Apidologie

, Volume 41, Issue 3, pp 278–294

Nutrition and health in honey bees

Review Article

Abstract

Adequate nutrition supports the development of healthy honey bee colonies. We give an overview of the nutritional demands of honey bee workers at three levels: (1) colony nutrition with the possibility of supplementation of carbohydrates and proteins; (2) adult nutrition and (3) larval nutrition. Larvae are especially dependant on protein and brood production is strongly affected by shortages of this nutrient. The number of larvae reared may be reduced to maintain the quality of remaining offspring. The quality of developing workers also suffers under conditions of larval starvation, leading to slightly affected workers. Larval starvation, alone or in combination with other stressors, can weaken colonies. The potential of different diets to meet nutritional requirements or to improve survival or brood production is outlined. We discuss nutrition-related risks to honey bee colonies such as starvation, monocultures, genetically modified crops and pesticides in pollen and nectar.

malnutrition pollen protein carbohydrates supplemental feeding 

Nutrition et santé des abeilles

malnutrition pollen protéines carbohydrates nourrissement 

Ernährung und Gesundheit bei Honigbienen

Zusammenfassung

Eine ausgewogene Ernährung mit ausreichend Proteinen, Kohlenhydraten, Fetten, Vitaminen und Mineralstoffen ist notwendig für das Überleben eines Bienenvolkes, die Entwicklung der Arbeiterinnen und die Aufzucht von Brut. Im Superorganismus Honigbiene sind diese drei Ebenen der Ernährung eng miteinander verknüpft (Abb. 1), und Defizite in einer dieser Ebenen wirken sich negativ auf die anderen aus.

Für das Überleben des Volkes sind vor allem Kohlenhydrate notwendig. Eine Arbeiterin benötigt pro Tag etwa 4 mg verwertbaren Zucker. Allerdings sind nicht alle Zucker verwertbar, einige sind für Bienen giftig. Ebenfalls giftig ist Hydroxymethylfurfural (HMF) das sich bei thermischer Zersetzung und langer Lagerung aus Zuckern bildet. Der HMF Gehalt erhältlicher Maissirupe liegt zwischen 3,1 und 28,7 ppm, kann aber durch Lagerung bei zu hohen Temperaturen drastisch ansteigen und die Mortalität von Bienen erhöhen.

Pollen ist die natürliche Proteinquelle von Bienen. Daraus bilden Ammenbienen ein proteinreiches Futter für die Brut. Ist nicht genügend Pollen vorhanden, reduziert das Bienenvolk die Zahl der produzierten Larven durch Kannibalismus. Ein Mangel von Protein in der Larval-oder Adultnahrung führt zur reduzierten Entwicklung der Brutfutterdrüsen und Ovarien sowie einer kürzeren Lebensdauer. Proteinmangel während der Larvalernährung führt darüber hinaus zu beeinträchtigter Thoraxentwicklung, Flugleistung und Verhaltensänderungen. Bei Pollenmangel können dem Bienenvolk andere Proteinquellen angeboten werden, Tabelle I zeigt die pro Tag konsumierten Mengen unterschiedlicher Diäten, deren Bestandteile, Proteingehalt und die Größe der untersuchten Einheit. Ein Proteingehalt zwischen 23 und 30 % hat sich als zur Brutaufzucht geeignet erwiesen. Unseren Berechnungen zufolge erhält ein Volk mit jedem konsumierten Gramm etwa die Menge Protein die 4 Larven bis zur Verdeckelung benötigen.

Pollen liefert ebenfalls Fette, die vor allem in der Larvalentwicklung benötigt werden. Honigbienen können Sterole nicht selbst herstellen, und verfüttern überwiegend 24-Methylen-Cholesterin an die Brut. Das tun sie, unter Verwendung von Körperreserven auch dann, wenn kein Cholesterin in der Nahrung vorhanden ist.

Arbeiterinnen (oder symbiontische Mikroorganismen) sind in der Lage Vitamin C zu synthetisieren. Pyridoxin, ein Vitamin aus dem B-Komplex, ist hingegen notwendig für erfolgreiche Brutaufzucht. Obwohl fettlösliche Vitamine nicht essentiell für die Honigbiene sind, steigert ihre Anwesenheit in der Diät die Menge an produzierter Brut.

