Advertisement

Apidologie

, Volume 41, Issue 2, pp 141–150 | Cite as

Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions

  • Cecilia Costa
  • Marco Lodesani
  • Lara Maistrello
Original Article

Abstract

The aim of this study was to evaluate the effect of thymol and resveratrol administered in two different formulation modes (candy and syrup) on the development of Nosema ceranae and on the longevity of honey bees. Emerging bees from a nosema-free apiary were individually infected with 1 μL of sucrose syrup containing 18000 spores of N. ceranae, placed in cages, and kept in an incubator at 33 °C and 65% RH. The experimental groups were fed candy or syrup prepared with thymol (100 ppm) or resveratrol (10 ppm). Infection levels were monitored over a 25 day period by removal and dissection of two live bees per cage. On day 25, post-infection bees fed with thymol syrup had significantly lower levels of infection (60 ± 9 million spores/bee) compared to control bees (138 ± 7 million spores/bee). Bees fed with thymol or resveratrol syrup lived significantly longer (23 and 25 days, respectively) than bees fed with control syrup (20 days). Thymol treated syrup appears to be promising in the control of nosema infection.

Nosema microsporidian honey bee thymol resveratrol fr| Nosema thymol resveratrol abeille expérience en laboratoire 

Effet du thymol et du resveratrol, administrés avec du sucre candi ou du sirop, sur le développement de Nosema ceranae et sur la longévité des abeilles (Apis mellifera), en conditions de laboratoire

Der Effekt von Thymol und Resveratrol, verabreicht mit Sirup oder Zuckerteig, auf die Entwicklung von Nosema ceranae und die Lebensdauer von Honigbienen Apis mellifera) unter Laborbedingungen

Zusammenfassung

Der Parasit Nosema ceranae, ursprünglich von der asiatischen Honigbiene Apis cerana stammend, ist in den letzten Jahren in Honigbienen europäischer Abstammung auf der ganzen Welt nachgewiesen worden und wird von einigen Autoren auch für den plötzlichen Zusammenbruch von Völkern verantwortlich gemacht. In einem vorhergegangenen Experiment untersuchten wir einige natürliche Substanzen auf ihre Wirkung auf eine Nosema-Infektion und fanden einen vielversprechenden hemmenden Effekt von Thymol und Resveratrol, die in Zuckerteig verabreicht wurden. In dieser Untersuchung verglichen wir den Effekt von Thymol (100 ppm) und Resveratrol (10 ppm) auf den Infektionsverlauf von künstlich mit N. ceranae infizierten Bienen in zwei verschiedenen Verabreichungsformen, Zuckerteig und Sirup.

Frisch geschlüpfte Nosema-freie Arbeiterinnen wurden individuell mit 1 μL Saccharosesirup gefüttert, der 18 000 N. ceranae Sporen enthielt. Die Entwicklung der Infektion wurde beobachtet, indem aus jedem Käfig zu den Beobachtungszeitpunkten an Tag 8, 13, 19 und 25 p.i. zwei lebende Bienen entnommen und seziert wurden; die Zahl der toten Bienen wurde täglich protokolliert. Die Ergebnisse der Überlebensanalyse (Abb. 1, Tab. I) zeigten, dass 12 Tage nach Beginn des Experiments in allen Gruppen noch etwa 90 % der Bienen am Leben waren, unabhängig von der verabreichten aktiven Substanz oder der Verabreichungsform. Am Ende des Experiments gab es dagegen deutliche Unterschiede zwischen den Behandlungsformen, da Bienen, die mit Sirup gefüttert wurden, der Thymol oder Resveratrol enthielt, signifikant länger überlebten (Median der Überlebenszeit 23 Tage, bzw. 25 Tage) als Bienen, die Kontrollsirup erhielten (Median der Überlebenszeit 20 Tage) oder Bienen, die mit Kontroll-Zuckerteig oder Substanz-Zuckerteig gefüttert wurden.

