Apidologie

, Volume 40, Issue 3, pp 263–284

Biodiversity, conservation and current threats to European honeybees

  • Pilar De la Rúa
  • Rodolfo Jaffé
  • Raffaele Dall’Olio
  • Irene Muñoz
  • José Serrano
Review Article

Abstract

Europe harbours several endemic honeybee (Apis mellifera) subspecies. Yet the distribution of these subspecies is nowadays also much influenced by beekeeping activities. Large scale migratory beekeeping and trade in queens, coupled with the promiscuous mating system of honeybees, have exposed native European honeybees to increasing introgressive hybridization with managed non-native subspecies, which may lead to the loss of valuable combinations of traits shaped by natural selection. Other threats to European honeybees are factors that have caused a progressive decline in A. mellifera throughout the world in recent years, leading to large economic losses and jeopardizing ecosystem functioning. We review the biodiversity of European honeybees and summarize the management and conservation strategies employed by different countries. A comprehensive picture of the beekeeping industry in Europe is also provided. Finally we evaluate the potential threats affecting the biodiversity of European honeybee populations and provide some perspectives for future research.

Apis mellifera subspecies biogeography conservation Europe beekeeping 

Biodiversité, conservation et menaces actuelles pesant sur les abeilles domestiques européennes

Apis mellifera sous-espèces biogéographie protection Europe apiculture 

Biodiversität, Naturschutz und aktuelle Bedrohungen der europäischen Honigbienen

Zusammenfassung

Die Unterarten der Honigbienen wurden sowohl mit morphologischen (Box 1) als auch mit molekulargenetischen (Box 2 und 3) Methoden untersucht. Die in Europa vorkommenden elf Unterarten (Abb. 1) werden in vier evolutiven Abstammungslinien eingeteilt. In den entsprechenden Verbreitungsgebieten sind die dazugehörenden Unterarten unterschiedlichen Klima- und Habitatsbedingungen sowie anthropogenen Einflüssen ausgesetzt. Unser erstes Ziel ist es, die Biodiversität der europäischen Honigbienen zu beschreiben und die Strategien zum Schutz der Honigbienen in den einzelnen Ländern zusammenzufassen. Hybridisierungsprozesse wurden vor allem auf der iberischen, italienischen und der Balkan-Halbinsel festgestellt, wohingegen natürliche (aufgrund von Genfluss durch die Mehrfachpaarung der Königin) und durch imkerliche Aktivitäten ausgelöste (durch die Einfuhr von Honigbienen-Unterarten außerhalb ihres natürlichen Verbreitungsgebietes) genetische Introgression in Zentral- und Osteuropa sowie auf Mittelmeerinseln beobachtet wurden. Verschiedene Naturschutzprogramme wurden auf europäischen Inseln (Dänemark, Spanien) und seit kurzem auch in anderen europäischen Ländern (Frankreich, Norwegen, Slowenien und Österreich) etabliert. Für einen sinnvollen Honigbienenschutz muss aber der Status der imkerlich gehaltenen Honigbienenpopulation in den jeweiligen Ländern mit berücksichtigt werden. Daher müssen zunächst detaillierte Informationen zur Imkerei in den einzelnen Ländern gesammelt werden, bevor zukünftige Naturschutzprogramme entwickelt werden (Abb. 2 und Tab. I in „supplementary data“). Auf dieser Grundlage werden zwei Hauptansätze für zukünftige Naturschutzrichtlinien vorgeschlagen: Beschränkung der Einfuhr von „überlegenen“ Unterarten in Gebiete, die bereits von nativen Honigbienenpopulationen besetzt sind sowie die Aufrechterhaltung der genetischen Diversität in natürlichen Honigbienenpopulationen. Immer mehr Faktoren wie veränderte Landnutzung, die Verbreitung von Krankheitserregern und Parasiten, der Einsatz von Pestiziden und Herbiziden (Tab. I) bedrohen die Honigbienen in Europa und gefährden damit auch die Funktion des Ökosystems durch eine unzureichende Bestäubung von Wild- und Kulturpflanzen.

Das vor kurzem aufgeschlüsselte Honigbienen-Genom bietet nun aber neue Möglichkeiten, auf molekularer Ebene die Genetik, Physiologie und das Verhalten der Honigbienen zu untersuchen. Molekulare Marker wie SNPs („Single Nucleotide Polymorphisms“) und Mikrosatelliten ermöglichen neue Einblicke in die Populationsstruktur der Honigbienen und die Analyse des Honigbienen-Proteoms wird uns zusätzlich Informationen über die Struktur, Funktion und Wechselwirkungen der von den jeweiligen Genen produzierten Proteine geben.

Eine abschließende Überlegung ist, dass der Honigbienenschutz eng mit der Aufrechterhaltung der Imkerei verbunden ist, die als zukunftsträchtiger Bestandteil der landwirtschaftlichen Praxis auch für die junge Generation attraktiv sein sollte. Für eine nachhaltige Unterstützung der Imkerei sollten die Berufsausbildung verbessert, moderne Betriebsweisen eingeführt, angewandte Forschung zur Bienenbiologie, Genetik und Krankheitsbekämpfung durchgeführt sowie sinnvolle Richtlinien zum Schutz wertvoller Ökosysteme umgesetzt werden.

