Advertisement

Apidologie

, Volume 41, Issue 4, pp 428–435 | Cite as

Resin-foraging by colonies of Trigona sapiens and T. hockingsi (Hymenoptera: Apidae, Meliponini) and consequent seed dispersal of Corymbia torelliana (Myrtaceae)

  • Helen M. WallaceEmail author
  • David J. Lee
Original Article

Abstract

Resins are a critical resource for stingless bees and resin-collecting bees act as seed dispersers in tropical plants. We describe the diurnal foraging patterns of colonies of Trigona sapiens and T. hockingsi on resin and pollen. We also document patterns of waste removal and seed dispersal of Corymbia torelliana. At most, only 10% of foragers collected resin or dispersed seed. Nevertheless, bees dispersed 1–3 seeds outside the nest per 5 minutes, and 38–114 seeds per day for each nest. The proportion of returning bees carrying pollen was highest in the morning for both species. The proportion of foragers returning with resin loads showed no significant diurnal variation in any season. Waste removal activity peaked in the afternoon for T. sapiens and in the morning for T. hockingsi. Seed removal peaked in the afternoon in one year only for T. sapiens. Bees dispersed thousands of seeds of C. torelliana over the season even though only a small proportion of the colony was engaged in seed transport.

stingless bees mellitochory seed dispersal resin Corymbia 

Récolte de résine par les colonies de Trigona sapiens et de T. hockingsi et dispersion consécutive des graines de Corymbia torelliana

abeilles sans aiguillon Trigona dispersion des graines résine Australie 

Harzsammelnde stachellose Bienen der Arten Trigona sapiens und T. hockingsi (Hymenoptera: Apidae, Meliponini) tragen zur Samenverbreitung von Corymbia torelliana (Myrtaceae) bei

Zusammenfassung

Harze sind ein wichtiger Bestandteil der Neststrukturen stachelloser Bienen. Durch das Summeln von Harz und Wachs aus Früchten tragen diese Bienen entscheidend zur Verbreitung der Samen tropischer Pflanzen über weite Distanzen hinweg bei. Wir beschreiben hier das Harzsammelverhalten von Völkern der stachellosen Bienen Trigona sapiens und T. hockingsi und die darauf beruhende Verbreitung der Samen von Corymbia torelliana. Die Untersuchung erstreckte sich über einen Zeitraum von drei Jahren. Das Harzsammeln und die Samenverbreitung stellt nur einen kleinen Teil der Aktivitäten dieser Völker dar und höchstens 10 % der Arbeiterinnen waren an diese Aktivitäten beteiligt. Nichtsdestotrotz verbreiteten diese Bienen während der Zeiten maximaler Aktivität 1–3 Samen innerhalb von 5 Minuten, bzw. 38–114 Samen pro Tag und Volk. Der Anteil mit Pollenladungen zurückkehrender Bienen zeigte starke tageszeitliche Schwankungen innerhalb der Jahre, wobei die höchste Pollensammelaktivität jeweils morgens zu verzeichnen war. Bei Sammlerinnen, die mit Harzladungen zurückkehrten, waren solche Schwankungen jedoch nicht zu beobachten. Das Heraustragen von Müll zeigte ebenfalls charakteristische Schwankungen im Testverlauf, mit einem Maximum am Morgen bei T. hockingsi und einem Maximum am Abend bei T. sapiens. Auch das Entfernen von Samen zeigte signifikante Schwankungen im Tagesverlauf, wobei die Maxima bei T. sapiens innerhalb eines Jahres in den Nachmittagsstunden lagen. Unsere Ergebnisse zeigen, dass selbst wenn nur ein geringer Anteil der gesamten Sammlerinnen eines Volkes am Samentransport und der Samenverbreitung beteiligt ist, dies dazu führen kann, dass tausende von Samen der Art C. torelliana während der 2–3 Monate dauernden Fruchtperiode verbreitet werden können.

