Apidologie

, Volume 40, Issue 6, pp 627–633 | Cite as

Kin recognition and inbreeding reluctance in bumblebees

  • Penelope R. Whitehorn
  • Matthew C. Tinsley
  • Dave Goulson
Original Article

Abstract

Inbreeding frequently has a costly impact on fitness, thus selection has favoured the evolution of kin recognition and inbreeding avoidance behaviour in many species. As haplodiploid Hymenoptera, bumblebees are susceptible to additional costs of inbreeding due to their single-locus complementary sex determination (sl-CSD) system, which means that incest can result in the production of costly diploid males. Here we test whether Bombus terrestris reproductives are able to discriminate between kin and non-kin and whether their willingness to mate is adjusted accordingly. We found that B. terrestris reproductives took significantly longer to mate with siblings compared to non-relatives. This indicates that this species exhibits kin recognition and uses this information to determine mating behaviour.

Bombus terrestris mating inbreeding avoidance haplodiploidy 

Reconnaissance de la parentèle et mécanismes pour éviter la consanguinité chez les bourdons

Bombus terrestris accouplement consanguinité haplodiploidie reconnaissance de parentèle 

Verwandtschaftserkennung und Inzuchtvermeidung bei Hummeln

Zusammenfassung

Bei vielen Tierarten führt die Paarung mit nahen Verwandten bei den Nachkommen zu einer geringerer Fitness, ein Phänomen, das als Inzuchtdepression bekannt ist. Solche Arten sollten daher in der Lage sein, ihre Verwandten zu erkennen und eine Paarung mit ihnen zu vermeiden. Das Ziel dieses Experimentes war es zu prüfen, ob Hummeln aus der Art Bombus terrestris ihre Verwandten erkennen können, da Hummeln allgemein als besonders anfällig gegenüber Inzuchteffekte gelten. Dies vor allem deshalb, da aufgrund der genetischen Strukturen im Hummelvolk die Paarung zwischen verwandten Individuen zu diploiden Männchen führen kann. Diploide Männchen sind steril und werden auf Kosten der fleißigen Arbeiterinnen produziert, wodurch das Hummelvolk geschwächt wird. Daher sollte die natürliche Selektion zu Verwandtschaftserkennung und Inzuchtvermeidung führen, um die Kosten für die Produktion diploider Männchen zu umgehen. Das Paarungsexperiment wurde in einem großen Flugkäfig (70 cm × 70 cm × 70 cm) aus Gaze durchgeführt und den jungen Königinnen wurden entweder ihre Brüder oder unverwandte Männchen als Paarungspartner angeboten. Die Bereitschaft der Königinnen sich mit ihren Brüdern bzw. den unverwandten Männchen zu paaren wurde ermittelt, indem die Zeitspanne zwischen dem Freilassen der Paarungspartner (Königin und Männchen) und der erfolgreichen Kopulation gemessen wurde. Durchschnittlich 10,8 Minuten (± 0,94) vergingen, bis eine Verwandtenpaarung stattfand, während im Durchschnitt lediglich 4,5 Minuten (± 1,15) für eine Paarung zwischen nicht verwandten Partnern benötigt wurden. Diese Ergebnisse lassen vermuten, dass B. terrestris die Fähigkeit zur Verwandtschaftserkennung besitzt und entsprechend dem Verwandtschaftsgrad das Paarungsverhalten ändert. Weitere Untersuchungen sollten die Mechanismen der Verwandtschaftserkennung aufklären.