Apis mellifera Unterarten Biogeographie Naturschutz Europa Imkerei 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamovich A.H., Atela O., De la Rúa P., Galián J. (2007) Assessment of the mitochondrial origin of honeybees from Argentina, J. Apic. Res. 46, 191–194.Google Scholar
  2. Adam B. (1983) In search of the best strains of bees, Dadant Sons, Hamilton Illinois.Google Scholar
  3. Aizen M.A., Feinsinger P. (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina, Ecology 75, 330–351.Google Scholar
  4. Alpatov W.W. (1929) Biometrical studies on variation and races of the honeybee Apis mellifera L., Rev. Biol. 4, 1–57.Google Scholar
  5. Arias M.C., Sheppard W.S. (1996) Molecular phylogenetics of honey bees subspecies (Apis mellifera L.), Mol. Phylogenet. Evol. 5, 557–566.PubMedGoogle Scholar
  6. Arias M.C., Rinderer T.E., Sheppard W.S. (2006) Further characterization of honey bees from the Iberian Peninsula by allozyme, morphometric and mtDNA haplotype analyses, J. Apic. Res. 45, 188196.Google Scholar
  7. Badino G., Celebrano G., Manino A. (1983) Population structure and Mdh-1 locus variation in Apis mellifera ligustica, J. Hered. 74, 443–446.PubMedGoogle Scholar
  8. Badino G., Celebrano G., Manino A., Longo S. (1985) Enzyme polymorphism in the Sicilian honey bee, Experientia 41, 752–754.Google Scholar
  9. Badino G., Celebrano G., Manino A., Ifantidis M.D. (1988) Allozyme variability in Greek honeybees (Apis mellifera L.), Apidologie 19, 377–386.Google Scholar
  10. Baer B., Heazlewood J.L., Taylor N.L., Eubel H., Millar A.H. (2009) The seminal fluid proteome of the honeybee Apis mellifera, Proteomics. DOI: 10.1002/pmic.200800708.Google Scholar
  11. Bailey J., Scott-Dupree C., Harris R., Tolman J., Harris B. (2005) Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada, Apidologie 36, 623–633.Google Scholar
  12. Batley M., Hogendoorn K. (2009) Diversity and conservation status of native Australian bees, Apidologie 40, 347–354.Google Scholar
  13. Batra S.T.W. (1988) Automatic image analysis for rapid identification of Africanized honey bees, in: Needham G.R. (Ed.), Africanized honey bees and bee mites. Ellis Horwood Series in Entomology and Acariology, Halsted Press, New York, pp. 260–263.Google Scholar
  14. Baudry E., Solignac M., Garnery L., Gries M., Cornuet J.M., Koeniger N. (1998) Relatedness among honeybees (Apis mellifera) of a drone congregation area, Proc. R. Soc. Lond. B. 265, 2009–2014.Google Scholar
  15. Benjamin A., McCallum B. (2008) A World Without Bees, Guardian Books, 208 p.Google Scholar
  16. Beye M., Gattermeier I., Hasselmann M., Gempe T., Schioett M., Baines J.F., Schlipalius D., Mougel F., Emore C., Rueppell O., Sirviö A., Guzmán-Novoa E., Hunt G., Solignac M., Page R.E. (2006) Exceptionally high levels of recombination across the honey bee genome, Genome Res. 16, 1339–1344.PubMedGoogle Scholar
  17. Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemuller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science 313, 351–354.PubMedGoogle Scholar
  18. Bodur C., Kence M., Kence A. (2007) Genetic structure of honeybee, Apis mellifera L. (Hymenoptera: Apidae) populations of Turkey inferred from microsatellite analysis, J. Apic. Res. 46, 50–56.Google Scholar
  19. Bookstein F.L. (1991) Morphometric Tools for Landmark Data, Geometry and Biology, Cambridge University Press.Google Scholar
  20. Bouga M., Kilias G., Harizanis P.C., Papasotiropoulos V., Alahiotis S. (2005a) Allozyme Variability and Phylogenetic Relationships in Honey Bee (Hymenoptera: Apidae: Apis mellifera) populations from Greece and Cyprus, Biochem. Genet. 43, 471–483.PubMedGoogle Scholar
  21. Bouga M., Harizanis P.C., Kilias G., Alahiotis S. (2005b) Genetic divergence and phylogenetic relationships of honeybee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR-RFLP analysis of three mtDNA segments, Apidologie 36, 335–344.Google Scholar
  22. Cánovas F., De la Rúa P., Serrano J., Galián J. (2008) Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae), J. Zool. Syst. Evol. Res. 46, 24–30.Google Scholar
  23. Carreck N.L. (2008) Are honey bees (Apis mellifera L.) native to the British Isles? J. Apic. Res. 47, 318–322.Google Scholar
  24. Cermak K., Kaspar F. (2000) A method of classifying honey bee races by their body characters, Pszcz. Zesz. Nauk. (XLIV) 2, 81–86.Google Scholar