Die Sporenbelastungen am letzten Beobachtungszeitpunkt (25 d) waren signifikant unterschiedlich, wobei Bienen, die mit Thymol-Sirup oder — Teig gefüttert wurden, am wenigsten Sporen hatten (Tab. II). Bei Bienen, die mit Thymol gefüttert wurden, war die Entwicklung der Infektion deutlich langsamer als in den anderen Gruppen. Am Ende des Experiments traten die höchsten bzw. niedrigsten Infektionsniveaus bei Kontrollzuckerteig bzw. Thymolsirup auf (138,33 ± 6,74 bzw. 60,16 ± 9,17 Millionen Sporen pro Biene ± SE). Thymol, entweder in Sirup oder in Zuckerteig verabreicht, war deutlich in der Lage, die Entwicklung von N. ceranae im Mitteldarm zu verzögern. Es wurde vermutet, dass Thymol die Entwicklung der Infektion durch Perforation der Plasmamembran behindert. Die von jeder Biene durchschnittlich täglich aufgenommene Dosis war 3,2 × 10−3 mg: diese Menge erschien ausreichend, um die Entwicklung der Infektion zu verhindern. Das längere Überleben der mit Resveratrol gefütterten Bienen, in denen die Sporenbelastung sich nicht von den Kontrollbienen unterschied, könnte durch die spezifischen lebens verlängernden anti-oxidativen Eigenschaften dieser Substanz erklärt werden. In der Tat konnte gezeigt werden, dass Resveratrol die Lebensspanne einiger Invertebraten verlängern kann, indem es Enzyme aktiviert, die das Überleben von Zellen fördern. Das Füttern von Bienenvölkern mit Thymol könnte eine effektive Maßnahme sein, um Nosema-Infektionen zu vermindern.

