Advertisement

Apidologie

, Volume 41, Issue 3, pp 243–255 | Cite as

Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping?

  • Rémy VandameEmail author
  • María Alejandra Palacio
Review Article

Abstract

The Latin American subcontinent contains some of the world’s major honey producing and exporting countries, but the status of bee health in this part of the world has not been clearly documented. There have been no reports of massive colony losses in Latin America, at least from the symptoms of CCD (colony collapse disorder) or in the proportion and extent of the situations in the US and Europe. We examine possible reasons for the difference, and develop hypotheses that this prevailing good bee health could be due to: (1) the management of generally unselected bees with a certain natural resistance to diseases (tropical regions) or the selection of disease resistant bees (temperate regions); (2) a lower proportion of cropland over the total land area, resulting in more abundant or higher-quality pollen resources for bees; (3) the generally small-scale, low-income and little subsidized agriculture, and concomitant lower use of insecticides compared to industrialized countries. These general parameters may act synergistically, resulting in a large number of configurations across the tremendous ecological, social and economic diversity of Latin America. We suggest that the health of honey bees in Latin America may be ultimately due to the practices of low-income agriculture and beekeeping in the region, leading to more sustainable conditions for the bees. However the increasing trend of land use intensification in some parts of Latin America could lead to declines in honey bee health and population size.

honey bee health colony losses disease resistance genetic diversity pollen nutrition 

La santé de l’abeille préservée en Amérique latine: un fragile équilibre dû à une agriculture et une apiculture peu intensives?

santé de l’abeille perte des colonies résistance aux maladies diversité génétique nutrition sur pollen 

Gesunde Honigbienen in Lateinamerika: ein fragiles Gleichgewicht basierend auf der geringen Intensität von Landwirtschaft und Imkerei

Zusammenfassung

Während der letzten Jahre wurden in Europa und den USA mehrfach Verluste von Bienenvölkern (Apis mellifera L.) dokumentiert. Dabei wurden Völkerverluste, die durch den raschen Verlust der Adultbienen hervorgerufen wurden, als „Colony Collapse Disorder“ (CCD) bezeichnet. Obwohl sich auf dem lateinamerikanischen Subkontinent einige der größ-ten Honigproduktions- und Honigexportländer der Welt befinden, fehlen bisher klare Dokumentationen über den Gesundheitsstatus der dortigen Honigbienen. Bisher gibt es keine Berichte über massive Völkerverluste in Lateinamerika, zumindest nicht mit CCD-Symptomen oder in dem Ausmaß, wie sie aus Europa und den USA berichtet wurden. Wir prüfen die möglichen Gründe für diese Unterschiede und entwickeln folgende Hypothesen für die Verbreitung „gesunder Bienen“ in Lateinamerika: (1) es wird meist mit unselektierten Bienen gearbeitet, die über natürliche Krankheitsresistenzen verfügen (tropische Regionen) oder es werden krankheitsresistente Bienen selektiert (gemäßigte Regionen); (2) der Anteil der Agrarfläche am Gesamtgebiet ist relativ gering, wodurch es zu einer ergiebigeren bzw. qualitativ hochwertigeren Pollenversorgung kommt; (3) die allgemein kleinräumig strukturierte Landwirtschaft mit geringem Einkommen und wenig Subventionen führt zu einem geringeren Einsatz von Insektiziden im Vergleich zu den industrialisierten Ländern.