  25. Chaline N., Ratnieks F.L.W., Burke T. (2002) Anarchy in the UK: Detailed genetic analysis of worker reproduction in a naturally occurring British anarchistic honeybee, Apis mellifera, colony using DNA microsatellites, Mol. Ecol. 11, 1795–1803.PubMedGoogle Scholar
  26. Clarke K.E., Rinderer T.E., Franck P., Quezada-Euan J.G., Oldroyd B.P. (2001) The Africanization of honeybees (Apis mellifera L.) of the Yucatan: A study of a massive hybridization event across time, Evolution 56, 1462–1474.Google Scholar
  27. COAG (2007) Anuario Agrario: Apicultura, [online] http://194.30.12.92/rep_ficheros_web/ 208c4f87992370db4f614556778e04e7.pdf (accessed on 9 February 2009).Google Scholar
  28. Comparini A., Biasiolo A. (1991) Genetic discrimination of Italian bee, Apis mellifera ligustica versus Carniolan bee, Apis mellifera carnica by allozyme variability analysis, Biochem. Syst. Ecol. 19, 189–194.Google Scholar
  29. Cornuet J.M., Fresnaye J. (1989) Étude biométrique de colonies d’abeilles d’Espagne et du Portugal, Apidologie 20, 93–101.Google Scholar
  30. Cornuet J.M., Garnery L. (1991) Mitochondrial-DNA variability in honeybees and its phylogeographic implications, Apidologie 22, 627–642.Google Scholar
  31. Cornuet J.M., Albisetti J., Mallet N., Fresnaye J. (1982) Étude biométrique d’une population d’abeilles landaises, Apidologie 13, 3–13.Google Scholar
  32. Cornuet J.M., Daoudi A., Chevalet C. (1986) Genetic pollution and number of matings in a black honey bee (Apis mellifera mellifera) population, Theor. Appl. Genet. 73, 223–227.Google Scholar
  33. Crewe R.M., Hepburn H.R., Moritz R.F.A. (1994) Morphometric analysis of 2 southern African races of honeybee, Apidologie 25, 61–70.Google Scholar
  34. Dall’Olio R., Marino A., Lodesani M., Moritz R.F.A. (2007) Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms, Apidologie 38, 207–217.Google Scholar
  35. Daly H.V., Hoelmer K., Norman P., Allen T. (1982) Computer-assisted measurement and identification of honeybees (Hymenoptera: Apidae), Ann. Entomol. Soc. Am. 75, 591–594.Google Scholar
  36. Dedej S., Biasiolo A., Piva R. (1996) Morphometric and alloenzyme characterization in the Albanian honeybee population Apis mellifera L., Apidologie 27, 121–131.Google Scholar
  37. Dedej S., Nazzi F. (1994) Two distances of forewing venation as estimates of wing size, J. Apic. Res. 33, 59–61.Google Scholar
  38. De la Rúa P., Serrano J., Galián J. (1998) Mitochondrial DNA variability in the Canary Islands honeybees (Apis mellifera L.), Mol. Ecol. 7, 1543–1547.PubMedGoogle Scholar
  39. De la Rúa P., Galián J., Serrano J., Moritz R.F.A. (2001a) Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands, Mol. Ecol. 10, 1733–1742.PubMedGoogle Scholar
  40. De la Rúa P., Galián J., Serrano J., Moritz R.F.A. (2001b) Molecular characterization and population structure of the honeybees from the Balearic islands (Spain), Apidologie 32, 417–427.Google Scholar
  41. De la Rúa P., Galián J., Serrano J., Moritz R.F.A. (2002a) Microsatellite analysis of non-migratory colonies of Apis mellifera iberica from southeastern Spain, J. Zool. Evol. Res. 40, 164–168.Google Scholar
  42. De la Rúa P., Serrano J., Galián J. (2002b) Biodiversity of Apis mellifera populations from Tenerife (Canary Islands) and hybridisation with East European races, Biodivers. Conserv. 11, 59–67.Google Scholar
  43. De la Rúa P., Galián J., Serrano J., Moritz R.F.A. (2003) Genetic structure of Balearic honeybee populations based on microsatellite polymorphism, Genet. Sel. Evol. 35, 339–350.PubMedGoogle Scholar
  44. De la Rúa P., Jimenez Y., Galián J., Serrano J. (2004) Evaluation of the biodiversity of honey bee (Apis mellifera) populations from eastern Spain, J. Apic. Res. 43, 162–166.Google Scholar
  45. De la Rúa P., Hernandez-Garcia R., Jimenez Y., Galián J., Serrano J. (2005) Biodiversity of Apis mellifera iberica (Hymenoptera: Apidae) from northeastern Spain assessed by mitochondrial analysis, Insect Syst. Evol. 36, 21–28.Google Scholar
  46. De la Rúa P., Galián J., Pedersen B.V., Serrano J. (2006) Molecular characterization and population structure of Apis mellifera from Madeira and the Azores, Apidologie 37, 699–708.Google Scholar
  47. Dick C.W. (2001) Genetic rescue of remnant tropical trees by an alien pollinator, Proc. R. Soc. Lond. B 268, 2391–2396.Google Scholar
