, Volume 40, Issue 3, pp 237–262 | Cite as

Bee genetics and conservation

Review Article


The emerging threat of pollinator decline has motivated research on bee conservation biology in order to both understand the causes of declines and to develop appropriate conservation strategies. The application of genetics to the conservation of diploid animals has proven to be important for both overcoming genetic threats to population viability and for providing tools to guide conservation programs. However, the haplodiploid bees have several unusual genetic properties of relevance to their conservation, which warrant special attention. Here I review how haplodiploidy and complementary sex determination affect genetic parameters pertinent to the viability and future evolutionary potential of bee populations. I also review how genetic tools can improve the conservation management of bees. I find that bees are especially prone to extinction for genetic reasons, and that genetics can provide invaluable tools for managing bee populations to circumvent pollinator decline.

haplodiploid complementary sex determination inbreeding depression diploid males extinction 

Génétique des abeilles et conservation des espèces

Apoidea haploidiploïdie dépression consanguinité m^ale diploïde extinction détermination sexe complémentaire abeille 

Bienengenetik und Artenschutz


In dieser Arbeit betrachten wir, welche Rolle die Genetik im Rückgang der Bienenpopulationen spielt und wie die Werkzeuge der Genetik in Bienenschutzprojekten eingesetzt werden können. Genetische Marker haben sich als höchst nützlich erwiesen in der Bestimmung wichtiger demographischer Parameter von Bienenpopulationen (z.B. Populationsgrössen, Dichte, Vernetzung, Ausbreitungsraten und Sammelradien), sowie zur Klärung taxonomischer Probleme und zur Erkennung von Rückgängen in Populationen. Neuere Fortschritte in der Bienengenomik sollten ebenfalls einen Beitrag zur Erleichterung von Untersuchungen über die Ursachen von Rückgängen in Bienenpopulationen leisten. Die Integration der Kentnisse zur Genetik und Genomik der Bienen mit denen ihrer Ökologie sollte daher deutliche Verbesserungen in Bienen-schutzprogrammen zur Folge haben. Ein wichtiger Faktor, der kleine Bienenpopulationen bedroht, ist die durch Homozygotie am Geschlechtslokus ausgelöste Produktion nicht lebensfähiger, steriler diploider Männchen anstelle von Weibchen (Abb. 1). Das Vorkommen diploider Männchen ist für mindesten 27 Arten beschrieben (Tab. I) und die Frequenz dieser Männchen nimmt in kleinen Populationen durch Homozygotie am Geschlechtsbestimmungslokus bedingt durch genetische Drift zu (Abb. 2). Simulationsstudien lassen erwarten, dass die Produktion diploider Männchen die Populationswachstumsraten vor allem bei solitären Bienen reduzieren kann, die eine niedrige Fekundität in ihrer Gesamtlebenszeit aufweisen. Das Problem der Produktion diploider Männchen geht so Hand in Hand mit negativen Umweltfaktoren und führt zu einem schnelleren Rückgang und einer langsameren Erhohlung von Populationen (Abb. 3). Sie spielt damit eine wichtige Rolle im weltweiten Rückgang von Bienen.

Ausser der Produktion diploider Männchen könnte auch eine Inzuchtdepression das Überleben kleiner Bienenpopulationen gefährden. Obwohl zu erwarten wäre, dass die Haplodoploidie die genetische Bürde bei Bienen reduziert, zeigen sowohl theoretische Studien als auch empirische Befunde, dass selbst haplodiploide Organismen eine erhebliche Inzuchtdepression durchlaufen können. Schutzprogramme für gefährdete und zurückgehende Bienenpopulationen sollten daher bestrebt sein, die Produktion diploider Männchen und Inzucht zu reduzieren.