All diese Parameter könnten synergistisch wirken und würden dadurch zu einer großen Anzahl an möglichen Konstellationen innerhalb der enormen ökologischen, sozialen und wirtschaftlichen Vielfalt in Lateinamerika führen. Wir vermuten, dass die Gesundheit der Honigbienen in Lateinamerika letztendlich auf die in diesen Regionen vorherrschenden kleinräumigen und wenig intensiven Landwirtschafts- und Imkereistrukturen zurückzuführen ist, da solche Strukturen den Bienen nachhaltigere Lebensbedingungen bieten. Allerdings könnte der Trend zur intensiveren Nutzung der Kulturlandschaft in einigen Teilen Lateinamerikas zu einer Verschlechterung des Gesundheitsstatus der Honigbienen und damit zu einem Rückgang der Bienenpopulation führen. Um diese Hypothese zu überprüfen würde es Sinn machen, zusammen mit der FAO ein Projekt zur Überwachung der Bienengesundheit in Lateinamerika zu etablieren und dabei die für eine statistische Auswertung notwendigen Daten zur Landnutzung und zu Völkerverlusten zu erfassen. Ein solches Projekt wäre auch wichtig für den Erhalt von natürlichen Bestäuberpopulationen und damit für die Sicherung einer nachhaltigen landwirtschaftlichen Produktion in Lateinamerika. Dies würde auch dazu beitragen, die grundsätzlichen Bedingungen für „Nachhaltigkeit“ in tropischen und subtropischen Ländern besser zu verstehen.

