Advertisement

Apidologie

, Volume 41, Issue 3, pp 409–424 | Cite as

Breeding for resistance to Varroa destructor in North America

  • Thomas E. Rinderer
  • Jeffrey W. Harris
  • Gregory J. Hunt
  • Lilia I. de Guzman
Review Article

Abstract

Breeding for resistance to Varroa destructor in North America provides the long-term solution to the economic troubles the mite brings. This review reports the development of two breeding successes that have produced honey bees of commercial quality that do not require pesticide treatment to control Varroa, highlights other traits that could be combined to increase resistance and examines the potential uses of marker-assisted selection (MAS) for breeding for Varroa resistance. Breeding work continues with these stocks to enhance their commercial utility. This work requires knowledge of the mechanisms of resistance that can be further developed or improved in selected stocks and studied with molecular techniques as a prelude to MAS.

Varroa resistance breeding program Russian honey bees Varroa-sensitive hygiene marker-assisted selection 

Sélection d’abeilles résistantes à Varroa destructor en Amérique du Nord

résistance au varroa programme de sélection abeilles russes comportement hygiénique sensible à varroa sélection assistée par marqueur 

Zucht auf Resistenz gegen Varroa destructor in Nordamerika

Zusammenfassung

Die Zucht auf Resistenz gegen Varroa destructor in Nordamerika bietet die langfristige Lösung für die von der Milbe verursachten wirtschaftlichen Schwierigkeiten. Dieses Review untersucht mehrere potenzielle Mechanismen der Resistenz gegen Varroa und berichtet über die Entwicklung von zwei Zuchterfolgen, aus denen Bienen von wirtschaftlicher Qualität hervorgegangen sind, die weniger Pestizidbehandlungen gegen Varroa benötigen als unselektierte Bienen.

Das VSH Zuchtprogramm konzentriert sich auf die Selektion eines spezifischen Resistenzmechanismus, der Varroasensitive Hygiene genannt wird. Das Merkmal VSH wird über den Verkauf von VSH Königinnen, die mit Drohnen bereits vorhandener kommerzieller Linien gepaart wurden, für die Imker verfügbar gemacht. Die größte Resistenz kommt zwar in reinen VSH-Linien vor, die nachhaltigste Verbreitung wird jedoch durch VSH Hybridvölker erzielt. Durch das Auskreuzen reiner VSH Linien mit einer Vielzahl anderer kommerzieller Linien kann die genetische Diversität der Bienenpopulation in den USA auf relativ hohem Niveau gehalten werden. Reine VSH Zuchtköniginnen werden von Glenn Apiaries produziert und an kommerzielle Produzenten von Königinnen verkauft, die ihrerseits ausgekreuzte VSH Königinnen an Imker verkaufen.

Das Programm zur Russischen Biene nutzt ein Zuchtschema, das auf einer geschlossenen Population basiert, um gegen Varroa resistente Linien zu verbreiten, die ursprünglich aus dem fernöstlichen Russland stammten. Die Russischen Honigbienen (RHB) des ARS wurden aus 18 importierten Linien durch Geschwistertests über mehrere Jahre hinweg entwickelt. Ihre Varroaresistenz geht auf mehrere Mechanismen zurück, zu denen gegenseitiges Putzen, varroasensitive Hygiene und für die Milbe geringe Attraktivität der Brut gehören. RHB Linien wurden gleichzeitig für Varroaresistenz, gute Honigproduktion und Resistenz gegen Tracheenmilben, Acarapis woodi, selektiert. Die Resistenz gegen Tracheenmilben trägt zu ihrer ausgezeichneten Überwinterungsfähigkeit bei. Der Erfolg der experimentellen RHB Selektion regte eine große kommerzielle Nachfrage an, und RHB werden zurzeit von einer als Russian Queen Breeder’s Association bekannten Züchterkooperative gezüchtet, vermehrt und an die Imker in den USA verbreitet.

