0.05), but not on the rearing season. The volume of semen released per drone was dependent on season, age, and breeding line (P < 0.05), while the concentration of sperm in the semen was dependent on season and breeding line (P < 0.05). Hence our data indicate that genetics underpins the maturation of drone honey bees as well as the volume of semen they release and the concentration of sperm in that semen.


Apis mellifera drones semen production sperm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson D.L. (2004) Improving queen bee production, Publication No. 04/153, Rural Industries Research and Development Corporation, Canberra, Australia, 16 p.Google Scholar
  2. Bishop G.H. (1920a) Fertilization in the honeybee, I. The male sexual organs: their histological structure and physiological functioning, J. Exp. Zool. 31, 225–265.Google Scholar
  3. Bishop G.H. (1920b) Fertilization in the honeybee, II. Disposal of the sexual fluids in the organs of the female, J. Exp. Zool. 31, 267–286.Google Scholar
  4. Collins A.M., Donoghue A.M. (1999) Viability assessment of honey bee, Apis mellifera sperm using dual fluorescent staining, Theriogenology 51, 1513–1523.PubMedCrossRefGoogle Scholar
  5. Collins A.M., Pettis J.S. (2001) Effect of varroa infestation on semen quality, Am. Bee J. 141, 590–593.Google Scholar
  6. Fukuda H., Ohtani T. (1977) Survival and life span of drone honeybees, Res. Pop. Ecol. 19, 51–68.CrossRefGoogle Scholar
  7. Gilmour A.R., Gogel B.J., Cullis B.R., Thompson R. (2006) ASReml User Guide Release 2.0. VSN International Ltd., Hemel Hempstead, UK.Google Scholar
  8. Kerr W.E., Zucchi R., Nakakaira, J.T., Butolo J.E. (1962) Reproduction in social insects, J.N.Y. Entomol. Soc. 70, 265–270.Google Scholar
  9. Koeniger G., Koeniger N., Fabritius M. (1979) Some detailed observations of mating in the honeybee, Bee World 60, 53–57.Google Scholar
  10. Koeniger G., Koeniger N., Tingek S., Phiancharoen M. (2005) Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones, Apidologie 36, 279–284.CrossRefGoogle Scholar
  11. Köhler F. (1955) Untersuchungen zum Problem der künstlichen Begattung der Bienenkönigin (Apis mellifica L.), Würzburg: Inaugral-Dissertation.Google Scholar
  12. Page R.E. (1986) Sperm utilization in social insects, Annu. Rev. Entomol. 31, 297–320.CrossRefGoogle Scholar
  13. R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: Scholar
  14. Rhodes J., Somerville. D. (2003) Introduction and early performance of queen bees — some factors affecting success, Publication No. 03/049, Rural Industries Research and Development Corporation, Canberra, Australia.Google Scholar
  15. Rinderer T.E. (1986) Bee genetics and breeding, Academic Press, Orlando, Florida, USA.Google Scholar
  16. Rinderer T.E., Guzman L.I., Lancaster V.A., Delatte G.T., Stelzer J.A. (1999) Varroa in the mating yard. 1. The effects of Varroa jacobsoni and Apistan® on drone honey bees, Am. Bee J. 139, 134–139.Google Scholar
  17. Ruttner F. (1956) The mating of the honeybee, Bee World 37, 3–15.Google Scholar
  18. Schlüns H., Schlüns E.A., van Praagh J., Moritz R.F.A. (2003) Sperm numbers in drone honey bees (Apis mellifera) depend on body size, Apidologie 34, 577–584.CrossRefGoogle Scholar
  19. Winston M. (1987) The biology of the honeybee, Harvard University Press, Cambridge, Massachusetts, London, England, 281 p.Google Scholar
  20. Witherell P.C (1972) Flight activity and natural mortality of normal and mutant drone honeybees, J. Apic. Res. 11, 65–75.Google Scholar
  21. Woyke J. (1960) Natural and artificial insemination of queen honey bees, Pszczel. Zesz. Nauk. 4, 183–275.Google Scholar
  22. Woyke J. (1964) Causes of repeated mating flights by queen honeybees, J. Apic. Res. 2, 17–24.Google Scholar
  23. Woyke J., Ruttner F. (1958) An anatomical study of the mating process in the honeybee, BeeWorld 39, 3–18.Google Scholar
  24. Zander E. (1916) Die Ausbildung des Geschlechtes bei der Honigbiene (Apis mellifera L.), Z. Angew. Entomol. 3, 1–20.CrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • John W. Rhodes
    • 1
  • Steven Harden
    • 1
  • Robert Spooner-Hart
    • 2
  • Denis L. Anderson
    • 3
    Email author
  • Gretchen Wheen
    • 4
  1. 1.NSW Department of Primary Industries (DPI)Tamworth Agricultural InstituteCalalaAustralia
  2. 2.Centre for Plant and Food Science, Hawkesbury CampusUniversity of Western SydneyPenrith South DCAustralia
  3. 3.CSIRO EntomologyCanberraAustralia
  4. 4.RichmondAustralia

Personalised recommendations