Stachellose Bienen Mellitochorie Samenverbreitung Harz Corymbia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armbruster W.S. (1984) The role of resin in angiosperm pollination: ecological and chemical considerations, Am. J. Bot. 71, 1149–1160.CrossRefGoogle Scholar
  2. Bacelar-Lima C.G., Freire D.C.B., Coletto-Silva A., Costa K.B., Laray J.P.B., Vilas-Boas H.C., Carvalho-Zolse G.A. (2006) Melitocory of Zygia racemosa (Ducke) Barneby & Grimes by Melipona seminigra merrillae Cockerell, 1919, and Melipona compressipes manaosensis Schwarz, 1932 (Hymenoptera, Meliponina) in Central Amazon Brazil, Acta Amaz. 36, 343–348.CrossRefGoogle Scholar
  3. Bartareau T. (1996) Foraging behaviour of Trigona carbonaria (Hymenoptera: Apidae) at multiple choice feeding stations, Aust. J. Zool. 44, 143–153.CrossRefGoogle Scholar
  4. Biesmeijer J.C., Ermers M.C.W. (1999) Social foraging in stingless bees: how colonies of Melipona fasciata choose among nectar sources, Behav. Ecol. Sociobiol. 46, 129–140.CrossRefGoogle Scholar
  5. Biesmeijer J., Slaa E.J. (2004) Information flow and organization of stingless bee foraging, Apidologie 35, 143–157.CrossRefGoogle Scholar
  6. Biesmeijer J.C., Toth E. (1998) Individual foraging, activity level and longevity in the stingless bee Melipona beecheii in Costa Rica (Hymenoptera, Apidae, Meliponinae), Insect. Soc. 45, 427–443.CrossRefGoogle Scholar
  7. Biesmeijer J.C., van Nieuwstadt M.G.L., Lukács S., Sommeijer M.J. (1998) The role of internal and external information in foraging decisions of Melipona workers (Hymenoptera: Meliponinae), Behav. Ecol. Sociobiol. 42, 107–116.CrossRefGoogle Scholar
  8. Biesmeijer J.C., Born M., Lukács S., Sommeijer M.J. (1999a) The response of the stingless bee Melipona beecheii to experimental pollen stress worker loss and different levels of information input, J. Apicult. Res. 38, 33–41.Google Scholar
  9. Biesmeijer J.C., Smeets M.J.A.P., Richter J.A.P., Sommeijer M.J. (1999b) Nectar foraging by stingless bees in Costa Rica: Botanical and climatological influences on sugar concentration of nectar collected by Melipona, Apidologie 30, 40–55.CrossRefGoogle Scholar
  10. Cremer K.W. (1977) Distance of seed dispersal in eucalypts estimated from seed weights, Aust. Forestry Res. 7, 225–228.Google Scholar
  11. De Bruijn L.L.M., Sommeijer M.J. (1997) Colony foraging in different species of stingless bees (Apidae, Meliponinae) and the regulation of individual nectar foraging, Insect. Soc. 44, 35–47.CrossRefGoogle Scholar
  12. Garcia M.V.B., Oliveira M.L., Campos L.A.O. (1992). Use of seeds of Coussapoa asperifolia magnifolia (Cecropiaceae) by stingless bees in the central Amazonian forest (Hymonoptera: Apidae: Meliponinae), Entomol. Gen. 17, 255–258.Google Scholar
  13. Heard T.A., Hendrikz J.K. (1993) Factors influencing flight activity of colonies of stingless bee Trigona carbonaria (Hymenoptera: Apidae), Aust. J. Zool. 41, 343–353.CrossRefGoogle Scholar
  14. Higgins S.I., Richardson D.M. (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal, Am. Nat. 153, 464–475.CrossRefGoogle Scholar
  15. Higgins S.I., Nathan R., Cain M.L. (2003) Are longdistance dispersal events in plants usually caused by non-standard means of dispersal? Ecology 84, 1945–1956.CrossRefGoogle Scholar