Die Zucht auf Varroaresistenz wird in der Zukunft wahrscheinlich auch markergestützte Selektion (MAS) mit einbeziehen, in welcher entweder die Expression von mit Resistenz verbundenen Genen (RNA) oder molekulare Marker, die mit Resistenzgenen in Verbindung stehen (DNA), benutzt werden um die Zuchteltern auszuwählen. Das endgültige Ziel ist, die arbeits- und zeitaufwändige Selektion im Feld durch eine Labordiagnose zu ersetzen. Es wird erwartet, dass MAS den Selektionsfortschritt sowohl für Resistenzmerkmale, die schon entwickelt wurden, als auch für Merkmale, für die diese Entwicklung hin zu nutzbaren kommerziellen genetischen Linien noch aussteht, wie z.B. gegenseitiges Putzen und Entfernen von Milben, beschleunigen wird.

Varroaresistenz Zuchtprogramm Russische Honigbienen Varroasensitive Hygiene markergestützte Selektion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammons A.D., Hunt G.J. (2008) Identification of quantitative trait loci and candidate genes influencing ethanol sensitivity in honey bees, Behav. Genet. 38, 531–553.PubMedGoogle Scholar
  2. Anderson D.L., Trueman J.W.H. (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species, Exp. Appl. Acarol. 24, 165–189.PubMedGoogle Scholar
  3. Anholt R.R.H., Mackay T.F.C. (2004) Quantitative genetic analyses of complex behaviours in Drosophila, Nat. Rev. Genet. 5, 838–849.PubMedGoogle Scholar
  4. Arathi H.S., Ho G., Spivak M. (2006) Inefficient task partitioning among nonhygienic honeybees, Apis mellifera L., and implications for disease transmission, Anim. Behav. 72, 431–438.Google Scholar
  5. Arechavaleta-Velasco M., Guzman-Novoa E. (2001) Relative effect of four characteristics that restrain the population growth of the mite Varroa destructor in honey bee (Apis mellifera) colonies, Apidologie 32, 157–174.Google Scholar
  6. Arechavaleta-Velasco M.E., Hunt G.J. (2004) Binary trait loci that influence honey bee guarding behavior, Ann. Entomol. Soc. Am. 97, 177–183.Google Scholar
  7. Aumeier P. (2001) Bioassay for grooming effectiveness towards Varroa destructor mites in Africanized and Carniolan honey bees, Apidologie 32, 81–90.Google Scholar
  8. Aumeier P., Rosenkranz P. (2001) Scent or movement of Varroa destructor mites does not elicit hygienic behaviour by Africanized and Carniolan honey bees, Apidologie 32, 253–263.Google Scholar
  9. Berg S., Fuchs S., Koeniger N., Rinderer T.E. (2004) Preliminary results on the comparison of Primorski honey bees, Apidologie 35, 552–554.Google Scholar
  10. Berg S., Fuchs S., Koeniger N., Rinderer T.E., Büchler R. (2005) Less mites, less honey-comparing Primorski honey bee lines with Carnica lines in Germany, in: Kaatz H.H., Becher M., Moritz R.F.A. (Eds.), IUSSI Halle, Bees, Ants and Termites —Applied and fundamental research, Regensburg, p. 36.Google Scholar
  11. Bienefeld K., Zautke F., Pronin D., Mazeed A. (1999) Recording the proportion of damaged Varroa jacobsoni Oud. in the debris of honey bee colonies (Apis mellifera), Apidologie 30, 249–256.Google Scholar
  12. Blangero J. (2004) Localization of human quantitative trait loci: King harvest has surely come, Curr. Opin. Genet. Dev. 14, 233–240.PubMedGoogle Scholar
  13. Boecking O., Drescher W. (1992) The removal response of Apis mellifera L. colonies to brood in wax and plastic cells after artificial and natural infestation with Varroa jacobsoni Oud. and to freeze-killed brood, Exp. Appl. Acarol. 16, 321–329.Google Scholar