Honigbienengesundheit Völkerverluste Krankheitsresistenz genetische Vielfalt Pollenernährung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antúnez K., D’Alessandro B., Corbella E., Zunino P. (2005) Detection of chronic bee paralysis virus and acute bee paralysis virus in Uruguayan honeybees, J. Invertebr. Pathol. 90, 69–72.PubMedCrossRefGoogle Scholar
  2. Antúnez K., D’Alessandro B., Corbella E., Ramallo G., Zunino P. (2006) Honeybee viruses in Uruguay, J. Invertebr. Pathol. 93, 67–70.PubMedCrossRefGoogle Scholar
  3. Bedascarrasbure E., Figini E., Palacio M.A., Passucci J., Rodríguez E., Poffer D. (2009) American foulbrood control without the use of antibiotics in Argentina. 41st Apimondia Congress, Montpellier, France, 15–20 September 2009.Google Scholar
  4. Behrens D., Forsgren E., Fries I., Moritz R.F.A. (2007) Infection of drone larvae (Apis mellifera) with American foulbrood, Apidologie 38, 281–288.CrossRefGoogle Scholar
  5. Brodschneider R., Crailsheim K. (2010) Nutrition and health in honey bees, Apidologie 41, 278–294.CrossRefGoogle Scholar
  6. Buechler R., Berg S., Le Conte Y. (2010) Breeding for resistance to Varroa destructor in Europe, Apidologie 41, 393–408.CrossRefGoogle Scholar
  7. Carneiro F.E., Torres R.R., Strapazzon R., Ramirez S.A., Guerra J.C.V., Koling D.F., Moretto G. (2007) Changes in the reproductive ability of the mite Varroa destructor in Africanized honey bees (Apis mellifera) colonies in southern Brazil, Neotrop. Entomol. 36, 949–952.PubMedCrossRefGoogle Scholar
  8. Castillo N. (2009) Dinámica poblacional de Varroa en dos ambientes de la República Dominicana. VI Congreso Centroamericano y del Caribe de Integración y Actualización Apícola, Santo Domingo, Dominican Republic, 24–26 June 2009.Google Scholar
  9. Chen Y.P., Huang Z.Y. (2010) Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia, Apidologie 41, 364–374.CrossRefGoogle Scholar
  10. de Carvalho A.C.P., Message D. (2004) A scientific note on the toxic pollen of Stryphnodendron polyphyllum (Fabaceae, Mimosoideae) which causes sacbrood-like symptoms, Apidologie 35, 89–90.CrossRefGoogle Scholar
  11. de Jong D., Gonçalves L.S., Morse R.A. (1984) Dependance on climate of the virulence of Varroa jacobsoni, Bee World 65, 117–121.Google Scholar
  12. de la Rúa P., Jaffé R., Dall’Olio R., Muñoz I., Serrano J. (2009) Biodiversity, conservation and current threats to European honey bees, Apidologie 40, 263–284.CrossRefGoogle Scholar
  13. de Souza T.F., Cintra P., Malaspina O., Bueno O.C., Fernandes J.B., Almeida S.S.M.D. (2006) Toxic effects of methanolic and dichloromethane extracts of flowers and peduncles of Stryphnodendron adstringens (Leguminosae: Mimosoideae) on Apis mellifera and Scaptotrigona postica workers, J. Apic. Res. 45, 112–116.Google Scholar
  14. Desneux N., Decourtye A., Delpuech J.M. (2007) The sublethal effects of pesticides on beneficial arthropods, Annu. Rev. Entomol. 52, 81–106.PubMedCrossRefGoogle Scholar
  15. Duan J.J., Marvier M., Huesing J., Dively G., Huang Z.Y. (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae), PLoS One 3, e1415.PubMedCrossRefGoogle Scholar
  16. EarthTrends (2003) Country profiles, http://earthtrends.wri.org.Google Scholar
  17. Edwards C.R., Gerber C., Hunt G.J. (2003) A laboratory study to evaluate the toxicity of the Mediterranean fruit fly, Ceratitis capitata, bait, Success 0.02 to the honey bee, Apis mellifera, Apidologie 34, 171–180.CrossRefGoogle Scholar
  18. Eyer M., Chen Y.P., Schäfer M.O., Pettis J., Neumann P. (2009) Small hive beetle, Aethina tumida, as a potential biological vector of honey bee viruses, Apidologie 40, 419–428.CrossRefGoogle Scholar
  19. FAOSTAT (2009) http://faostat.fao.org.Google Scholar
  20. Fries I. (1993) Nosema Apis — a parasite in the honeybee colony, Bee World 74, 5–19.Google Scholar
  21. Fries I., Bommarco R. (2007) Possible host-parasite adaptations in honey bees infested by Varroa destructor mites, Apidologie 38, 525–533.CrossRefGoogle Scholar
  22. Gauthier L., Tentcheva D., Tournaire M., Dainat B., Cousserans F., Colin M.E., Bergoin M. (2007) Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique, Apidologie 38, 426–435.CrossRefGoogle Scholar