Bombus terrestris Paarung Vermeidung von Inzucht Haplodiploidie 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alford D.V. (1975) Bumblebees Davis-Poynter, London.Google Scholar
  2. Ayabe T., Hoshiba H., Ono M. (2004) Cytological evidence for triploid males and females in the bumblebee, Bombus terrestris, Chromosome Res. 12, 215–223.PubMedCrossRefGoogle Scholar
  3. Baer B. (2003) Bumblebees as model organisms to study male sexual selection in social insects, Behav. Ecol. Sociobiol. 54, 521–533.CrossRefGoogle Scholar
  4. Barnard C.J., Aldhous P. (1991) Kinship, kin discrimination and mate choice, in: Hepper P.G. (Ed.), Kin recognition, Cambridge University Press, Cambridge, pp. 125–146.Google Scholar
  5. Birkhead T.R., Pizzari T. (2002) Postcopulatory sexual selection, Nat. Rev. Genet. 3, 262–273.PubMedCrossRefGoogle Scholar
  6. Blaustein A.R. (1983) Kin Recognition Mechanisms — Phenotypic Matching Or Recognition Alleles, Am. Nat. 121, 749–754.CrossRefGoogle Scholar
  7. Colegrave N., Kotiaho J.S., Tomkins J.L. (2002) Mate choice or polyandry: reconciling genetic compatibility and good genes sexual selection, Evol. Ecol. Res. 4, 911–917.Google Scholar
  8. Cook J.M., Crozier R.H. (1995) Sex determination and population biology in the Hymenoptera, Trends Ecol. Evol. 10, 281–286.PubMedCrossRefGoogle Scholar
  9. Darvill B., Ellis J.S., Lye G.C., Goulson D. (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae), Mol. Ecol. 15, 601–611.PubMedCrossRefGoogle Scholar
  10. Djegham Y., Verhaeghe J.C., Rasmont P. (1994) Copulation of Bombus terrestris L. (Hymenoptera, Apidae) in captivity, J. Apicult. Res. 33, 15–20.Google Scholar
  11. Duchateau M.J., Hoshiba H., Velthuis H.H.W. (1994) Diploid males in the bumble bee Bombus terrestris, sex determination, sex alleles and viability, Entomol. Exp. Appl. 71, 263–269.CrossRefGoogle Scholar
  12. Duchateau M.J., Marien J. (1995) Sexual biology of haploid and diploid males in the bumble bee Bombus terrestris, Insectes Soc. 42, 255–266.CrossRefGoogle Scholar
  13. Duvoisin N., Baer B., Schmid-Hempel P. (1999) Sperm transfer and male competition in a bumblebee, Anim. Behav. 58, 743–749.PubMedCrossRefGoogle Scholar
  14. Estoup A., Scholl A., Pouvreau A., Solignac M. (1995) Monoandry and polyandry in bumble bees (Hymenoptera — Bombinae) as evidenced by highly variable microsatellites, Mol. Ecol. 4, 89–93.PubMedCrossRefGoogle Scholar
  15. Foster R.L. (1992) Nestmate recognition as an inbreeding avoidance mechanism in bumble bees (Hymenoptera, Apidae), J. Kansas Entomol. Soc. 65, 238–243.Google Scholar
  16. Frommen J.G., Luz C., Bakker T.C.M. (2007) Kin discrimination in sticklebacks is mediated by social learning rather than innate recognition, Ethology 113, 276–282.CrossRefGoogle Scholar
  17. Gamboa G.J., Grudzien T.A., Espelie K.E., Bura E.A. (1996) Kin recognition pheromones in social wasps: Combining chemical and behavioural evidence, Anim. Behav. 51, 625–629.CrossRefGoogle Scholar
  18. Gerloff C.U., Ottmer B.K., Schmid-Hempel P. (2003) Effects of inbreeding on immune response and body size in a social insect, Bombus terrestris, Funct. Ecol. 17, 582–589.CrossRefGoogle Scholar
  19. Gerloff C.U., Schmid-Hempel P. (2005) Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera: Apidae), Oikos 111, 67–80.CrossRefGoogle Scholar
  20. Halliday T.R. (1983) The study of mate choice, in: Bateson P. (Ed.), Mate choice, Cambridge University Press, Cambridge, pp. 3–32.Google Scholar
  21. Herzner G., Schmitt T., Heckel F., Schreier P., Strohm E. (2006) Brothers smell similar: Variation in the sex pheromone of male European Beewolves Philanthus triangulum F. (Hymenoptera: Crabronidae) and its implications for inbreeding avoidance, Biol. J. Linnean Soc. 89, 433–442.CrossRefGoogle Scholar
  22. Holmes W.G., Sherman P.W. (1982) The ontogeny of kin recognition in two species of ground squirrels, Am. Zool. 22, 491–517.Google Scholar