Nosema Microsporidia Honigbiene Thymol Resveratrol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennis S., Chami F., Chami N., Bouchikhi T., Remmal A. (2004) Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol, Lett. Appl. Microbiol. 38, 454–458.PubMedCrossRefGoogle Scholar
  2. Bogdanov S., Kilchenmann V., Imdorf A., Fluri P. (1998) Residues in honey after application of thymol against varroa using the franko thymol frame, Am. Bee J. 133, 610–611.Google Scholar
  3. Cantwell G.E. (1970) Standard methods for counting Nosema spores, Am. Bee J. 110, 222–223.Google Scholar
  4. Chauzat M.P., Higes M., Martin-Hernandez R., Meana A., Cougoule N., Faucon J.P. (2007) Presence of Nosema ceranae in French honey bee colonies, J. Apicult. Res. 46, 127–128.CrossRefGoogle Scholar
  5. Chen Y., Evans J.D., Smith I.B., Pettis J.S. (2008) Nosema ceranae is a long-present and widespread microsporidian infection of the European honey bee (Apis mellifera) in the United States, J. Invertebr. Pathol. 97, 186–188.PubMedCrossRefGoogle Scholar
  6. Chiesa F. (1991) Effective control of varroatosis using powdered thymol, Apidologie 22, 135–145.CrossRefGoogle Scholar
  7. Dambolena J.S., Lopez A.G., Canepa M.C., Theumer M.G., Zygadlo J.A., Rubinstein H.R. (2008) Inhibitory effect of cyclic terpenes (limonene, menthol, menthone and thymol) on Fusarium verticillioides MRC 826 growth and fumonisin B1 biosynthesis, Toxicon 51, 37–44.PubMedCrossRefGoogle Scholar
  8. Dann J.M., Sykes P.H., Mason D.R., Evans J.J. (2009) Resveratrol and (-)-epigallocatechin-3-gallate Reduce VEGF Secretion from Endometrial Tumour Cells, Reproductive Sciences 16, pp. 151A.Google Scholar
  9. Detzel A., Wink M. (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals, Chemoecology 4, 8–18.CrossRefGoogle Scholar
  10. Ebert T.A., Kevan P.G., Bishop B.L., Kevan S.D., Downer R.A. (2007) Oral toxicity of essential oils and organic acids fed to honey bees (Apis mellifera), J. Apicult. Res. 46, 220–224.CrossRefGoogle Scholar
  11. EC (2007) Council Regulation N. 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) N. 2092/91, Official Journal of the European Union L189, 20.07.2007, pp. 1–23.Google Scholar
  12. Fries I. (1993) Nosema apis — A parasite in the honey bee colony, Bee World 74, 5–19.Google Scholar
  13. Fries I., Elkbohm G., Villumstad E. (1984) Nosema apis, sampling techniques and honey yield, J. Apicult. Res. 23, 102–105.Google Scholar
  14. Fries I., Feng F., daSilva A., Slemenda S.B., Pieniazek N.J. (1996) Nosema ceranae n sp (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae), Eur. J. Protistol. 32, 356–365.Google Scholar
  15. Goodwin M., Houten A., Perry J., Blackmann R. (1990) Cost benefit analysis of using fumagillin to treat nosema, New Zeal. Beekeeper 208, 11–12.Google Scholar
  16. Higes M., García-Palencia P., Martín-Hernández R., Meana A. (2007) Experimental infection of Apis mellifera honey bees with Nosema ceranae (Microsporidia), J. Invertebr. Pathol. 94, 211–217.PubMedCrossRefGoogle Scholar
  17. Higes M., Martín R., Meana A. (2006) Nosema ceranae, a new microsporidian parasite in honey bees in Europe, J. Invertebr. Pathol. 92, 93–95.PubMedCrossRefGoogle Scholar
  18. Higes M., Martin-Hernandez R., Botias C., Bailon E.G., Gonzalez-Porto A.V., Barrios L., Del Nozal M.J., Bernal J.L., Jimenez J.J., Palencia P.G., Meana A. (2008) How natural infection by Nosema ceranae causes honey bee colony collapse, Environ. Microbiol. 10, 2659–2669.PubMedCrossRefGoogle Scholar
  19. Higes M., Martin-Hernandez R., Garrido-Bailón E., Gonzalez-Porto A.V., Garcìa-Palencia P., Meana A., Del Nozal M.J., Mayo R., Bernal J.L. (2009) Honey bee colony collapse due to Nosema ceranae in professional apiaries, Environ. Microbiol. Rep. 1, 110–113.CrossRefGoogle Scholar
  20. Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood J.G., Zipkin R.E., Chung P., Kisielewski A., Zhang L.L., Scherer B., Sinclair D.A. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature 425, 191–196.PubMedCrossRefGoogle Scholar
  21. Huang W.F., Bocquet M., Lee K.C., Sung I.H., Jiang J.H., Chen Y.W., Wang C.H. (2008) The comparison of rDNA spacer regions of Nosema ceranae isolates from different hosts and locations, J. Invertebr. Pathol. 97, 9–13.PubMedCrossRefGoogle Scholar
  22. Imdorf A., Kilchenmann V., Bogdanov S., Bachofen B., Beretta C. (1995) Toxic effects of thymol, camphor, menthol and eucalyptol on Varroa jacobsoni Oud and Apis mellifera L in a laboratory test, Apidologie 26, 27–31.CrossRefGoogle Scholar
  23. Juven B.J., Kanner J., Schved F., Weisslowicz H. (1994) Factors that interact with the antibacterial action of thyme essential oil and its active constituents, J. Appl. Bacteriol. 76, 626–631.PubMedGoogle Scholar
  24. Katznelson H., Jamieson H. (1952) Control of nosema disease with fumagillin, Science 115, 70–71.PubMedCrossRefGoogle Scholar
  25. Klee J., Besana A.M., Genersch E., Gisder S., Nanetti A., Tam D.Q., Chinh T.X., Puerta F., Ruz J.M., Kryger P., Message D., Hatjina F., Korpela S., Fries I., Paxton R.J. (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera, J. Invertebr. Pathol. 96, 1–10.PubMedCrossRefGoogle Scholar
  26. Leiro J., Cano E., Ubeira F.M., Orallo F., Sanmartìn M.L. (2004) In vitro effects of resveratrol on the viability and infectivity of the Microsporidian Encephalitozoon cuniculi, Antimicrob. Agents Ch. 48, 2497–2501.CrossRefGoogle Scholar
  27. Lenga R.E. (1988) The Sigma-Aldrich library of chemical safety data, Sigma-Aldrich Corporation 35.Google Scholar
