Advertisement

Apidologie

, Volume 41, Issue 1, pp 99–108 | Cite as

Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae

  • Eva Forsgren
  • Tobias C. Olofsson
  • Alejandra Váasquez
  • Ingemar Fries
Open Access
Original Article

Abstract

We evaluated the antagonistic effects of newly identified lactic acid bacteria (LAB) in the genera Lactobacillus and Bifidobacterium, originating from the honey stomach, on the honey bee pathogen, Paenibacillus larvae. We used inhibition assays on agar plates and honey bee larval bioassays to investigate the effects of honey bee LAB on P. larvae growth in vitro and on AFB infection in vivo. The individual LAB phylotypes showed different inhibition properties against P. larvae growth on agar plates, whereas a combination of all eleven LAB phylotypes resulted in a total inhibition (no visible growth) of P. larvae. Adding the LAB mixture to the larval food significantly reduced the number of AFB infected larvae in exposure bioassays. The results demonstrate that honey bee specific LAB possess beneficial properties for honey bee health. Possible benefits to honey bee health by enhancing growth of LAB or by applying LAB to honey bee colonies should be further investigated.

American foulbrood Paenibacillus larvae Lactic Acid Bacteria Lactobacillus Bifidobacterium inhibition 

Une nouvelle bactérie lactique inhibant le développement de Paenibacillus larvae chez les larves d’abeille

loque américaine Paenibacillus larvae bactérie lactique Lactobacillus Bifidobacterium inhibition du développement 

Neue Milchsäurebakterien, die Paenibacillus larvae in Honigbienenlarven hemmen

Zusammenfassung

Die Amerikanische Faulbrut (AFB) ist eine Krankheit, die junge Honigbienenlarven befällt. Sie ist eine der schädlichsten Bienenkrankheiten und hat große ökonomische Bedeutung für die Imkerei weltweit. Der Erreger der AFB ist das sporenbildende Bakterium Paenibacillus larvae, das den Mitteldarm junger Larven durch kontaminiertes Futter befällt. Die Besiedelung des larvalen Mitteldarms stellt einen der Schlüsselfaktoren für die Pathogenese von P. larvae dar und bestimmte Zusammensetzungen der Mikroflora des Darmes könnten das Wachstum des Krankheitserregers unterdrücken. Kürzlich wurden eine neue Flora von Milchsäurebakterien (LAB) der Gattungen Lactobacillus und Bifidobacterium aus dem Honigmagen der Bienen beschrieben. LAB sind zwar bekannt für die Produktion von antimikrobiellen Substanzen, jedoch gibt es Variationen bezüglich der nutzbringenden Eigenschaften zwischen Arten und Gattungen. In dieser Untersuchung wurde der antagonistische Effekt der Honigbienen-LAB auf P. larvae beurteilt. Wir verwendeten Hemmtests auf Agarplatten und Biotests mit Honigbienenlarven, um diese Effekte zu untersuchen. Die individuellen LAB-Phylotypen zeigten unterschiedliche Hemmeigenschaften gegenüber auf Agarplatten wachsenden P. larvae, während eine Kombination aller 11 LAB-Phylotypen sogar eine totale Hemmung (kein sichtbares Wachstum mehr) von P. larvae bewirkte. Eine Zugabe des LAB-Mix zum Larvenfutter reduzierte signifikant die Anzahl an AFB-infizierten Larven im Biotest.

Die Ergebnisse zeigen, dass die für Honigbienen spezifischen LAB nutzbringende Eigenschaften für die Bienengesundheit besitzen. Der mögliche Nutzen einer Applikation von LAB in Bienenvölkern sollte untersucht werden.

Amerikanische Faulbrut Paenibacillus larvae Milchsäurebakterien Lactobacillus Bifidobacterium Hemmung 