  14. Boecking O., Spivak M. (1999) Behavioral defenses of honey bees against Varroa jacobsoni Oud., Apidologie 30, 141–158.Google Scholar
  15. Bourgeois A.L., Rinderer T.E. (2009) Genetic characterization of Russian honey bee stock selected for improved resistance to Varroa destructor, J. Econ. Entomol., in press.Google Scholar
  16. Bourgeois L., Sylvester A., Danka R.G., Rinderer T.E. (2008) Comparison of microsatellite DNA diversity among commercial queen breeder stocks of Italian honey bees in the United States and Italy, J. Apic. Res. 47, 93–98.Google Scholar
  17. Brachman B. (2009) Up and running: Russian honey bee breeders, Bee Culture 137, 46–47.Google Scholar
  18. Branco M.R., Kidd N.A.C., Pickard R.S. (1999) Development of Varroa jacobsoni in colonies of Apis mellifera iberica in a Mediterranean climate, Apidologie 30, 491–503.Google Scholar
  19. Büchler R. (1990) Possibilities for selecting increased Varroa tolerance in central European honey bees of different origins, Apidologie 21, 365–367.Google Scholar
  20. Büchler R. (1997) Field test on Varroa tolerance of the Kirchhainer population, Apidologie 28, 191–193.Google Scholar
  21. Büchler R., Drescher W., Tornier I. (1992) Grooming behaviour of Apis cerana, Apis mellifera and Apis dorsata and its effects on the parasitic mites Varroa jacobsoni and Tropilaelaps clareae, Exp. Appl. Acarol. 16, 313–319.Google Scholar
  22. Calis J.N.M., Boot W.J., Beetsma J. (2006) Attractiveness of brood cells from different honey bee races (Apis mellifera) to Varroa mites, Proc. Neth. Entomol. Soc. 17, 55–61.Google Scholar
  23. Camazine S. (1986) Differential reproduction of the mite, Varroa jacobsoni (Mesostigmata: Varroidae), on Africanized and European honey bees (Hymenoptera: Apidae), Ann. Entomol. Soc. Am. 79, 801–803.Google Scholar
  24. Chandra S.B.C., Hunt G.J., Cobey S., Smith B.H. (2001) Quantitative trait loci associated with reversal learning and latent inhibition in honeybees (Apis mellifera), Behav. Genet. 31, 275–285.PubMedGoogle Scholar
  25. Crane E. (1978) The Varroa mite, Bee World 59, 164–167.Google Scholar
  26. Currie R.W., Tahmasbi G.H. (2008) The ability of high- and low-grooming lines of honey bees to remove the parasitic mite Varroa destructor is affected by environmental conditions, Can. J. Zool. 86, 1059–1067.Google Scholar
  27. Danka R., Harris J., Ward K., Ward R. (2008) Status of bees with the trait of Varroa-sensitive hygiene (VSH) for Varroa resistance, Am. Bee J. 148, 51–54.Google Scholar
  28. Danka R.G., Rinderer T.E., Kuznetsov V.N., Delatte, G.T. (1995) A USDA-ARS project to evaluate resistance to V. jacobsoni by honey bees of far-eastern Russia, Am. Bee J. 135, 746–748.Google Scholar
  29. Davis A.R. (2009) Regular dorsal dimples on Varroa destructor — Damage symptoms or developmental origin? Apidologie 40, 151–162.Google Scholar
  30. de Guzman L.I., Rinderer T.E., Bigalk M., Tubbs H., Bernard S.J. (2005) Russian honey bee (Hymenoptera: Apidae) colonies: Acarapis woodi (Acari: Tarsonemdae) infestations and overwintering survival, J. Econ. Entomol. 98, 1796–1801.PubMedGoogle Scholar
  31. de Guzman L.I., Rinderer T.E., Delatte G.T., Stelzer J.A., Beaman L.D., Harper C. (2002) Hygienic behavior by honey bees from far-eastern Russia, Am. Bee J. 142, 58–60.Google Scholar