  28. Liu T.P. (1973) Effects of Fumidil B on the spore of Nosema apis and on lipids of the host cell as revealed by freeze-etching, J. Invertebr. Pathol. 22, 364–368.CrossRefGoogle Scholar
  29. Luna C., Li G.R., Liton P.B., Qiu J.M., Epstein R.L., Challa P., Gonzalez P. (2009) Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells, Food Chem. Toxicol. 47, 198–204.PubMedCrossRefGoogle Scholar
  30. MacDonald D.N. (1978) Diseases of the honey bee, Apis mellifera (Hymeoptera: Apidae) in British Colombia, with special emphasis on nosema disease, Nosema apis (Sporozoa: Nosematidae), in the lower Fraser Valley, 13. Simon Fraser University, Canada.Google Scholar
  31. Mahmoud A.L.E. (1999) Inhibition of growth and aflatoxin biosynthesis of Aspergillus flavus by extracts of some Egyptian plants, L., Appl. Microbiol. 29, 334–336.CrossRefGoogle Scholar
  32. Maistrello L., Lodesani M., Costa C., Leonardi F., Marani G., Caldon M., Mutinelli F., Granato A. (2008) Screening of natural compounds for the control of nosema disease in honey bees (Apis mellifera), Apidologie 39, 436–445.CrossRefGoogle Scholar
  33. Malone L.A., Stefanovic D. (1999) Comparison of the responses of two races of honey bees to infection with Nosema apis Zander, Apidologie 30, 375–382.CrossRefGoogle Scholar
  34. Malone L.A., Giacon H.A., Newton M.R. (1995) Comparison of the responses of some New Zealand and Australian honey bees (Apis mellifera L) to Nosema apis Z, Apidologie 26, 495–502.CrossRefGoogle Scholar
  35. Martin P. (2003) Veterinary drug residues in honey, Apiacta 38, 21–23.Google Scholar
  36. Martìn-Hernández R., Meana A., Prieto L., Martìnez Salvador A., Garrido-Bailón E., Higes M. (2007) Outcome of colonization of Apis mellifera by Nosema ceranae, Appl. Environ. Microb. 73, 6331–6338.CrossRefGoogle Scholar
  37. Matheson A. (1996) World bee health update, Bee World 77, 45–51.Google Scholar
  38. Mayack C., Naug D. (2009) Energetic stress in the honey bee Apis mellifera from Nosema ceranae infection, J. Invertebr. Pathol. 100, 185–188.PubMedCrossRefGoogle Scholar
  39. Moffet J.O., Lackett J.J., Hitchcock J.D. (1969) Compounds tested for control of nosema in honey bees, J. Econ. Entomol. 62, 886–889.Google Scholar
  40. Naug D., Gibbs A. (2009) Behavioral changes mediated by hunger in honey bees infected with Nosema ceranae, Apidologie, DOI: 10.1051/apido/2009039.Google Scholar
  41. Pallas M., Casadesus G., Smith M.A., Coto-Montes A., Pelegri C., Vilaplana J., Camins A. (2009) Resveratrol and Neurodegenerative Diseases: Activation of SIRT1 as the Potential Pathway towards Neuroprotection, Curr. Neurovasc. Res. 6, 70–81.PubMedCrossRefGoogle Scholar
  42. Park J.S., Kim K.M., Kim M.H., Chang H.J., Baek M.K., Kim S.M., Do Jung Y. (2009) Resveratrol Inhibits Tumor Cell Adhesion to Endothelial Cells by Blocking ICAM-1 Expression, Anticancer Res. 29, 355–362.PubMedGoogle Scholar
  43. Paxton R.J., Klee J., Korpela S., Fries I. (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis, Apidologie 38, 558–565.CrossRefGoogle Scholar
  44. Rice R.N. (2001) Nosema disease in honey bees. Genetic variation and control. Report n. 01/46, Australian Government, Rural Industries Research and Development Corporation.Google Scholar
  45. Shapiro S., Guggenheim B. (1995) The action of thymol on oral bacteria, Oral Microbiol. Immunol. 10, 241–246.PubMedCrossRefGoogle Scholar
  46. Svircev A.M., Smith R.J., Zhou T., Hernadez M., Liu W., Chu C.L. (2007) Effects of thymol fumigation on survival and ultrastracture of Monilinia fructicola, Postharvest Biol. Tech. 45, 228–233.CrossRefGoogle Scholar
  47. Szabo T.I., Heikel D.T. (1987) Effect of dry fumagillin feeding on spring Nosema spore counts in overwintered colonies, Am. Bee J. 127, 210–211.Google Scholar
  48. Tay W.T., O’Mahony E., Paxton, R.J. (2005) Complete rRNA gene sequences reveal that the Microsporidium Nosema bombi infects diverse bumble bee (Bombus spp.) hosts, yet contains multiple polymorphic sites, J. Eukaryot. Microbiol. 52, 505–513.PubMedCrossRefGoogle Scholar
  49. Valenzano D.R., Terzibasi E., Genade T., Cattaneo A., Domenici L., Cellerino A. (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate, Curr. Biol. 16, 296–300.PubMedCrossRefGoogle Scholar
  50. Viollon C., Chaumont J.P. (1994) Antifungal properties of essential oils e their main components upon Cryptococcus neoformans, Mycopathologia 123, 151–153.CrossRefGoogle Scholar
  51. Williams G.R., Sampson M.A., Shutler D., Rogers R.E.L. (2008a) Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera)? J. Invertebr. Pathol. 99, 342–344.PubMedCrossRefGoogle Scholar
  52. Williams G.R., Shafer A.B.A., Rogers R.E.L., Shutler D., Stewart D.T. (2008b) First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA, J. Invertebr. Pathol. 97, 189–192.PubMedCrossRefGoogle Scholar
  53. Wood J.G., Rogina B., Lavu S., Howitz K., Helfand S.L., Tatar M., Sinclair D. (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans, Nature 431, 107.CrossRefGoogle Scholar
  54. Wyborn M.H., McCutcheon D.M. (1987) A comparison of dry and wet fumagillin treatments for spring nosema disease suppression of overwintered colonies, Am. Bee J. 127, 207–209.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Cecilia Costa
    • 1
  • Marco Lodesani
    • 1
  • Lara Maistrello
    • 2
  1. 1.Consiglio per la Ricerca e la sperimentazione in AgricolturaUnità di Ricerca di Apicoltura e Bachicoltura (CRA-API)BolognaItaly
  2. 2.Dipartimento di Scienze Agrarie e degli AlimentiUniversità di Modena e Reggio EmiliaPad. BestaItaly

Personalised recommendations