  48. Dietemann V., Pirk C.W.W., Crewe R. (2009) Is there a need for conservation of Honeybees in Africa? Apidologie 40, 285–295.Google Scholar
  49. Duan J.J., Marvier M., Huesing J., Dively G., Huang Z.Y. (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae), PLoS ONE 3, e1415.PubMedGoogle Scholar
  50. EC (2004) http://ec.europa.eu/agriculture/publi/ achievements/text_en.pdf.Google Scholar
  51. EFSA (2008) Bee Mortality and Bee Surveillance in Europe, The Efsa J. 154, 1–28.Google Scholar
  52. Estoup A., Solignac M., Harry M., Cornuet J.M. (1993) Characterization of (GT), and (CT) microsatellites in two insect species: Apis mellifera and Bombus terrestris, Nucleic Acids Res. 21, 1427–1431.PubMedGoogle Scholar
  53. Estoup A., Garnery L., Solignac M., Cornuet J.M. (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: Hierarchical genetic structure and test of the infinite allele and stepwise mutation models, Genetics 140, 679–695.PubMedGoogle Scholar
  54. EU (2004), Achievements in Agriculturall Policy under Commissioner Franz Fischler (Period 1995–2004). European Commission, Brussels, Belgium, pp. 1–31.Google Scholar
  55. Faucon J.P., Aurieres C., Drajnudel P., Mathieu L., Ribière M., Martel A.C., Zeggane S., Chauzat M.P., Aubert M.F.A. (2005) Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies, Pest Manage. Sci. 61, 111–125.Google Scholar
  56. Federal Office for Consumer Protection and Food Safety of Germany (2008) Hintergrundinformation: Bienenverlust durch insektizide Saatgutbehandlungsmittel in Deutschland 2008, [online] http://www.bvl. bund.de/nn_491652/DE/08_PresseInfothek/01_ Presse_und_Hintergrundinformationen/01_PI_ und_HGI/PSM/2008/Hintergrundinformation_ BienensterbenII.html (accessed on 13 February 2009).Google Scholar
  57. Floris I., Prota R. (1994) Variazione di alcune caratteristiche morfometriche nella popolazione di Apis mellifera L. della Sardegna nell’ultimo ventennio, Apicoltura 9, 163–175.Google Scholar
  58. Flynn D.F.B., Gogol-Prokurat M., Nogeire T., Molinari N., Trautman Richers B., Lin B.B., Simpson N., Mayfield M.M., DeClerck F. (2009) Loss of functional diversity under land use intensification across multiple taxa, Ecol. Lett. 1, 22–33.Google Scholar
  59. Franck P., Garnery L., Solignac M., Cornuet J.M. (1998) The origin of west European subspecies of honeybees (Apis mellifera): New insights from microsatellite and mitochondrial data, Evolution 52, 1119–1134.Google Scholar
  60. Franck P., Garnery L., Celebrano G., Solignac M., Cornuet J.M. (2000a) Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula), Mol. Ecol. 9, 907–921.PubMedGoogle Scholar
  61. Franck P., Garnery L., Solignac M., Cornuet J.M. (2000b) Molecular confirmation of a fourth lineage in honeybees from the Near East, Apidologie 31, 167–180.Google Scholar
  62. Franck P., Garnery L., Loiseau A. (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data, Heredity 86, 420–430.PubMedGoogle Scholar
  63. Francoy T.M., Prado P.P.R., Gonçalves L.S., Costa L.D., De Jong D. (2006) Morphometric differences in a single wing cell can discriminate Apis mellifera racial types, Apidologie 37, 91–97.Google Scholar
  64. Francoy T.M., Wittmann D., Drauschke M., Muller S., Steinhage V., Bezerra-Laure M.A.F., De Jong D., Goncalves L.S. (2008) Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures, Apidologie 39, 1–7.Google Scholar
  65. Freitas B.M., Imperatriz-Fonseca V.L., Medina L.M., Kleinert A.M.P., Galetto L., Nates-Parra G., Quezada-Euán J.J.G. (2009) Diversity, threats and conservation of bees in the Neotropics, Apidologie 40, 332–346.Google Scholar
  66. Fries I., Feng F., da Silva A., Slemenda S.B., Pieniazek N.J. (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae), Eur. J. Protistol. 32, 356–365.Google Scholar
  67. Ftayeh A., Meixner M., Fuchs S. (1994) Morphometrical investigation in Syrian honeybees, Apidologie 25, 396–401.Google Scholar
  68. Gallai N., Salles J.M., Settele J., Vaissière B.E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline, Ecol. Econ. 68, 810–821.Google Scholar
  69. Garnery L., Cornuet J.-M., Solignac M. (1992). Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis, Mol. Ecol. 1 145–154.PubMedGoogle Scholar