Neben dem Verhungern oder der erwähnten Mangelernährung stellen einseitige Ernährung durch Monokulturen, genetisch modifizierte Pflanzen oder vom Menschen oder der Pflanze produzierte Giftstoffe die mit der Nahrung eingetragen werden Gefahren für die Honigbiene dar.

Mangelernährung Pollen Protein Kohlenhydrate Zufütterung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alaux C., Ducloz F., Crauser D., Le Conte Y. (2010) Diet effects on honeybee immunocompetence, Biol. Lett., DOI:10.1098/rsbl.2009.0986.Google Scholar
  2. Alqarni A.S. (2006) Influence of some protein diets on the longevity and some physiological conditions of honeybee Apis mellifera L. workers, J. Biol. Sci. 6, 734–737.Google Scholar
  3. Amdam G.V., Omholt S.W. (2002) The regulatory anatomy of honeybee lifespan, J. Theor. Biol. 216, 209–228.PubMedGoogle Scholar
  4. Amdam G.V., Omholt S.W. (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis, J. Theor. Biol. 223, 451–464.PubMedGoogle Scholar
  5. Amdam G.V., Hartfelder K., Norberg K., Hagen A., Omholt S.W. (2004) Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J. Econ. Entomol. 97, 741–747.PubMedGoogle Scholar
  6. Amdam G.V., Norberg K., Hagen A., Omholt S.W. (2003) Social exploitation of vitellogenin, Proc. Natl. Acad. Sci. 100, 1799–1802.PubMedGoogle Scholar
  7. Anderson L.M., Dietz A. (1976) Pyridoxine requirement of the honey bee (Apis mellifera) for brood rearing, Apidologie 7, 67–84.Google Scholar
  8. Aupinel P., Fortini D., Dufour H., Tasei J.N., Michaud B., Odoux J.F., Pham-Delègue M.H. (2005) Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae, Bull. Insect 58, 107–111.Google Scholar
  9. Avni D., Dag A., Shafir S. (2009) The effect of surface area of pollen patties fed to honey bee (Apis mellifera) colonies on their consumption, brood production and honey yields, J. Apic. Res. 48, 23–28.Google Scholar
  10. Babendreier D., Kalberer N., Romeis J., Fluri P., Bigler F. (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants, Apidologie 35, 293–300.Google Scholar
  11. Barker R.J. (1977) Some carbohydrates found in pollen and pollen substitutes are toxic to honey bees, J. Nutr. 107, 1859–1862.PubMedGoogle Scholar
  12. Barker R.J. (1990) Poisoning by plants, in: Morse R.A., Nowogrodzki R. (Eds.), Honey bee pests, predators, and diseases, Cornell University Press, Ithaca, N.Y. and London, pp. 306–328.Google Scholar
  13. Barker R.J., Lehner Y. (1974) Acceptance and sustenance value of naturally occurring sugars fed to newly emerged adult workers of honey bees (Apis mellifera L.), J. Exp. Zool. 187, 277–285.Google Scholar
  14. Barker R.J., Lehner Y. (1976) Galactose a sugar toxic to honey bees found in exudate of tulip flowers, Apidologie 7, 109–112.Google Scholar
  15. Barker R.J., Lehner Y. (1978) Laboratory comparison of high fructose corn syrup, grape syrup, honey, and sucrose syrup as maintenance food for caged honey bees, Apidologie 9, 111–116.Google Scholar
  16. Brodschneider R., Moosbeckhofer R., Crailsheim K. (2010) Surveys as a tool to record winter losses of honey bee colonies — a 2-year case study in Austria and South Tyrol, Tyrol, J. Apic. Res. 49, 23–30.Google Scholar
  17. Brodschneider R., Hrassnigg N., Vollmann J., Petz M., Riessberger-Gallé U., Crailsheim K. (2007) Liquid nutrition within a honeybee colony — who feeds? Apidologie 38, 492.Google Scholar
  18. Brodschneider R., Haidmayer C., Riessberger-Gallé U., Crailsheim K. (2009a) Protein uptake in honeybee colonies supplemented with two protein diets simultaneously, Apidologie 40, 662.Google Scholar
  19. Brodschneider R., Riessberger-Gallé U., Crailsheim K. (2009b) Flight performance of artificially reared honeybees (Apis mellifera), Apidologie 40, 441–449.Google Scholar