  23. Guez D., Suchail S., Gauthier M., Maleszka R., Belzunces L.P. (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honey bees (Apis mellifera), Neurobiol. Learn. Mem. 76, 183–91.PubMedCrossRefGoogle Scholar
  24. Guzmán-Novoa E., Vandame R., Arrechavaleta M. (1999) Susceptibility of European and Africanized honey bees (Apis mellifera) to Varroa jacobsoni in Mexico, Apidologie 30, 279–287.CrossRefGoogle Scholar
  25. Harbo J.R., Harris J.W. (2009) Responses to Varroa by honey bees with different levels of Varroa Sensitive Hygiene, J. Apic. Res. 48, 156–161.CrossRefGoogle Scholar
  26. Harriet J., Campa J.P., Mendoza Y., Antúnez K., Zunino P., Invernizzi C. (2009) Situación sanitaria de la apicultura en Uruguay, Techn. Rep., 13 p.Google Scholar
  27. Higes M., Martin-Hernandez R., Meana A. (2010) Nosema ceranae in Europe: an emergent type C nosemosis, Apidologie 41, 375–392.CrossRefGoogle Scholar
  28. Ibrahim A., Reuter G., Spivak M. (2007) Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor, Apidologie 38, 67–76.CrossRefGoogle Scholar
  29. Invernizzi C., Abud C., Tomasco I.H., Harriet J., Ramallo G., Campá J., Katz H., Gardiol G., Mendoza Y. (2009) Presence of Nosema ceranae in honey bees (Apis mellifera) in Uruguay, J. Invertebr. Pathol. 101, 150–153.PubMedCrossRefGoogle Scholar
  30. Jensen A.B., Pedersen B.V., Eilenberg J. (2009) Differential susceptibility across honey bee colonies in larval chalkbrood resistance, Apidologie 40, 524–534.CrossRefGoogle Scholar
  31. Klee J., Besana A.M., Genersch E., Gisder S., Nanetti A., Tam D.Q., Chinh T.X., Puerta F., Ruz J.M., Kryger P., Message D., Hatjina F., Korpela S., Fries I., Paxton R.J. (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera, J. Invertebr. Pathol. 96, 1–10.PubMedCrossRefGoogle Scholar
  32. Kraus F.B., Franck P., Vandame R. (2007) Asymmetric introgression of African genes in honey bee populations (Apis mellifera L.) in Central Mexico, Heredity 99, 233–240.PubMedCrossRefGoogle Scholar
  33. Maggi M.D., Ruffinengo S.R., Gende L.B., Eguaras M.J., Sardella N.H. (2009) LC50 baseline levels of amitraz, coumaphos, fluvalinate and flumethrin in populations of Varroa destructor from Buenos Aires Province, Argentina, J. Apic. Res. 47, 292–295.Google Scholar
  34. Managed Pollinator CAP (2008) A national research and extension initiative to reverse pollinator decline, http://www.beeccdcap.uga.edu.Google Scholar
  35. Mangan R.L., Moreno A. (2009) Honey bee foraging preferences, effects of sugars, and fruit fly toxic bait components, J. Econ. Entomol. 102, 1472–1481.PubMedCrossRefGoogle Scholar
  36. Mattila H.R., Otis G.W. (2006) The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honey bee workers, Apidologie 37, 533–546.CrossRefGoogle Scholar
  37. Mayrand K., Dionne S., Paquin M., Pageot-LeBel I. (2003) The economic and environmental impacts of agricultural subsidies: an assessment of the 2002 US farm bill and Doha round. Unisféra International Centre, 63 p.Google Scholar
  38. Medina-Medina L., May-Itzá W. (2006) The Africanized honey bees and its impact on bee diseases and parasites in Mexico. VII Encontro sobre Abelhas, Ribeirão Preto, Brazil, 12–15 July 2006.Google Scholar
  39. Mondragón L., Spivak M., Vandame R. (2005) A multifactorial study of the resistance of honey bees Apis mellifera to the mite Varroa destructor over one year in Mexico, Apidologie 36, 345–358.CrossRefGoogle Scholar
  40. Naug D. (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses, Biol. Conserv. 142n, 2369–2372.CrossRefGoogle Scholar
  41. Naug D., Gibbs A. (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae, Apidologie 40, 595–599.CrossRefGoogle Scholar
  42. Neumann P., Carreck N.L. (2010) Honey bee colony losses, J. Apic. Res. 49, 1–6.CrossRefGoogle Scholar
  43. Palacio A., Vandame R. (2008) Investigaciones latinoamericanas colaborativas sobre la mortalidad de abejas, Workshop in Buenos Aires, Argentina, 8–9 December 2008.Google Scholar
  44. Palacio M.A., Rodríguez E., Gonçalves L., Bedascarrasbure E., Spivak M., Hygienic behaviors of honey bees in response to brood experimentally pin-killed or infected with Ascosphaera apis, Apidologie, in press.Google Scholar