  70. Garnery L., Solignac M., Celebrano G., Cornuet J.M. (1993) A simple test using restricted PCR-amplified mitochondrial-DNA to study the genetic-structure of Apis mellifera L., Experientia 49, 1016–1021.Google Scholar
  71. Garnery L., Mosshine E.H., Oldroyd B.P., Cornuet J.M. (1995) Mitochondrial-DNA variation in Moroccan and Spanish honey-bee populations, Mol. Ecol. 4, 465–471.Google Scholar
  72. Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998a) Genetic diversity of the west European honey bee (Apis mellifera and A. m. iberica). I. Mitochondrial DNA, Genet. Sel. Evol. 30, 49–74.Google Scholar
  73. Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998b) Genetic biodiversity of the West European honeybee (Apis mellifera mellifera and Apis mellifera iberica). II. Microsatellite loci, Genet. Sel. Evol. 30, 49–74.Google Scholar
  74. Goetze G. (1940) Die beste Biene, Liedlof Loth Michaelis, Leipzig.Google Scholar
  75. Greatti M., Barbattini R., Stravisi A., Sabatini A.G., Rossi S. (2006) Presence of the a.i. imidacloprid on vegetation near corn fields sown with Gaucho® dressed seeds, Bull. Insectology 59, 99–103.Google Scholar
  76. Hall H.G., Smith D.R. (1991) Distinguishing African and European honey bee matrilines using amplified mitochondrial DNA, Proc. Natl Acad. Sci. USA 88, 4548–4552.PubMedGoogle Scholar
  77. Hepburn H.R., Radloff S.E. (1996) Morphometric and pheromonal analyses of Apis mellifera L. along a transect from the Sahara to the Pyrenees, Apidologie 27, 35–45.Google Scholar
  78. Higes M., Martín-Hernández R., Botías C., Garrido Bailón E., González-Porto A.V., Barrios L., del Nozal M.J., Bernal J.L., Jiménez J.J., García Palencia P., Meana A., (2008) How natural infection by Nosema ceranae causes honeybee collapse, Environ. Microbiol. 10, 2659–2669.PubMedGoogle Scholar
  79. Hood W.M. (2004) The Small Hive Beetle, Aethina tumida: A Review, Bee World 85, 51–59.Google Scholar
  80. Huryn V.M.B. (1997) Ecological impacts of introduced honey bees, Q. Rev. Biol. 72, 275–297.Google Scholar
  81. Ivanova E.N., Staykova T.A., Bouga M. (2007) Allozyme variability in honey bee populations from some mountainous regions in the southwest of Bulgaria, J. Apic. Res. 46, 3–7.Google Scholar
  82. Jaffè R., Dietemann V., Crewe R.M., Moritz R.F.A. (2009) Temporal variation in the genetic structure of a drone congregation area: An insight into the population dynamics of wild African honeybees (Apis mellifera scutellata), Mol. Ecol. 18, 1511–1522.PubMedGoogle Scholar
  83. Jensen A.B., Pedersen B.V. (2005) Honeybee Conservation: a case story from Læsø island, Denmark, in: Lodesani M., Costa C. (Eds.), Beekeeping and conserving biodiversity of honeybee. Sustainable bee breeding. Theoretial and practical guide. Northern Bee Books, Hebden Bridge, pp. 142–164.Google Scholar
  84. Jensen A.B., Palmer K.A., Boomsma J.J., Pedersen B.V. (2005) Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe, Mol. Ecol. 14, 93–106.PubMedGoogle Scholar
  85. Kandemir I., Kence A. (1995) Allozyme variability in a central Anatolian honeybee (Apis mellifera L.) population, Apidologie 26, 503–510.Google Scholar
  86. Kandemir I., Kence M., Kence A. (2000) Genetic and morphometric variation in honeybee (Apis mellifera L.) populations of Turkey, Apidologie 31, 343–356.Google Scholar
  87. Kandemir I., Kence M., Kence A. (2005) Morphometric and electrophoretic variation in different honeybee (Apis mellifera L.) populations, Turk. J. Vet. Anim. Sci. 29, 885–890.Google Scholar
  88. Kandemir I., Meixner M.D., Ozkan A., Sheppard W.S. (2006) Genetic characterization of honey bee (Apis mellifera cypria) populations in northern Cyprus, Apidologie 37, 547–555.Google Scholar
  89. Kauhausen-Keller D., Ruttner F., Keller R. (1997) Morphometric studies on the microtaxonomy of the species Apis mellifera L., Apidologie 28, 295–307.Google Scholar
  90. Kevan P.G., Phillips T.P. (2001) The economic impacts of pollinator declines: an approach to assessing the consequences, Conserv. Ecol. 5, 8.Google Scholar
  91. Koeniger N., Koeniger G. (2000) Reproductive isolation among species of the genus Apis, Apidologie 31, 313–339.Google Scholar
  92. Kozmus P., Jevrosima S., Stanimirovic Z., Stojic V., Kulisic Z., Meglic V. (2007) Analysis of mitochondrial DNA in honey bees (Apis mellifera) from Serbia, Acta Vet. Beograd 57, 465–476.Google Scholar