  20. Brodschneider R., Steiner D., Moder A., Vollmann J., Riessberger-Gallé U., Crailsheim K. (2009c) Synthetic larval diet produces lighter and smaller honeybees (Apis mellifera), Apidologie 40, 663–664.Google Scholar
  21. Campana B.J., Moeller F.E. (1977) Honey bees: preference for and nutritive value of pollen from five plant sources, J. Econ. Entomol. 70, 39–41.Google Scholar
  22. Cantrill R.C., Hepburn H.R., Warner S.J. (1981) Changes in lipid composition during sealed brood development of African worker honeybees, Comp. Biochem. Physiol. B 68, 351–353.Google Scholar
  23. Crailsheim K. (1986) Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm), J. Insect Physiol. 32, 629–634.Google Scholar
  24. Crailsheim K. (1990) The protein balance of the honey bee worker, Apidologie 21, 417–429.Google Scholar
  25. Crailsheim K. (1991) Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies, J. Comp. Physiol. B 161, 55–60.Google Scholar
  26. Crailsheim K. (1998) Trophallactic interactions in the adult honeybee (Apis mellifera L.), Apidologie 29, 97–112.Google Scholar
  27. Crailsheim K., Schneider L.H.W., Hrassnigg N., Bühlmann G., Brosch U., Gmeinbauer R., Schöffmann B. (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function, J. Insect Physiol. 38, 409–419.Google Scholar
  28. Cremonez T.M., de Jong D., Bitondi M.M.G. (1998) Quantification of hemolymph proteins as a fast method for testing protein diets for honey bees (Hymenoptera: Apidae), J. Econ. Entomol. 91, 1284–1289.Google Scholar
  29. Daly H.V., Danka R.G., Hoelmer K., Rinderer T.E., Buco S.M. (1995) Honey bee morphometrics: linearity of variables with respect to body size and classification tested with European worker bees reared by varying ratios of nurse bees, J. Apic. Res. 34, 129–145.Google Scholar
  30. DeGrandi-Hoffman G., Hagler J. (2000) The flow of incoming nectar through a honey bee (Apis mellifera L.) colony as revealed by a protein marker, Insectes Soc. 47, 302–306.Google Scholar
  31. DeGrandi-Hoffman G., Wardell G., Ahumada-Secura F., Rinderer T.E., Danka R., Pettis J. (2008) Comparisons of pollen substitute diets for honeybees: consumption rates by colonies and effects on brood and adult populations, J. Apic. Res. 47, 265–270.Google Scholar
  32. De Groot A.P. (1953) Protein and amino acid requirements of the honeybee (Apis mellifica L.), Physiol. Comp. Oecol. 3, 197–285.Google Scholar
  33. De Jong D., da Silva E.J., Kevan P.G., Atkinson J.L. (2009) Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen, J. Apic. Res. 48, 34–37.Google Scholar
  34. Decourtye A., Mader E., Desneux N. (2010) Landscape scale enhancement of floral resources for honey bees in agro-ecosystems, Apidologie 41, 264–277.Google Scholar
  35. Dietz A., Stevenson H.R. (1980) Influence of long term storage on the nutritional value of frozen pollen for brood rearing of honey bees, Apidologie 11, 143–151.Google Scholar
  36. Dimou M., Thrasyvoulou A. (2009) Pollen analysis of honeybee rectum as a method to record the bee pollen flora of an area, Apidologie 40, 124–133.Google Scholar
  37. Doner L.W. (1977) The sugars of honey — a review, J. Sci. Food Agric. 28, 443–456.PubMedGoogle Scholar
  38. Doull K.M. (1980a) Relationships between consumption of a pollen supplement, honey production, and broodrearing in colonies of honeybees Apis mellifera L. I, Apidologie 11, 361–365.Google Scholar
  39. Doull K.M. (1980b) Relationships between consumption of a pollen supplement, honey production and broodrearing in colonies of honeybees Apis mellifera L. II, Apidologie 11, 367–374.Google Scholar
  40. Dustmann J.H., von der Ohe W. (1988) Einfluß von Kälteeinbrüchen auf die Frühjahrsentwinklung von Bienenvölkern (Apis mellifera L), Apidologie 19, 245–254.Google Scholar