  16. Howard J.J. (1985) Observations on resin collecting by six interacting species of stingless bees (Apidae: Meliponinae), J. Kansas Entomol. Soc. 58, 337–345.Google Scholar
  17. Klumpp J. (2007) Australian stingless bees-a guide to sugarbag beekeeping. Earthling Enterprises, West End, Australia, 120 p.Google Scholar
  18. Lehmberg L., Dworschak K. Blüthgen N. (2008) Defensive behaviour and chemical deterrence against ants in the stingless bee genus Trigona (Apidae, Meliponini), J. Apicult. Res. 47, 17–21.Google Scholar
  19. Leonhardt S.D., Dworshak K., Eltz T., Blüthgen N. (2007) Foraging loads of stingless bees and utilisation of stored nectar for pollen harvesting, Apidologie 38, 125–135.CrossRefGoogle Scholar
  20. Nagamitsu T., Inoue T. (2002) Foraging activity and pollen diets of subterranean stingless bee colonies in response to general flowering in Sarawak, Malaysia, Apidologie 33, 303–314.CrossRefGoogle Scholar
  21. Nathan R. (2005) Long-distance dispersal research: building a network of yellow brick roads, Diversity and Distributions 11, 125–130.CrossRefGoogle Scholar
  22. Nathan R. (2006) Long-distance dispersal of plants, Science 313, 786–788.PubMedCrossRefGoogle Scholar
  23. Nunez C.V., de Oliveira M.L., Lima R.D., Diaz I.E.C. Sargentini E., Pereira O.L., Araújo L.M. (2008) Chemical analyses confirm a rare case of seed dispersal by bees, Apidologie 39, 618–626.CrossRefGoogle Scholar
  24. Richardson D.M., Allsop N., D’Antonio C.M., Milton S.J., Rejmanek M. (2000) Plant invasions-the role of mutualisms, Biol. Rev. 75, 65–93.PubMedCrossRefGoogle Scholar
  25. Roubik D.W. (1989) Ecology and Natural History of Tropical Bees. Cambridge University Press, Cambridge, 514 p.CrossRefGoogle Scholar
  26. Roubik D.W. (2006) Stingless bee nesting biology, Apidologie 27, 124–143.CrossRefGoogle Scholar
  27. Slaa E.J., Tack A.J.M., Sommeijer M.J. (2003) The effect of intrinsic and extrinsic factors on flower constancy in stingless bees, Apidologie 34, 457–468.CrossRefGoogle Scholar
  28. Wallace H.M., Trueman S.J. (1995) Dispersal of Eucalyptus torelliana seeds by the resin-collecting stingless bee, Trigona carbonaria, Oecologia 104, 12–16.CrossRefGoogle Scholar
  29. Wallace H.M., Howell M.G., Lee D.J. (2008) Standard yet unusual mechanisms of long distance dispersal: seed dispersal of Corymbia torelliana by bees, Diversity and Distributions 14, 87–94.CrossRefGoogle Scholar
  30. White D., Cribb B.W., Heard T.A. (2001) Flower constancy of the stingless bee Trigona carbonaria Smith (Hymenoptera: Apidae: Meliponini), Aust. J. Entomol. 40, 61–64.CrossRefGoogle Scholar
  31. Wille A. (1983) Biology of the stingless bee, Annu. Rev. Entomol. 28, 41–64.CrossRefGoogle Scholar
  32. Wille A., Michener C.D. (1973) The nest architecture of stingless bees with special reference to those of Costa Rica, Rev. Biol. Trop. Suppl. 21, 1–278.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of Science, Health and EducationUniversity of the Sunshine CoastMaroochydoreAustralia
  2. 2.Department of Primary Industries and FisheriesHorticulture and Forestry ScienceGympieAustralia

Personalised recommendations