  32. de Guzman L.I., Rinderer T.E., Delatte G.T., Stelzer J.A., Beaman L., Kuznetsov V. (2001) Resistance to Acarapis woodi by honey bees from far-eastern Russia, Apidologie 33, 411–415.Google Scholar
  33. de Guzman L.I., Rinderer T.E., Delatte G.T., Macchiavelli R.E. (1996) Varroa jacobsoni Oudemans tolerance in selected stocks of Apis mellifera L., Apidologie 27, 193–210.Google Scholar
  34. de Guzman L.I., Rinderer T.E., Frake A.M. (2007) Growth of Varroa destructor (Acari: Varroidae) populations in Russian honey bee (Hymenoptera: Apidae) colonies, Ann. Entomol. Soc. Am. 100, 187–195.Google Scholar
  35. de Guzman L., Rinderer T., Frake A. (2008) Comparative reproduction of Varroa destructor in different types of Russian and Italian honey bee combs, Exp. Appl. Acarol. 44, 227–238.PubMedGoogle Scholar
  36. de Guzman L.I., Rinderer T.E., Lancaster V.A. (1995) A short test evaluating larval attractiveness of honey bees to Varroa jacobsoni Oudemans (Acari: Varroidae), J. Apic. Res. 34, 89–92.Google Scholar
  37. de Guzman L.I., Rinderer T.E., Stelzer J.A. (1997) DNA evidence of the origin of Varroa jacobsoni Oudemans in the Americas, Biochem. Genet. 35, 327–335.PubMedGoogle Scholar
  38. de Guzman L.I., Rinderer T.E., Stelzer J.A. (1999) Occurrence of two genotypes of Varroa jacobsoni Oud. in North America, Apidologie 30, 31–36.Google Scholar
  39. Delaplane K.S., Hood W.M. (1999) Economic threshold for Varroa jacobsoni Oud. in the southeastern USA, Apidologie 30, 383–395.Google Scholar
  40. Delaplane K.S., Berry J.A., Skinner J.A., Parkman J.P., Hood W.M. (2005) Integrated pest management against Varroa destructor reduces colony mite levels and delays treatment threshold, J. Apic. Res. 44, 157–162.Google Scholar
  41. Donzé G.S., Guerin P.M. (1994) Behavioral attributes and parental care of Varroa mites parasitizing honey bee brood, Behav. Ecol. Sociobiol. 34, 305–319.Google Scholar
  42. Fries I., Huazen W., Wei S., Jin C.S. (1996) Grooming behavior and damaged mites (Varroa jacobsoni) in Apis cerana cerana and Apis mellifera ligustica, Apidologie 27, 3–11.Google Scholar
  43. Fuchs S. (1990) Preference of drone brood cells by Varroa jacobsoni Oud. in colonies of Apis mellifera carnica, Apidologie 21, 193–199.Google Scholar
  44. Gary N.E.A. (1960) Trap to quantitatively recover dead and abnormal honey bees from the hive, J. Econ. Entomol. 53, 782–785.Google Scholar
  45. Gary N., Page R.E. (1987) Phenotypic variation in susceptibility of honey bees, Apis mellifera, to infestation by tracheal mites, Acarapis woodi, Exp. Appl. Acarol. 3, 291–305.Google Scholar
  46. Gilliam M., Taber S. III, Richardson G.V. (1983) Hygienic behavior of honey bees in relation to chalkbrood disease, Apidologie 14, 29–39.Google Scholar
  47. Grozinger C.M., Fan Y., Hoover S.E.R., Winston M.L. (2007) Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera), Mol. Ecol. 16, 4837–4848.PubMedGoogle Scholar
  48. Harbo J.R. (2001) The relationship between non-reproduction of Varroa and the quantity of worker brood, Am. Bee J. 141, 889–890.Google Scholar
  49. Harbo J.R., Harris J.W. (1999a) Selecting honey bees for resistance to Varroa jacobsoni, Apidologie 30, 183–196.Google Scholar
  50. Harbo J.R., Harris J.W. (1999b) Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae), J. Econ. Entomol. 92, 261–265.Google Scholar