  41. Eischen F.A., Rothenbuhler W.C., Kulincevic J.M. (1982) Length of life and dry weight of worker honeybees reared in colonies with different worker-larva ratios, J. Apic. Res. 21, 19–25.Google Scholar
  42. Ellis A.M., Hayes G.W. Jr (2009) An evaluation of fresh versus fermented diets for honey bees (Apis mellifera), J. Apic. Res. 48, 215–216.Google Scholar
  43. Free J.B. (1965) The behaviour of honeybee foragers when their colonies are fed sugar syrup, J. Apic. Res. 4, 85–88.Google Scholar
  44. Forsgren E., Vásquez A., Olofsson T.C., Fries I. (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae, Apidologie 41, 99–108.Google Scholar
  45. Gilliam M. (1997) Identification and roles of non-pathogenic microflora associated with honey bees, FEMS Microbiol. Lett. 155, 1–10.Google Scholar
  46. Girolami V., Mazzon L., Squartini A., Mori N., Marzaro M., Di Bernardo A., Greatti M., Giorio C., Tapparo A. (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees, J. Econ. Entomol. 102, 1808–1815.PubMedGoogle Scholar
  47. Hagedorn H.H., Moeller F.E. (1968) Effect of the age of pollen used in pollen supplements on their nutritive value for the honeybee. I. Effect on thoracic weight, development of hypopharyngeal glands, and brood rearing, J. Apic. Res. 7, 89–95.Google Scholar
  48. Haydak M.H. (1935) Brood rearing by honeybees confined to a pure carbohydrate diet, J. Econ. Entomol. 28, 657–660.Google Scholar
  49. Haydak M.H. (1970) Honey bee nutrition, Ann. Rev. Entomol. 15, 143–156.Google Scholar
  50. Herbert E.W. (1980) Effect of diet on the rate of brood rearing by naturally and instrumentally inseminated queens, Apidologie 11, 57–62.Google Scholar
  51. Herbert E.W., Shimanuki H. (1977) Brood-rearing capability of caged honeybees fed synthetic diets, J. Apic. Res. 15, 150–153.Google Scholar
  52. Herbert E.W., Shimanuki H. (1978a) Chemical composition and nutritive value of bee-collected and bee-stored pollen, Apidologie 9, 33–40.Google Scholar
  53. Herbert E.W., Shimanuki H. (1978b) Mineral requirements for brood-rearing by honey bees fed a synthetic diet, J. Apic. Res. 17, 118–122.Google Scholar
  54. Herbert E.W., Shimanuki H. (1978c) Effect of fat soluble vitamins on the brood rearing capabilities of honey bees fed a synthetic diet, Ann. Entomol. Soc. Am. 71, 689–691.Google Scholar
  55. Herbert E.W., Shimanuki H. (1982) Effect of population density and available diet on the rate of brood rearing by honey bees offered a pollen substitute, Apidologie 13, 21–28.Google Scholar
  56. Herbert E.W., Bickley W.E., Shimanuki H. (1970) The brood-rearing capability of caged honey bees fed dandelion and mixed pollen diets, J. Econ. Entomol. 63, 215–218.Google Scholar
  57. Herbert E.W., Shimanuki H. Caron D. (1977) Optimum protein levels required by honey bees (Hymenoptera, Apidae) to initiate and maintain brood rearing, Apidologie 8, 141–146.Google Scholar
  58. Herbert E.W., Shimanuki H., Shasha B.S. (1980a) Brood rearing and food consumption by honeybee colonies fed pollen substitutes supplemented with starch encapsulated pollen extracts, J. Apic. Res. 19, 115–118.Google Scholar
  59. Herbert E.W. Jr., Svoboda J.A., Thompson M.J., Shimanuki H. (1980b) Sterol utilization in honey bees fed a synthetic diet: Effects on brood rearing, J. Insect Physiol. 26, 287–289.Google Scholar
  60. Herbert E.W., Sylvester H.A., Vandenberg J.D., Shimanuki H. (1988) Influence of nutritional stress and the age of adults on the morphometrics of honey bees (Apis mellifera L.), Apidologie 19, 221–230. 26, 287–289.Google Scholar
  61. Herbert E.W., Vanderslice J.T., Higgs D.J. (1985) Effect of dietary vitamin C levels on the rate of brood production of freeflying and confined colonies of honey bees, Apidologie 16, 385–394.Google Scholar