  23. Holmes W.G., Sherman P.W. (1983) Kin recognition in animals, Am. Sci. 71, 46–55.Google Scholar
  24. Keller L., Passera L. (1993) Incest avoidance, fluctuating asymmetry, and the consequences of inbreeding in Iridomyrmex humilis, an ant with multiple queen colonies, Behav. Ecol. Sociobiol. 33, 191–199.CrossRefGoogle Scholar
  25. Keller L., Ross K.G. (1998) Selfish genes: a green beard in the red fire ant, Nature 394, 573–575.CrossRefGoogle Scholar
  26. Kindl J., Hovorka O., Urbanova K., Valterova I. (1999) Scent marking in male premating behavior of Bombus confusus, J. Chem. Ecol. 25, 1489–1500.CrossRefGoogle Scholar
  27. Lihoreau M., Zimmer C., Rivault C. (2007) Kin recognition and incest avoidance in a group-living insect, Behav. Ecol. 18, 880–887.CrossRefGoogle Scholar
  28. Plowright R.C., Pallett M.J. (1979) Worker-male conflict and inbreeding in bumble bees (Hymenoptera-Apidae), Can. Entomol. 111, 289–294.CrossRefGoogle Scholar
  29. Pusey A., Wolf M. (1996) Inbreeding avoidance in animals, Trends Ecol. Evol. 11, 201–206.PubMedCrossRefGoogle Scholar
  30. Sauter A., Brown M.J.F. (2001) To copulate or not? The importance of female status and behavioural variation in predicting copulation in a bumblebee, Anim. Behav. 62, 221–226.CrossRefGoogle Scholar
  31. Schmid-Hempel R., Schmid-Hempel P. (2000) Female mating frequencies in Bombus spp. from Central Europe, Insectes Soc. 47, 36–41.CrossRefGoogle Scholar
  32. Shellman-Reeve J.S. (2001) Genetic relatedness and partner preference in a monogamous, wood-dwelling termite, Anim. Behav. 61, 869–876.CrossRefGoogle Scholar
  33. Simmons L.W. (1989) Kin recognition and its influence on mating preferences of the field cricket, Gryllus bimaculatus (Degeer), Anim. Behav. 38, 68–77.CrossRefGoogle Scholar
  34. Smith B.H., Ayasse M. (1987) Kin-based male mating preferences in two species of halictine bee, Behav. Ecol. Sociobiol. 20, 313–318.CrossRefGoogle Scholar
  35. Smith B.H., Wenzel J.W. (1988) Pheromonal covariation and kinship in social bee Lasioglossum zephyrum (Hymenoptera, Halictidae), J. Chem. Ecol. 14, 87–94.CrossRefGoogle Scholar
  36. Takahashi J., Ayabe T., Mitsuhata M., Shimizu I., Ono M. (2008) Diploid male production in a rare and locally distributed bumblebee, Bombus florilegus (Hymenoptera, Apidae), Insectes Soc. 55, 43–50.CrossRefGoogle Scholar
  37. Tang-Martinez Z. (2001) The mechanisms of kin discrimination and the evolution of kin recognition in vertebrates: a critical re-evaluation, Behav. Proc. 53, 21–40.CrossRefGoogle Scholar
  38. Tasei J.N., Moinard C., Moreau L., Himpens B., Guyonnaud S. (1998) Relationship between aging, mating and sperm production in captive Bombus terrestris, J. Apicult. Res. 37, 107–113.Google Scholar
  39. Todrank J., Heth G. (2003) Odor-genes covariance and genetic relatedness assessments: rethinking odour based “recognition” mechanisms in rodents, Adv. Study Behav. 32, 77–130.CrossRefGoogle Scholar
  40. Tregenza T., Wedell N. (2002) Polyandrous females avoid costs of inbreeding, Nature 415, 71–73.PubMedCrossRefGoogle Scholar
  41. Whitehorn P.R., Tinsley M.C., Brown M.J.F., Darvill B., Goulson D. (2009) Impacts of inbreeding on bumblebee colony fitness under field conditions, BMC Evol. Biol. 9, 152.PubMedCrossRefGoogle Scholar
  42. Williams P.H. (1991) The bumble bees of the Kashmir Himalaya (Hymenoptera: Apidae, Bombini), Bull. Br. Mus. Nat. Hist. (Entomol.) 60, 1–204.Google Scholar
  43. Zayed A., Packer L. (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations, Proc. Natl Acad. Sci. (USA) 102, 10742–10746.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • Penelope R. Whitehorn
    • 1
  • Matthew C. Tinsley
    • 1
  • Dave Goulson
    • 1
  1. 1.School of Biological and Environmental SciencesUniversity of StirlingStirlingUK

Personalised recommendations