  93. Kraus B., Page R.E. (1995) Effect of Varroa jacobsoni (Mesostigmata Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California, Environ. Entomol. 24, 1473–1480.Google Scholar
  94. Kremen C., Williams N.M., Thorp R.W. (2002) Crop pollination from native bees at risk from agricultural intensification, Proc. Natl Acad. Sci. USA 99, 16812–16816.PubMedGoogle Scholar
  95. Lattorff H.M.G., Moritz R.F.A., Crewe R.M., Solignac M. (2007) Control of reproductive dominance by the thelytoky locus in honeybees, Biol. Lett. 3, 292–295.PubMedGoogle Scholar
  96. Li J.K., Wang T., Zhang Z.H., Pan Y. (2007) Proteomic analysis of royal jelly from three strains of western honeybees (Apis mellifera), J. Agric. Food Chem. 55, 8411–8422.PubMedGoogle Scholar
  97. Lodesani M., Costa C. (2003) Bee breeding and genetics in Europe, Bee World 84, 69–85.Google Scholar
  98. Louveaux J., Albisetti M., Delangue M., Theurkauff M. (1966) Les modalités de l’adaptation des abeilles (Apis mellifica L.) au milieu naturel, Ann. Abeille 9, 323–350.Google Scholar
  99. Malone L., Pham-Delègue M. (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.), Apidologie 32, 287–304.Google Scholar
  100. Marletta F., Manino A., Pedrini P. (1984a) Intergradazione fra sottospecie di Apis mellifera L. in Liguria, Apic. Mod. 75, 159–163.Google Scholar
  101. Marietta E., Manino A., Balboni G. (1984b) Indagini biometriche su popolazioni di Apis mellifera L. delle Alpi occidentali, Apic. Mod. 75, 213–223.Google Scholar
  102. Matheson A., Buchmann S.L., O’Toole C., Westrich P., Williams I.H. (1996) The conservation of bees, Academic Press, Harcourt Brace, London.Google Scholar
  103. Meixner M.D., Sheppard W.S., Poklukar J. (1993) Asymmetrical distribution of a mitochondrial-DNA polymorphism between two introgressing honey-bee subspecies, Apidologie 24, 147–153.Google Scholar
  104. Meixner M.D., Worobik M., Wilde J., Fuchs S., Koeniger N. (2007) Apis mellifera mellifera in eastern Europe-morphometric variation and determination of its range limits, Apidologie 38, 191–197.Google Scholar
  105. Miguel I., Iriondo M., Garnery L., Sheppard W.S., Estonba A. (2007) Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the western Europe, Apidologie 38, 141–155.Google Scholar
  106. Ministry of Food and Agriculture of Baden-Württemberg (2008) Abschlussbericht Beizung and Bienenschäde, [online] http://www. mlr.baden-wuerttemberg.de/mlr/allgemein/ Abschlussbericht_Bienenschaeden.pdf (accessed on 13 February 2009).Google Scholar
  107. Moritz R.F.A., Hawkins C.F., Crozier R.H., Mackinley A.G. (1986) A mitochondrial DNA polymorphism in honeybees (Apis mellifera), Experientia 42, 322–324.Google Scholar
  108. Moritz R.F.A., Härtel S., Neumann P. (2005) Global invasions of the western honey bee (Apis mellifera) and the consequences for biodiversity, Ecoscience 12, 289–301.Google Scholar
  109. Moritz R.F.A., Kraus F.B., Kryger P., Crewe R.M. (2007a) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees, J. Insect Conserv. 11, 391–397.Google Scholar
  110. Moritz R.F.A., Dietemann V., Crewe R.M. (2007b) Determining colony densities in wild honeybee populations (Apis mellifera) with linked microsatellite DNA markers, J. Insect Conserv. 12, 455–459.Google Scholar
  111. Murray T.E., Kuhlmann M., Potts S.G. (2009). Conservation ecology of bees: populations, species and communities, Apidologie 40, 211–236.Google Scholar
  112. Nazzi F. (1992a) Morphometric analysis of honey bees from an area of racial hybridization in northeastern Italy, Apidologie 23, 89–96.Google Scholar
  113. Nazzi F. (1992b) Fluctuating forewing characters in hybrid honey bees from north-eastern Italy, J. Apic. Res. 31, 27–31.Google Scholar
  114. Neumann P., Moritz R.F.A., Van Praagh J.P. (1999a) Queen mating frequency in different types of honey bee mating apiaries, J. Apic. Res. 38, 11–18.Google Scholar
  115. Neumann P., Van Praagh J.P., Moritz R.F.A., Dustmann J.H. (1999b) Testing reliability of a potential island mating apiary using DNA microsatellites, Apidologie 30, 257–276.Google Scholar
  116. Oldroyd B.P., Nanork P. (2009) Conservation of Asian honey bees, Apidologie 40, 296–312.Google Scholar
  117. Orantes-Bermejo F.J., García-Fernández P. (1995) Morphological variability of Apis mellifera iberica in different apiaries of southern Spain, J. Apic. Res. 34, 23–30.Google Scholar