Haplodiploidie Komplementäre Geschlechtsdeterminierung Inzuchtdepression diploide Männchen Artensterben 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams J., Rothman E.D., Kerr W.E., Paulino Z.L. (1977) Estimation of the number of sex alleles and queen matings from diploid male frequencies in a population of Apis mellifera, Genetics 86, 583–596.PubMedGoogle Scholar
  2. Agoze M.E., Drezen J.M., Renalt S., Preiquet G. (1994) Analysis of the reproductive potential of diploid males in the wasp Diadromus pulchellus (Hymenoptera: Ichneumonidae), Bull. Entomol. Res. 84, 213–218.CrossRefGoogle Scholar
  3. Allen-Wardell G., Bernhardt P., Bitner R., Burquez A., Buchmann S.L., Cane J.H., Cox P.A., Dalton V., Feinsinger P., Ingram M., Inouye D.W., Jones C.E., Kennedy K., Kevan P.G., Koopowitz H., Medellin R., Medellin-Morales S., Nabhan G.P. (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields, Conserv. Biol. 12, 8–17.CrossRefGoogle Scholar
  4. Antolin M.F. (1999) A genetic perspective on mating systems and sex ratios of parasitoid wasps, Res. Popul.Ecol. 41, 29–37.CrossRefGoogle Scholar
  5. Armbruster P., Reed D.H. (2005) Inbreeding depression in benign and stressful environments, Heredity 95, 235–242.PubMedCrossRefGoogle Scholar
  6. Ayabe T., Hoshiba H., Ono M. (2004) Cytological evidence for triploid males and females in the bumblebee, Bombus terrestris, Chromosome Res. 12, 215–223.PubMedCrossRefGoogle Scholar
  7. Beveridge M., Simmons L.W. (2006) Panmixia: an example from Dawson’s burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini), Mol. Ecol. 15, 951–957.PubMedCrossRefGoogle Scholar
  8. Beveridge M., Simmons L.W., Alcock J. (2006) Genetic breeding system and investment patterns within nests of Dawson’s burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini), Mol. Ecol. 15, 3459–3467.PubMedCrossRefGoogle Scholar
  9. Beye M., Hasselmann M., Fondrk M.K., Page R.E., Omholt S.W. (2003) The gene csd is the primary signal for sexual development in the honey bee and encodes a new SR-type protein, Cell 114, 419–429.PubMedCrossRefGoogle Scholar
  10. Bienefeld K., Reinhardt F., Pirchner F. (1989) Inbreeding effects of queen and workers on colony traits in the honey bee, Apidologie 20, 439–450.CrossRefGoogle Scholar
  11. Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemuller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science 313, 351–354.PubMedCrossRefGoogle Scholar
  12. Biswas S., Akey J.M. (2006) Genomic insights into positive selection, Trends Genet. 22, 437–446.PubMedCrossRefGoogle Scholar
  13. Blanchetot A., Packer L. (1992) Genetic variability in the social bee Lasioglossum marginatum and a cryptic underscribed sibling species, as detected by DNA fingerprinting and allozyme electrophoresis, Insect Mol. Biol. 1, 89–97.PubMedCrossRefGoogle Scholar
  14. Brook B.W., Burgman M.A., Akçakaya H.R., O’Grady J.J., Frankham R. (2002a) Critiques of PVA ask the wrong questions: throwing the heuristic baby out with the numerical bath water, Conserv. Biol. 16, 262–263.CrossRefGoogle Scholar
  15. Brook B.W., Tonkyn D.W., O’Grady J.J., Frankham R. (2002b) Contribution of inbreeding to extinction risk in threatened species, Conserv. Ecol. 6, 16.Google Scholar
  16. Brown P.O., Botstein D. (1999) Exploring the new world of the genome with DNA microarrays, Nat. Genet. 21, 33–37.PubMedCrossRefGoogle Scholar
  17. Byrne A., Fitzpatrick Ú. (2009) Bee conservation policy at the global, regional and national levels, Apidologie 40, 194–210.CrossRefGoogle Scholar
  18. Camargo C.A. (1979) Sex determination in bees. XI. Production of diploid males and sex determination in Melipona quadrifasciata, J. Apic. Res. 18, 77–84.Google Scholar
  19. Cameron E.C., Franck P., Oldroyd B.P. (2004) Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina, Mol. Ecol. 13, 2357–2364.PubMedCrossRefGoogle Scholar
  20. Cane J.H. (2001) Habitat fragmentation and native bees: a premature verdict? Conserv. Ecol. 5, 3.Google Scholar
  21. Cane J.H., Tepedino V.J. (2001) Causes and extent of declines among native North American invertebrate pollinators: detection, evidence, and consequences, Conserv. Ecol. 5, 1.Google Scholar
  22. Carman G.M., Packer L. (1997) A cryptic species allied to Halictus ligatus Say (Hymenoptera; Halictidae) detected by allozyme electrophoresis, J. Kans. Entomol. Soc. 69, 168–176.Google Scholar