  62. Hersch M.I., Crewe R.M., Hepburn H.R., Thompson P.R., Savage N. (1978) Sequential development of glycolytic competence in muscles of worker honeybees, Comp. Biochem. Physiol. B 61, 427–431.Google Scholar
  63. Hoover S.E., Higo H.A., Winston M.L. (2006) Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition, J. Comp. Physiol. B 176, 55–63.PubMedGoogle Scholar
  64. Hopkins C.Y., Jevans A.W., Boch R. (1969) Occurence of octadeca-trans-2, cis-9, cis-12-trienoic acid in pollen attractive to the honey bee, Can. J. Biochem. Cell Biol. 47, 433–436.Google Scholar
  65. Hrassnigg N., Crailsheim K. (2005) Differences in drone and worker physiology in honeybees (Apis mellifera L.), Apidologie 36, 255–277.Google Scholar
  66. Hrassnigg N., Brodschneider R., Fleischmann P.H., Crailsheim K. (2005) Unlike nectar foragers, honeybee drones (Apis mellifera) are not able to utilize starch as fuel for flight, Apidologie 36, 547–557.Google Scholar
  67. Imdorf A., Rickli M., Kilchenmann V., Bogdanov S., Wille H. (1998) Nitrogen and mineral constituents of honey bee worker brood during pollen shortage, Apidologie 29, 315–325.Google Scholar
  68. Jachimowicz T., El Sherbiny G. (1975) Zur Problematik der Verwendung von Invertzucker für die Bienenfütterung (Problems of invert sugar as food for honeybees), Apidologie 6, 121–143.Google Scholar
  69. Jay S.C. (1964) Starvation studies of larval honey bees, Can. J. Zool. 42, 455–462.Google Scholar
  70. Johnson R.M., Ellis M.D., Mullin C.A., Frazier M. (2010) Pesticides and honey bee toxicity — U.S.A., Apidologie, 41, 312–331.Google Scholar
  71. Kralj J., Brockmann A., Fuchs S., Tautz, J. (2007) The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers, Apis mellifera L., J. Comp. Physiol. A 193, 363–370.Google Scholar
  72. Kunert K., Crailsheim K. (1988) Seasonal changes in carbohydrate, lipid and protein content in emerging worker honeybees and their mortality, J. Apic. Res. 27, 13–21.Google Scholar
  73. LeBlanc B.W., Eggleston G., Sammataro D., Cornett C., Dufault R., Deeby T., Cyr E.S.T. (2009) Formation of hydroxymethylfurfural in domestic high-fructose corn syrup and its toxicity to the honey bee (Apis mellifera), J. Agric. Food Chem. 57, 7369–7376.PubMedGoogle Scholar
  74. Loper G.M., Berdel R.L. (1980a) A nutritional bioassay of honeybee brood-rearing potential, Apidologie 11, 181–189.Google Scholar
  75. Loper G.M., Berdel R.L. (1980b) The effects of nine pollen diets on broodrearing of honeybees, Apidologie 11, 351–359.Google Scholar
  76. Malone L.A., Pham-Delègue M.-H. (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.), Apidologie 32, 287–304.Google Scholar
  77. Malone L.A., Todd J.H., Burgess E.P.J., Christeller J.T. (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor, Apidologie 35, 655–664.Google Scholar
  78. Manning R., Rutkay A., Eaton L., Dell B. (2007) Lipid-enhanced pollen and lipid-reduced flour diets and their effect on the longevity of honey bees (Apis mellifera L.), Aust. J. Entomol. 46, 251–257.Google Scholar
  79. Mattila H.R., Otis G.W. (2006a) Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies, J. Econ. Entomol. 99, 604–613.PubMedGoogle Scholar
  80. Mattila H.R., Otis G.W. (2006b) The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honey bee, Apidologie 37, 533–546.Google Scholar
  81. Maurizio A. (1954) Pollenernährung und Lebensvorgänge bei der Honigbiene (Apis mellifica L.), Landwirtsch. Jahrb. Schweiz 62, 115–182.Google Scholar
  82. Mayack C., Naug D. (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection, J. Invertebr. Pathol. 100, 185–188.PubMedGoogle Scholar