  51. Harbo J.R., Harris J.W. (2001) Resistance to Varroa destructor (Mesostigmata: Varroidae) when mite-resistant queen honey bees (Hymenoptera: Apidae) were free-mated with unselected drones, J. Econ. Entomol. 94, 1319–1323.PubMedGoogle Scholar
  52. Harbo J.R., Harris, J.W. (2002) Suppressing mite reproduction: SMR an update, Bee Culture 130, 46–48.Google Scholar
  53. Harbo J.R., Harris J.W. (2005) Suppressed mite reproduction explained by the behaviour of adult bees, J. Apic. Res. 44, 21–23.Google Scholar
  54. Harbo J.R., Harris, J.W. (2009) Responses to Varroa by honey bees with different levels of Varroa sensitive hygiene, J. Apic. Res. 48, 156–161.Google Scholar
  55. Harbo J.R., Hoopingarner R.A. (1997) Honey bees (Hymenoptera: Apidae) in the United States that express resistance to Varroa jacobsoni (Mesostigmata: Varroidae), J. Econ. Entomol. 90, 893–898.Google Scholar
  56. Harris J.W. (2007) Bees with Varroa sensitive hygiene preferentially remove mite infested pupae aged ⩽ five days post capping. J. Apic. Res. 46, 134–139.Google Scholar
  57. Harris J.W. (2008) Effect of brood type on Varroasensitive hygiene by worker honey bees (Hymenoptera: Apidae), Ann. Entomol. Soc. Am. 101, 1137–1144.Google Scholar
  58. Harris J.W., Harbo, J.R. (1999) Low sperm counts and reduced fecundity of mites in colonies of honey bees (Hymenoptera: Apidae) resistant to Varroa jacobsoni (Mesostigmata: Varroidae), J. Econ. Entomol. 92, 83–90.Google Scholar
  59. Harris J.W., Harbo J.R. (2000) Changes in reproduction of Varroa destructor after honey bee queens were exchanged between resistant and susceptible colonies, Apidologie 31, 689–699.Google Scholar
  60. Harris J., Rinderer T.E. (2004) Varroa resistance in hybrid ARS Russian honey bees, Am. Bee J. 144, 797–799.Google Scholar
  61. Harris J.W., Danka R.G., Villa J.D. (2009) Hygienic activity toward Varroa mites in capped brood is not dependent on mite reproductive status, Am. Bee J. 149, 587–588.Google Scholar
  62. Harris J.W., Danka R.G., Villa J.D. (2010) Honey bees (Hymenoptera: Apidae) with the trait of Varroa Sensitive Hygiene remove brood with all reproductive stages of Varroa mites (Mesostigmata: Varroidae), Ann. Entomol. Soc. Am. 103, 146–152.Google Scholar
  63. Harris J.W., Harbo J.R., Villa J.D., Danka R.G. (2003) Variable population growth of Varroa destructor (Mesotigmata: Varroidae) in colonies of honey bees (Hymenoptera: Apidae) during a 10-year period, Environ. Entomol. 32, 1305–1312.Google Scholar
  64. Harris J., Rinderer T.E., Kuzentsov K., Danka G., De Guzman L.I., Villa J. (2002) Imported Russian honeybees: Quarantine and initial selection for Varroa resistance, Am. Bee J. 142, 591–596.Google Scholar
  65. Haydak M.H. (1945) The language of the honey bees, Am. Bee J. 85, 316–317.Google Scholar
  66. Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honey bee, Apis mellifera, Nature 443, 931–949.Google Scholar
  67. Hospital F. (2009) Challenges for effective marker-assisted selection in plants, Genetica 136, 303–310.PubMedGoogle Scholar
  68. Hunt G.J., Page R.E. Jr. (1995) A linkage map of the honey bee, Apis mellifera, based on RAPD markers, Genetics 139, 1371–1382.PubMedGoogle Scholar
  69. Hunt G.J., Amdam G.V., Schlipalius D., Emore C., Sardesai N., Williams C.E., Rueppell O., Guzmán-Novoa E., Arechavaleta-Velasco M., Chandra S., Fondrk M.K., Beye M., Page R.E. Jr. (2007) Behavioral genomics of honeybee foraging and nest defense, Naturwissenschaften 94, 247–267.PubMedGoogle Scholar