  118. Paini D.R. (2004) Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review, Austral. Ecol. 29, 399–407.Google Scholar
  119. Palmer K.A., Oldroyd B.P. (2000) Evolution of multiple mating in the genus Apis, Apidologie 31, 235–248.Google Scholar
  120. Paxton R.J., Klee J., Korpela S., Fries I. (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis, Apidologie 38, 558–565.Google Scholar
  121. Peiren N., Vanrobaeys F., de Graaf D.C., Devreese B., Beeumen J.V., Jacobs F.J. (2005) The protein composition of honeybee venom reconsidered by a proteomic approach, Biochim. Biophys. Acta-Prot. Prot. 1752, 1–5.Google Scholar
  122. Radloff S.E., Hepburn H.R., Hepburn C., De la Rúa P. (2001) Morphometric affinities and population structure of honeybees of the Balearic Islands in the Mediterranean Sea, J. Apic. Res. 40, 97–103.Google Scholar
  123. Randi E. (2008) Detecting hybridization between wild species and their domesticated relatives, Mol. Ecol. 17, 285–293.PubMedGoogle Scholar
  124. Reusch H.B.H., Wood T.E. (2007) Molecular ecology of global change, Mol. Ecol. 16, 3973–3992.PubMedGoogle Scholar
  125. Rinderer T.E., Oldroyd B.P., Sheppard, W.S. (1993) Africanized bees in the U.S., Sci. Am. 269, 52–58.Google Scholar
  126. Robinson G.E., Evans J.D., Maleszka R., Robertson H.M., Weaver D.B., Worley K., Gibbs R.A., Weinstock G.M. (2006) Sweetness and light: illuminating the honey bee genome, Insect Mol. Biol. 15, 535–539.PubMedGoogle Scholar
  127. Rortais A., Arnold G., Halm M.-P., Touffet-Briens F. (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees, Apidologie 36, 71–83.Google Scholar
  128. Rüppell O., Pankiw T., Page R.E. (2004) Pleiotropy, Epistasis and New QTL: The Genetic Architecture of Honey Bee Foraging Behavior, J. Hered. 95, 481–491.PubMedGoogle Scholar
  129. Ruttner F. (1988) Biogeography and Taxonomy of Honeybees, Springer Verlag, Berlin.Google Scholar
  130. Ruttner F. (1992) Naturgeschichte der Honigbienen, Ehrenwirth, Munich.Google Scholar
  131. Ruttner F., Tassencourt L., Louveaux J. (1978) Biometrical statistical analysis of the geographic variability of Apis mellifera L. I: Materials and methods, Apidologie 9, 363–382.Google Scholar
  132. Schmuck R., Schoning R., Stork A., Schramel O. (2001) Risk posed to honeybees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowers, Pest Manage. Sci. 57, 225–238.Google Scholar
  133. Schonleben S., Sickmann A., Mueller M.J., Reinders J. (2007) Proteome analysis of Apis mellifera royal jelly, Anal. Bioanal. Chem. 389, 1087–1093.PubMedGoogle Scholar
  134. Schroder S., Wittmann D., Drescher W., Roth V., Steinhage V., Cremers A.B. (2002) The new key to bee: Automated identification by image analysis of wings, in: Kevan P., Imperatriz Fonseca V.L. (Eds.), Pollinating bees — the Conservation Link Between Agriculture and Nature, Ministry of Environment, Brasilia.Google Scholar
  135. Schneider S.S., DeGrandi-Hoffman G., Smith D.R. (2004) The African honey bee: factors contributing to a successful biological invasion, Annu. Rev. Entomol. 49, 351–376.Google Scholar
  136. Shaibi T., Lattorff H.M.G., Moritz, R.F.A. (2008) A microsatellite DNA toolkit for studying population structure in Apis mellifera, Mol. Ecol. Resources 8, 1034–1036.Google Scholar
  137. Sheppard W.S. (1997) Subspecies of Apis mellifera, in: Morse R.A., Flottum K. (Eds.), Honey Bee Pests, Predators and Diseases, A.I. Root Co., Medina, OH, USA, pp. 519–533.Google Scholar
  138. Sheppard W.S., Berlocher S.H. (1984) Enzyme polymorphisms in Apis mellifera mellifera from Norway, J. Apic. Res. 23, 64–69.Google Scholar
  139. Sheppard W.S., Berlocher S.H. (1985) New allozyme variability in Italian honey bees, J. Hered. 76, 45–48.PubMedGoogle Scholar
  140. Sheppard W.S., Meixner M. (2003) Apis mellifera pomonella, a new honey bee subspecies from Central Asia, Apidologie 34, 367–375.Google Scholar
  141. Sheppard W.S., Smith D.R. (2000) Identification of African-Derived Bees in the Americas: A Survey of Methods, Ann. Entomol. Soc. Am. 93, 159–176.Google Scholar
  142. Sheppard W.S., Rinderer T.E., Meixner M.D., Yoo H.R., Stelzer J.A., Schiff N.M., Kamel S.M., Krell R. (1996) Hinfl variation in mitochondrial DNA of old world honey bee subspecies, J. Hered. 87, 35–40.Google Scholar