  83. McLellan A.R. (1977) Honeybee colony weight as an index of honey production and nectar flow: A critical evaluation, J. Appl. Ecol. 14, 401–408.Google Scholar
  84. Moritz B., Crailsheim K. (1987) Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.), J. Insect Physiol. 33, 923–931.Google Scholar
  85. Naug D. (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses, Biol. Conserv. 142, 2369–2372.Google Scholar
  86. Naug D., Gibbs A. (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae, Apidologie 40, 595–599.Google Scholar
  87. Neupane K.R., Thapa R.B. (2005) Alternative to offseason sugar supplement feeding of honeybees, J. Inst. Agric. Anim. Sci. 26, 77–81.Google Scholar
  88. Nicolson S.W. (2009) Water homeostasis in bees, with the emphasis on sociality, J. Exp. Biol. 212, 429–434.PubMedGoogle Scholar
  89. Nicolson S.W., Human H. (2008) Bees get a head start on honey production, Biol. Lett. 4, 299–301.PubMedGoogle Scholar
  90. Oldroyd B.P. (2007) What’s killing American honey bees? PLoS Biol. 5, e168.PubMedGoogle Scholar
  91. Pankiw T., Sagili R.R., Metz B.N. (2008) Brood pheromone effects on colony protein supplement consumption and growth in the honey bee (Hymenoptera: Apidae) in a subtropical winter climate, J. Econ. Entomol. 101, 1749–1755.PubMedGoogle Scholar
  92. Pernal S.F., Currie R.W. (2000) Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.), Apidologie 31, 387–409.Google Scholar
  93. Ramirez-Romero R., Desneux N., Decourtye A., Chaffiol A., Pham-Delègue M.H. (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol. Environ. Saf. 70, 327–333.PubMedGoogle Scholar
  94. Randolt K., Gimple O., Geissendörfer J., Reinders J., Prusko C., Mueller M.J., Albert S., Tautz J., Beier H. (2008) Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults, Arch. Insect Biochem. Physiol. 69, 155–167.PubMedGoogle Scholar
  95. Rembold H., Lackner B. (1981) Rearing of honeybee larvae in vitro: Effect of yeast extract on queen differentiation, J. Apic. Res. 20, 165–171.Google Scholar
  96. Rortais A., Arnold G., Halm M.-P., Touffet-Briens F. (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees, Apidologie 36, 71–83.Google Scholar
  97. Roulston T.H., Cane J.H. (2000) Pollen nutritional content and digestibility for animals, Plant Syst. Evol. 222, 187–209.Google Scholar
  98. Roulston T.H., Cane J.H., Buchmann S.L. (2000) What governs protein content of pollen: pollinator preferences, pollen—pistil interactions, or phylogeny? Ecol. Monogr. 70, 617–643.Google Scholar
  99. Schmickl T., Crailsheim K. (2001) Cannibalism and early capping: strategies of honeybee colonies in times of experimental pollen shortages, J. Comp. Physiol. A 187, 541–547.PubMedGoogle Scholar
  100. Schmickl T., Crailsheim K. (2002) How honeybees (Apis mellifera L.) change their broodcare behavior in response to non-foraging conditions and poor pollen conditions, Behav. Ecol. Sociobiol. 51, 415–425.Google Scholar
  101. Schmickl T., Crailsheim K. (2004) Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply, Apidologie 35, 249–263.Google Scholar
  102. Schmidt J.O. (1984) Feeding preference of Apis mellifera L. (Hymenoptera: Apidae): individual versus mixed pollen species, J. Kans. Entomol. Soc. 57, 323–327.Google Scholar
  103. Schmidt J.O., Buchmann S.L. (1985) Pollen digestion and nitrogen-utilization by Apis mellifera L. (Hymenoptera, Apidae), Comp. Biochem. Physiol. A 82, 499–503.Google Scholar
  104. Schmidt J.O., Hanna A. (2006) Chemical nature of phagostimulants in pollen attractive to honeybees, J. Insect Physiol. 19, 521–532.Google Scholar
  105. Schmidt J.O., Thoenes S.C., Levin M.D. (1987) Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources, J. Econ. Entomol. 80, 176–183.Google Scholar