  70. Hunt G.J., Guzmán-Novoa E., Fondrk M.K., Page R.E. Jr. (1998) Quantitative trait loci for honey bee stinging behavior and body size, Genetics 148, 1203–1213.PubMedGoogle Scholar
  71. Hunt G.J., Page R.E. Jr., Fondrk M.K., Dullum C.J. (1995) Major quantitative trait loci affecting honey bee foraging behavior, Genetics 141, 1537–1545.PubMedGoogle Scholar
  72. Ibrahim A., Spivak M. (2006) The relationship between hygienic behavior and suppression of mite reproduction as honey bee (Apis mellifera) mechanisms of resistance to Varroa destructor, Apidologie 37, 31–40.Google Scholar
  73. Ibrahim A., Reuter G.S., Spivak M. (2007) Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor, Apidologie 38, 67–76.Google Scholar
  74. Kralj J. (2004) Parasite-host interactions between Varroa destructor Anderson and Trueman and Apis mellifera L.: Influence of parasitism on flight behaviour and the loss of infested foragers, Johann Wolfgang Goethe University of Frankfurt am Main, PhD Dissertation.Google Scholar
  75. Kralj J., Fuchs S. (2006) Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers, Apidologie 37, 577–587.Google Scholar
  76. Lapidge K.L., Oldroyd B.P., Spivak M. (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees, Naturwissenschaften 89, 565–568.PubMedGoogle Scholar
  77. Lodesani M., Vecchi M.A., Tommasini S., Bigliardi M. (1996) A study on different kinds of damage to Varroa jacobsoni in Apis mellifera ligustica colonies, J. Apic. Res. 35, 49–56.Google Scholar
  78. Martin C., Provost E., Bagnères A.-G., Roux M., Clément J.L., Le Conte Y. (2002) Potential mechanism for detection by Apis mellifera of the parasitic mite Varroa destructor inside sealed brood cells, Physiol. Entomol. 27, 175–188.Google Scholar
  79. McFarlane J.E. (1976) The influence of dietary copper and zinc on the growth and reproduction of the house cricket, Can. Entomol. 108, 387–390.Google Scholar
  80. Mondragón L., Spivak M., Vandame R. (2005) A multifactorial study of the resistance of honeybees Apis mellifera to the mite Varroa destructor over one year in Mexico, Apidologie 36, 345–358.Google Scholar
  81. Moretto G., Gonçalves L.S., de Jong D. (1993) Heritability of Africanized and European honey bee defense behavior against the mite Varroa jacobsoni, Braz. G. Genet. 16, 71–77.Google Scholar
  82. Morse R.A., Miksa D., Masenheimer J.A. (1991) Varroa resistance in the US honey bees, Am. Bee J. 131, 433–434.Google Scholar
  83. Navajas M., Migeon A., Alaux C., Martin-Magniette M.L., Robinson G.E., Evans J.D., Cros-Arteil S., Crauser D., Le Conte Y. (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection, BMC Genomics 9, 301.PubMedGoogle Scholar
  84. Nazzi F., Milani N., Vedova G.D., Nimis, M. (2001) Semiochemicals from larval food affect the locomotory behaviour of Varroa destructor, Apidologie 32, 149–155.Google Scholar
  85. Oxley P.R., Thompson G.J., Oldroyd B.P. (2008) Four quantitative trait loci that influence worker sterility in the honeybee (Apis mellifera), Genetics 179, 1337–1343.PubMedGoogle Scholar
  86. Page R.E. Jr., Fondrk M.K., Hunt G.J., Guzmán-Novoa E., Humphries M.A., Nguyen K., Greene A.S. (2000) Genetic dissection of honeybee (Apis mellifera L.) foraging behavior, J. Hered. 91, 474–479.PubMedGoogle Scholar