  143. Sheppard W.S., Arias M.C., Grech A., Meixner M.D. (1997) Apis mellifera ruttneri, a new honey bee subspecies from Malta, Apidologie 28, 287–293.Google Scholar
  144. Sheppard W.S., Rinderer T.E., Garnery L., Shimanuki H. (1999) Analysis of Africanized honey bee mitochondrial DNA reveals further diversity of origin, Genet. Mol. Biol. 22, 73–75.Google Scholar
  145. Sinacori A., Rinderer T.E., Lancaster V., Sheppard W.S. (1998) A morphological and mitochondrial assessment of Apis mellifera from Palermo, Italy, Apidologie 29, 481–490.Google Scholar
  146. Smith D.R., Glenn T.C. (1995) Allozyme polymorphisms in Spanish honeybees (Apis mellifera iberica), J. Hered. 86, 12–16.PubMedGoogle Scholar
  147. Smith D.R., Crespi B.J., Bookstein F.L. (1997) Fluctuating asymmetry in the honey bee, Apis mellifera: effects of ploidy and hybridization, J. Evol. Biol. 10, 551–574.Google Scholar
  148. Soland-Reckeweg G., Heckel G., Neumann P., Fluri P., Excoffier L. (2008) Gene flow in admixed populations and implications for the conservation of the Western honeybee, Apis mellifera, J. Insect Conserv., in press, DOI:10.1007/s10841-008-9175-0.Google Scholar
  149. Solignac M., Vautrin D., Loiseau A., Mougel F., Baudry E. (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome, Mol. Ecol. Notes 3, 307–311.Google Scholar
  150. Solignac M., Mougel F., Vautrin D., Monnerot M., Cornuet J.M. (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map, Genome Biol. 8, R66, DOI:10.1186/gb-2007-8-4-r66.PubMedGoogle Scholar
  151. Southwick E.E., Southwick L. (1992) Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States, J. Econ. Entomol. 85, 621–633.Google Scholar
  152. Steinhage V., Arbuckle T., Schröder S., Cremers A.B., Wittmann D. (2001) ABIS: Automated Identification of Bee Species, BIOLOG. Workshop, German Programme on Biodiversity and Global Change, Status Report, pp. 194–195.Google Scholar
  153. Steinhage V., Schröder S., Lampe K.H., Cremers A.B. (2007) Automated extraction and analysis of morphological features for species identification, in: MacLeod N. (Ed.), Automated Object Identification in Systematics: Theory, Approaches, and Applications, pp. 115–129.Google Scholar
  154. Strange J.P., Garnery L., Sheppard W.S. (2007) Persistence of the Landes ecotype of Apis mellifera mellifera in southwest France: confirmation of a locally adaptive annual brood cycle trait, Apidologie 38, 259–267.Google Scholar
  155. Strange J.P., Garnery L., Sheppard W.S. (2008) Morphological and molecular characterization of the Landes honey bee (Apis mellifera L.) ecotype for genetic conservation, J. Insect Conserv. 12, 527–537.Google Scholar
  156. Sušnik S., Kozmus P., Poklukar J., Megli V. (2004) Molecular characterisation of indigenous Apis mellifera carnica in Slovenia, Apidologie 35, 623–636.Google Scholar
  157. The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera, Nature 443, 931–949.Google Scholar
  158. Thompson H.M. (2003) Behavioural effects of pesticides in bees — Their potential for use in risk assessment, Ecotoxicology 12, 317–330.PubMedGoogle Scholar
  159. Tofilski A. (2004) Draw Wing, a program for numerical description of insect wings, J. Insect Sci. 4, 17–21.PubMedGoogle Scholar
  160. van Engelsdorp D., Underwood R., Caron D., Hayes J. (2007) An estimate of managed colony losses in the winter of 2006–2007: a report commissioned by the apiary inspectors of America, Am. Bee J. 147, 599–603.Google Scholar
  161. Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsui N.D. (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera, Science 314, 642–645.PubMedGoogle Scholar
  162. Zander E. (1909) Tierische Parasiten als Krankenheitserreger bei der Biene, Münch. Bienenztg. 31, 196–204.Google Scholar
  163. Zayed A. (2009) Bee genetics and conservation, Apidologie 40, 237–262.Google Scholar
  164. Zayed A., Whitfield W.C. (2008) A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera, Proc. Natl Acad. Sci. USA 105, 3421–3426.PubMedGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • Pilar De la Rúa
    • 1
  • Rodolfo Jaffé
    • 2
  • Raffaele Dall’Olio
    • 3
  • Irene Muñoz
    • 1
  • José Serrano
    • 1
  1. 1.Dpto. de Zoologia y Antropología Física, Facultad de VeterinariaUniversidad de MurciaMurciaSpain
  2. 2.Institut für BiologieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  3. 3.CRA-APIBolognaItaly

Personalised recommendations