References

  1. Ashiralieva A., Genersch E. (2006) Reclassification, genotypes and virulence of Paenibacillus larvae, the etiological agent of American foulbrood in honeybees-a review, Apidologie 37, 411–420.CrossRefGoogle Scholar
  2. Aupinel P., Fortini D., Dufour H., Tasei J.-N., Michaud B., Odoux J.-F., Pham-Delegue M.-H. (2005) Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae, Bull. Insectol. 58, 107–111.Google Scholar
  3. de Vuyst L., Vandamme E.J. (1994) Bacteriocins of lactic acid bacteria, Blackie academic & professional, Chapman & Hall, printed in Great Britain by the Alden Press, Oxford, ISBN 0751401749.Google Scholar
  4. Efthymiou C., Hansen C.A. (1962) An antigenic analysis of Lactobacillus acidophilus, J. Infect. Dis. 110, 258–267.PubMedCrossRefGoogle Scholar
  5. Ellis J.D., Munn P.A. (2005) The worldwide health status of honey bees, Bee World 86, 88–101.Google Scholar
  6. Evans J.D., Armstrong T.-N. (2005) Inhibition of the American foulbrood bacterium, Paenibacillus larvae larvae, by bacteria isolated from honey bees, J. Apicult. Res. 44, 168–171.Google Scholar
  7. Evans J.D., Armstrong T.-N. (2006) Antagonistic interactions between honey bee bacterial symbionts and implications for disease, BMC Ecol. 6, 4.PubMedCrossRefGoogle Scholar
  8. Evans J., Lopéz D. (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae), J. Econ. Entomol. 97, 752–756.PubMedCrossRefGoogle Scholar
  9. Forsgren E., Stevanovic J., Fries I. (2008) Variability in germination and in temperature and storage resistance among Paenibacillus larvae genotypes, Vet. Microbiol. 129, 342–349.PubMedCrossRefGoogle Scholar
  10. Fries I., Lindström A., Korpela S. (2006) Vertical transmission of American foulbrood (Paenibacillus larvae) in honey bees (Apis mellifera), Vet. Microbiol. 114, 269–274.PubMedCrossRefGoogle Scholar
  11. Genersch E., Otten C. (2003) The use of repetitive element PCR fingerprinting (rep-PCR) for genetic sub typing of German field isolates of Paenibacillus larvae subsp. larvae, Apidologie 34, 195–206.CrossRefGoogle Scholar
  12. Genersch E., Ashiralieva A., Fries I. (2005) Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees, Appl. Environ. Microbiol. 11, 7551–7555.CrossRefGoogle Scholar
  13. Genersch E., Forsgren E., Pentikainen J., Ashiralieva A., Rauch S., Kilwinski J., Fries I. (2006) Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation, Int. J. Syst. Evol. Microbiol. 56, 501–511.PubMedCrossRefGoogle Scholar
  14. Gilliam M. (1997) Identification and roles of non-pathogenic microflora associated with honey bees, FEMS Microbiol. Lett. 155, 1–10.CrossRefGoogle Scholar
  15. Gontarski H. (1960) der Futtersaft und die Königinnenenstehung der Honigbiene, Proc. Int. Congr. Apiculture, XVII, Bologna and Rome, September, 1958, Vol. 2, pp. 81–95.Google Scholar
  16. Guarner F. (2005) The intestinal flora in inflammatory bowel disease: normal or abnormal? Curr. Opin. Gastroen. 21, 414–418.Google Scholar
  17. Haydak M.H. (1970) Honey bee nutrition, Annu. Rev. Entomol. 15, 143–156.CrossRefGoogle Scholar
  18. Klaenhammer T., Altermann E., Arigoni F., Bolotin A., Breidt F., Broadbent J., Cano R., Chaillou S., Deutscher J., Gasson M., van de Guchte M., Guzzo J., Hartke A., Hawkins T., Hols P., Hutkins R., Kleerebezem M., Kok J., Kuipers O., Lubbers M., Maguin E., McKay L., Mills D., Nauta A., Overbeek R., Pel H., Pridmore D., Saier M., van Sinderen D., Sorokin A., Steele J., O’Sullivan D., de Vos W., Weimer B., Zagorec M., Siezen R. (2002) Discovering lactic acid bacteria by genomics, Antonie van Leeuwenhoek 82, 29–58.PubMedCrossRefGoogle Scholar
  19. Lindström A., Fries I. (2005) Sampling of adult bees for detection of American foulbrood (Paenibacillus larvae subsp. larvae) spores in honey bee (Apis mellifera) colonies, J. Apicult. Res. 44, 82–86.Google Scholar
  20. Nordström S., Fries I. (1995) A comparison of media and cultural conditions for identification of Bacillus larvae in honey, J. Apicult. Res. 34, 97–103.Google Scholar
  21. Nova E., Wärnberg J., Gómez-Martíínez S., Díaz L.E., Romeo J., Marcos A. (2007) Immunomodulatory effects of probiotics in different stages of life, Brit. J. Nutr. 98, 90–95.CrossRefGoogle Scholar
  22. Olofsson T.C., Vásquez A. (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera, Curr. Microbiol. 57, 356–363.PubMedCrossRefGoogle Scholar
  23. Ouwehand A.C., Salminen S., Isolauri E. (2002) Probiotics: an overview of beneficial effects, Antonie van Leeuwenhoek 82, 279–289.PubMedCrossRefGoogle Scholar
  24. Pfeiler E.A., Klaenhammer T.R. (2007) The genomics of lactic acid bacteria, Trends Microbiol. 15, 546–553.PubMedCrossRefGoogle Scholar
  25. R Development Core Team (2005) R: A language and environment for statistical computing, R foundation for statistical computing, Vienna, Austria, ISBN 3-9000-07-0, URL: http://R-project.org.Google Scholar
  26. Ryu J.H., Kim S.H., Lee H.Y., Bai J.Y., Nam Y.D., Bae J.W., Lee D.G., Shin S.C., Ha E.M., Lee W.J. (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila, Science 319, 777–782.PubMedCrossRefGoogle Scholar
  27. Townsend G.F., Shuel R.W. (1962) Some recent advances in apicultural research, Annu. Rev. Entomol. 7, 481–500.CrossRefGoogle Scholar
  28. Vásquez A., Olofsson T.C. (2009) The Lactic Acid Bacteria involved in the production of bee pollen and bee bread, J. Apicult. Res. (in press).Google Scholar
  29. Vásquez A., Olofsson T.C., Sammataro D. (2009) A scientific note on the lactic acid bacterial flora in honeybees in the USA — A comparison with bees from Sweden, Apidologie 40, 26–28.CrossRefGoogle Scholar
  30. Yue D., Nordhoff M., Wieler L.H., Genersch E. (2008) Flourescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera), Environ. Microbiol. 10, 1612–1620.PubMedCrossRefGoogle Scholar
  31. Woodrow A.W. (1942) Susceptibility of honeybee larvae to individual inoculations with spores of Bacillus larvae, J. Econ. Entomol. 35, 892–895.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Eva Forsgren
    • 1
  • Tobias C. Olofsson
    • 2
  • Alejandra Váasquez
    • 2
  • Ingemar Fries
    • 1
  1. 1.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Microbiology Laboratory at Campus Helsingborg, Department of Cell and Organism BiologyLund UniversityHelsingborgSweden

Personalised recommendations