  45. Palacio M.A., Figini E., Rodriguez E., Ruffinengo S., Bedascarrasbure E., del Hoyo M. (2000) Changes in a population of Apis mellifera selected for its hygienic behaviour, Apidologie 31, 471–478.CrossRefGoogle Scholar
  46. Palacio M.A., Flores J.M., Figini E., Ruffinengo S., Escande A., Bedascarrasbure E., Rodriguez E., Gonçalves L.S. (2005) Evaluation of the time of uncapping and removing dead brood from cells by hygienic and non-hygienic honey bees, Genet. Mol. Res. 4, 105–114.PubMedGoogle Scholar
  47. Paxton R.J., Klee J., Korpela S., Fries I. (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema Apis, Apidologie 38, 558–565.CrossRefGoogle Scholar
  48. Pearce D. (2002) Environmentally harmful subsidies: barriers to sustainable development. Paper presented at the OECD workshop on environmentally harmful subsidies, Paris, 7–8 November 2002, 9.Google Scholar
  49. Pettis J.S., Delaplane K.S. (2010) Coordinated responses to honey bee decline in the USA, Apidologie 41, 256–263.CrossRefGoogle Scholar
  50. Piñeyro-Nelson A., Van Heerwaarden J., Perales H.R., Serratos-Hernández J.A., Rangel A., Hufford M.B., Gepts P., Garay-Arroyo A., Rivera-Bustamante R., Álvarez-Buylla E.R. (2009) Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations, Mol. Ecol. 18, 750–761.PubMedCrossRefGoogle Scholar
  51. Ramirez-Romero R., Desneux N., Decourtye A., Chaffiold A., Pham-Delègue M.H. (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Toxicol. Environ. Saf. 70, 327–333.CrossRefGoogle Scholar
  52. Rinderer T.E., Buco S.M., Rubink W.L., Daly H.V., Stelzer J.A., Riggio R.M., Baptista F.C. (1993) Morphometric identification of Africanized and European honey bees using large reference populations, Apidologie 24, 569–585.CrossRefGoogle Scholar
  53. Rinderer T.E., Harris J., Hunt G., de Guzman L.I. (2010) Breeding for resistance to Varroa destructor in North America, Apidologie 41, 409–424.CrossRefGoogle Scholar
  54. Rose R., Dively G.P., Pettis J. (2007) Effects of Bt corn pollen on honey bees: emphasis on protocol development, Apidologie 38, 368–377.CrossRefGoogle Scholar
  55. Rothenbuhler W.C. (1964) Behavior genetics of nest cleaning in honey bees. IV. Responses of F1 and backcross generations to disease-killed brood, Am. Zool. 4, 111–123.PubMedGoogle Scholar
  56. Spivak M., Reuter G. (1998) Performance of hygienic honey bee colonies in a commercial apiary, Apidologie 29, 291–302.CrossRefGoogle Scholar
  57. Teixeira E.W., Chen Y., Message D., Pettis J., Evans J.D. (2008) Virus infections in Brazilian honey bees, J. Invertebr. Pathol. 99, 117–119.PubMedCrossRefGoogle Scholar
  58. Vandame R., Belzunces L.P. (1997) Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation, Neurosci. Lett. 251, 57–60.CrossRefGoogle Scholar
  59. Vandame R., Meled M., Colin M.E., Belzunces L.P. (1995) Alteration of the homing-flight in the honey bee Apis mellifera exposed to sublethal dose of deltamethrin, Environ. Toxicol. Chem. 14, 855–860.CrossRefGoogle Scholar
  60. Vandame R., Morand S., Colin M.E., Belzunces L. (2002) Parasitism in the social bee Apis mellifera: quantifying costs and benefits of behavioral resistance to Varroa mites, Apidologie 33, 433–445.CrossRefGoogle Scholar
  61. van Engelsdorp D., Hayes J., Underwood R.M., Pettis J. (2008) A Survey of honey bee colony losses in the US, fall 2007 to spring 2008, PLoS One 3, e4071.PubMedCrossRefGoogle Scholar
  62. van Engelsdorp D., Evans J.D., Saegerman C., Mullin C., Haubruge E., Nguyen B.K., Frazier M., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R., Pettis J.S. (2009) Colony Collapse Disorder: a descriptive study, PLoS One 4, e6481.CrossRefGoogle Scholar
  63. World Resources Institute (2003) Watersheds of the world: a special collection of river basin data, http://earthtrends.wri.org/maps_spatial/watersheds/global.php.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  1. 1.El Colegio de la Frontera SurCarretera Panamericana y Periférico Sur S/NSan Cristóbal de las CasasMexico
  2. 2.Unidad Integrada INTA - Facultad de Ciencias AgrariasUniversidad Nacional de Mar del PlataBalcarceArgentina

Personalised recommendations