  87. Peng Y.S., Fang, Y., Xu S., Ge L., Nasr M.E. (1987) Response of foster Asian honeybee (Apis cerana Fabr.) colonies to the brood of European honeybee (Apis mellifera L.) infested with parasitic mite, Varroa jacobsoni Oudemans, J. Invertebr. Pathol. 49, 259–264.Google Scholar
  88. Rinderer T.E., Delatte G.T., de Guzman L.I., Williams J., Stelzer J.A., Kuznetsov, V. (1999) Evaluations of the Varroa-resistance of honey bees imported from far-eastern Russia, Am. Bee J. 139, 287–290.Google Scholar
  89. Rinderer T.E., de Guzman L.I., Delatte G.T., Stelzer J.A., Lancaster V.A., Kuznetsov V., Beaman L., Watts R., Harris, J.W. (2001a) Resistance to the parasitic mite Varroa destructor in honey bees from far-eastern Russia, Apidologie 32, 381–394.Google Scholar
  90. Rinderer T.E., de Guzman L.I., Delatte G.T., Stelzer J.A., Williams J.L., Beaman L.D., Kuznetsov V., Bigalk M., Bernard S.J., Tubbs H. (2001b) Multi-state field trials of Russian honey bees 1. Responses to Varroa destructor 1999, 2000, Am. Bee J. 141, 658–661.Google Scholar
  91. Rinderer T.E., de Guzman L.I., Delatte G.T., Stelzer J.A., Lancaster V.A., Williams J.L., Beaman, L.D., Kuznetsov V., Bigalk M., Bernard S.J., Tubbs H. (2001c) Multi-State Field Trials of Russian Honey Bees: 2. Honey Production 1999, 2001, Am. Bee J. 141, 726–729.Google Scholar
  92. Rinderer T.E., de Guzman L.I., Delatte G.T., Harper C. (2003) An evaluation of ARS Russian honey bees in combination with other methods for the control of Varroa mites, Am. Bee J. 143, 410–413.Google Scholar
  93. Rinderer T.E., de Guzman L., Harper C. (2004) The effects of co-mingled Russian and Italian honey bee stocks and sunny or shaded apiaries on Varroa mite infestation level, worker bee population and honey production, Am. Bee J. 144, 481–485.Google Scholar
  94. Rosenkranz P., Fries I., Boecking O., Sturner M. (1997) Damaged Varroa mites in the debris of honey bee (Apis mellifera L.) colonies with and without hatching brood, Apidologie 28, 427–437.Google Scholar
  95. Rothenbuhler W.C. (1960) A technique for studying genetics of colony behavior in honey bees, Am. Bee J. 100, 176,198.Google Scholar
  96. Rothenbuhler W.C. (1964) Behavior genetics of nest cleaning in honey bees: IV Responses of F1 and backcross generations to disease-killed brood, Am. Zool. 4, 111–123.PubMedGoogle Scholar
  97. Rüeppell O., Chandra S., Pankiw T., Fondrk M.K., Beye M., Hunt G.J., Page R.E. Jr. (2006) The genetic architecture of sucrose responsiveness in the honey bee (Apis mellifera L.), Genetics 172, 243–251.PubMedGoogle Scholar
  98. Rüeppell O., Pankiw T., Nielsen D.I., Fondrk M.K., Beye M., Page R.E. (2004) The genetic architecture of the behavioral ontogeny of foraging in honeybee workers, Genetics 167, 1767–1779.PubMedGoogle Scholar
  99. Ruttner F., Hänel H. (1992) Active defense against Varroa mites in a Carniolan strain of honeybee (Apis mellifera carnica Pollman), Apidologie 23, 173–187.Google Scholar
  100. Solignac M., Vautrin D., Baudry E., Mougel F., Loiseau A., Cornuet J.-M. (2004) A microsatellite-based linkage map of the honeybee, Apis mellifera L., Genetics 167, 253–262.PubMedGoogle Scholar
  101. Spivak M. (1996) Honey bee hygienic behavior and defense against Varroa jacobsoni, Apidologie 27, 245–260.Google Scholar
  102. Spivak M., Reuter G.S. (1998) Honey bee hygienic behavior, Am. Bee J. 138, 283–286.Google Scholar