  106. Schmidt L.S., Schmidt J.O., Rao H., Wang W., Xu L. (1995) Feeding preference of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen, J. Econ. Entomol. 88, 1591–1595.Google Scholar
  107. Schulz D.J., Huang Z.-Y., Robinson G.E. (1998) Effect of colony food shortage on the behavioral development of the honey bee, Apis mellifera, Behav. Ecol. Sociobiol. 42, 295–303.Google Scholar
  108. Seeley T.D. (1989) The honey bee colony as a superorganism, Am. Sci. 77, 546–553.Google Scholar
  109. Seeley T.D., Visscher P.K. (1985) Survival of honeybees in cold climates: the critical timing of colony growth and reproduction, Ecol. Entomol. 10, 81–88.Google Scholar
  110. Severson D.W., Erickson E.H. (1984) Honey bee (Hymenoptera: Apidae) colony performance in relation to supplemental carbohydrates, J. Econ. Entomol. 77, 1473–1478.Google Scholar
  111. Singh R.P., Singh P.N. (1996) Amino acid and lipid spectra of larvae of honey bee (Apis cerana Fabr) feeding on mustard pollen, Apidologie, 27, 21–28.Google Scholar
  112. Somerville D.C., Nicol H.I. (2006) Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity, Aust. J. Exp. Agr. 46, 141–149.Google Scholar
  113. Standifer L.N., Moeller F.E., Kauffeld N.M., Herbert E.W., Shimanuki, H. (1977) Supplemental feeding of honey bee colonies, USDA Agr. Inform. Bull. No. 413, 8 p.Google Scholar
  114. Staudenmayer T. (1939) Die Giftigkeit der Mannose für Bienen und andere Insekten, J. Comp. Physiol. A 26, 644–668.Google Scholar
  115. Svoboda J.A., Herbert, E.W., Thompson M.J. Feldlaufer M.F. (1986) Selective sterol transfer in the honey bee: Its significance and relationship to other hymenoptera, Lipids 21, 97–101.Google Scholar
  116. Svoboda J.A., Thompson M.J., Herbert E.W., Shortino T.J., Szczepanik-Vanleeuwen P.A. (1982) Utilization and metabolism of dietary sterols in the honey bee and the yellow fever mosquito, Lipids 17, 220–225.PubMedGoogle Scholar
  117. Szymas B., Jedruszuk A. (2003) The influence of different diets on haemocytes of adult worker honey bees, Apis mellifera, Apidologie 34, 97–102.Google Scholar
  118. Tautz J., Maier S., Groh C., Rössler W., Brockmann A. (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development, Proc. Natl. Acad. Sci. 100, 7343–7347.PubMedGoogle Scholar
  119. Toth A.L., Robinson G.E. (2005) Worker nutrition and division of labour in honeybees, Anim. Behav. 69, 427–435.Google Scholar
  120. Toth A.L., Kantarovich S., Meisel A.F., Robinson G.E. (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees, J. Exp. Biol. 208, 4641–4649.PubMedGoogle Scholar
  121. van der Steen J. (2007) Effect of a home-made pollen substitute on honey bee colony development, J. Apic. Res. 46, 114–119.Google Scholar
  122. vanEngelsdorp D., Evans J.D., Saegermann C., Mullin C., Haubrugge E., Nguyen B.K., Frazier M., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R., Pettis J.S. (2009) Colony Collapse Disorder: a descriptive study, PLoS ONE 4, e6481.PubMedGoogle Scholar
  123. vanEngelsdorp D., Hayes J., Underwood R.M., Pettis J.S. (2010) A survey of honey bee colony losses in the United States, fall 2008 to spring 2009, J. Apic. Res. 49, 7–14.Google Scholar
  124. Vásquez A., Olofsson T.C. (2009) The lactic acid bacteria involved in the production of bee pollen and bee bread, J. Apic. Res. 48, 189–195.Google Scholar
  125. Wille H., Wille M., Kilchenmann V., Imdorf A., Bühlmann G. (1985) Pollenernte und Massenwechsel von drei Apis mellifera-Völkern auf demselben Bienenstand in zwei aufeinanderfolgenden Jahren, Rev. Suisse Zool. 92, 897–914.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  1. 1.Department of ZoologyKarl-Franzens-University GrazGrazAustria

Personalised recommendations