  103. Spivak M., Reuter G.S. (2001a) Varroa jacobsoni infestation in untreated honey bee (Hymenoptera: Apidae) colonies selected for hygienic behavior, J. Econ. Entomol. 94, 326–331.PubMedGoogle Scholar
  104. Spivak M., Reuter G.S. (2001b) Resistance to American foulbrood disease by honey bee colonies, Apis mellifera, bred for hygienic behavior, Apidologie 32, 555–565.Google Scholar
  105. Spivak M., Reuter G.S., Lee K., Ranum B. (2009) The future of the MN Hygienic stock of bees is in good hands, Am. Bee J. 149, 965–967.Google Scholar
  106. Szabo T.I., Walker C.R.T. (1995) Damages to dead Varroa jacobsoni caused by the larvae of Galleria mellonella, Am. Bee J. 135, 421–422.Google Scholar
  107. Thakur R.K., Bienefeld K., Keller R. (1997) Varroa defense behavior in A. mellifera carnica, Am. Bee J. 137, 143–148.Google Scholar
  108. Tubbs H., Harper C., Bigalk M., Bernard S.J., Delatte G.T., Sylvester H.A., Rinderer T.E. (2003) Commercial management of ARS Russian honey bees, Am. Bee J. 144, 819–820.Google Scholar
  109. Vandame R., Morand S., Colin M.-E., Belzunces L.P. (2002) Parasitism in the social bee Apis mellifera: quantifying costs and benefits of behavioral resistance to Varroa destructor mites, Apidologie 33, 433–445.Google Scholar
  110. Villa J.D. (2006) Autogrooming and bee age influence migration of tracheal mites to Russian and susceptible worker honey bees (Apis mellifera L.), J. Apic. Res. 45, 28–31.Google Scholar
  111. Villa J.D., Rinderer T.E. (2008) Inheritance of resistance to Acarapis woodi (Acari: Tarsonemidae) in crosses between selected resistant Russian and selected susceptible US honey bees (Hymenoptera: Apidae), J. Econ. Entomol. 101, 1756–1759.PubMedGoogle Scholar
  112. Villa J.D., Danka R.G., Harris J.W. (2009a) Simplified methods of evaluating colonies for levels of Varroa sensitive hygiene (VSH), J. Apic. Res. 48, 162–167.Google Scholar
  113. Villa J.D., Rinderer T.E., Bigalk M. (2009b) Overwintering of Russian honey bees in northeastern Iowa, Science of Bee Culture 1, 19–21, Suppl. to Bee Culture 137.Google Scholar
  114. Ward K., Danka R., Ward R. (2008) Comparative performance of two mite-resistant stocks of honey bees (Hymenoptera: Apidae) in Alabama beekeeping operations, J. Econ. Entomol. 101, 654–659.PubMedGoogle Scholar
  115. Webster T.C., Thacker E.M., Vorisek F.E. (2000) Live Varroa jacobsoni (Mesostigmata: Varroidae) fallen from honey bee (Hymenoptera: Apidae) colonies, J. Econ. Entomol. 93, 1596–1601.PubMedGoogle Scholar
  116. Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsui N.D. (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera, Science 314, 642–645.PubMedGoogle Scholar
  117. Whitfield C.W., Cziko A.M., Robinson G.E. (2003) Gene expression profiles in the brain predict behavior in individual honey bees, Science 302, 296–299.PubMedGoogle Scholar
  118. Xing W., Qiang W., Pingli D., Feng L., Ting Z. (2007) The tolerant effect of free amino acid and microelement diversity in haemolymph of honeybee larva to Varroa destructor, Chinese Bull. Entomol. 44, 859–862.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Thomas E. Rinderer
    • 1
  • Jeffrey W. Harris
    • 1
  • Gregory J. Hunt
    • 2
  • Lilia I. de Guzman
    • 1
  1. 1.Genetics and Physiology LaboratoryUSDA-Agricultural Research Service, Honey Bee BreedingBaton RougeUSA
  2. 2.Dept. of EntomologyPurdue UniversityWest LafayetteUSA

Personalised recommendations