  23. Carvalho G.A. (2001) The number of sex alleles (CSD) in a bee population and its practical importance (Hymenoptera: Apidae), J. Hymenoptera Res. 10, 10–15.Google Scholar
  24. Chaline N., Ratnieks F.L.W., Raine N.E., Badcock N.S., Burke T. (2004) Non-lethal sampling of honey bee, Apis mellifera, DNA using wing tips, Apidologie 35, 311–318.CrossRefGoogle Scholar
  25. Chapman R.E., Wang J., Bourke A.F.G. (2003) Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators, Mol. Ecol. 12, 2801–2808.PubMedCrossRefGoogle Scholar
  26. Charlesworth B., Charlesworth D. (1999) The genetic basis of inbreeding depression, Genet. Res. 74, 329–340.PubMedCrossRefGoogle Scholar
  27. Colla S.R., Packer L. (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidea), with special focus on Bombus affinis Cresson, Biodivers. Conserv. 17, 1379–1391.CrossRefGoogle Scholar
  28. Colla S.R., Otterstatter M.C., Gegear R.J., Thomson J.D. (2006) Plight of the bumblebee: Pathogen spillover from commercial to wild populations, Biol. Conserv. 129, 461–467.CrossRefGoogle Scholar
  29. Cook J.M. (1993) Sex determination in the Hymenoptera: a review of models and evidence, Heredity 71, 421–435.CrossRefGoogle Scholar
  30. Cook J.M., Crozier R.H. (1995) Sex determination and population biology of the Hymenoptera, Trends Ecol. Evol. 10, 281–286.PubMedCrossRefGoogle Scholar
  31. Cornuet J.M. (1980) Rapid estimation of the number of sex alleles in panmictic honeybee populations, J. Apic. Res. 19, 3–5.Google Scholar
  32. Cornuet J.M., Luikart G. (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics 144, 2001–2014.PubMedGoogle Scholar
  33. Cowan D.P., Stahlhut J.K. (2004) Functionally reproductive diploid and haploid males in an inbreeding hymenopteran with complementary sex determination, Proc. Natl Acad. Sci. USA 101, 10374–10379.PubMedCrossRefGoogle Scholar
  34. Cowell J.K., Hawthorn L. (2007) The application of microarray technology to the analysis of the cancer genome, Curr. Mol. Med. 7, 103–120.PubMedCrossRefGoogle Scholar
  35. Cox-Foster D.L., Conlan S., Holmes E.C., Palacios G., Evans J.D., Moran N.A., Quan P.-L., Briese T., Hornig M., Geiser D.M., Martinson V., van Engelsdorp D., Kalkstein A.L., Drysdale A., Hui J., Zhai J., Cui L., Hutchison S.K., Simons J.F., Egholm M., Pettis J.S., Lipkin W.I. (2007) A Metagenomic Survey of Microbes in Honey Bee Colony Collapse Disorder, Science 318, 283–287.PubMedCrossRefGoogle Scholar
  36. Crnokrak P., Barrett S.C. (2002) Perspective: purging the genetic load: a review of the experimental evidence, Evolution 12, 2347–2358.Google Scholar
  37. Crozier R.H. (1976a) Counter-intuitive property of effective population size, Nature 262, 384.PubMedCrossRefGoogle Scholar
  38. Crozier R.H. (1976b) Why Male-Haploid and Sex-Linked Genetic Systems Seem to Have Unusually Sex-Limited Mutational Genetic Loads, Evolution 30, 623–624.CrossRefGoogle Scholar
  39. Crozier R.H. (1977) Evolutionary genetics of the hymenoptera, Annu. Rev. Entomol. 22, 263–288.CrossRefGoogle Scholar
  40. Crozier R.H. (1985) Adaptive consequences of malehaploidy, in: Helle W., Sabelis M.W. (Eds.), Spider Mites: their biology, natural enemies and control, Elsevier Science Publisher B.V. Amsterdam, pp. 201–222.Google Scholar
  41. Danforth B.N. (1999) Phylogeny of the bee genus Lasioglossum (Hymenoptera: Halictidae) based on mitocondrial COI sequence data, Syst. Entomol. 24, 377–393.CrossRefGoogle Scholar
  42. Danforth B.N., Mitchell P.L., Packer L. (1998) Mitochondrial DNA differentiation between two cryptic Halictus (Hymenoptera: Halictidae) species, Ann. Entomol. Soc. Am. 91, 387–391.Google Scholar
  43. Danforth B.N., Ji S., Ballard L.J. (2003) Gene flow and population structure in an oligolectic desert bee, Macrotera (Macroteropsis) portalis (Hymenoptera: Andrenidae), J. Kans. Entomol. Soc. 76, 221–235.Google Scholar
  44. Danks H.V. (1971) Nest mortality factors in stemnesting aculeate Hymenoptera, J. Anim. Ecol. 40, 79–82.CrossRefGoogle Scholar
  45. Darvill B., Knight M.E., Goulson D. (2004) Use of genetic markers to quantify bumblebee foraging range and nest density, Oikos 107, 471–478.CrossRefGoogle Scholar
  46. Darvill B., Ellis J.S., Lye G.C., Goulson D. (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae), Mol. Ecol. 15, 601–611.PubMedCrossRefGoogle Scholar
  47. De Boer J.G., Ode P.J., Vet L.E.M., Whitfield J., Heimpel G.E. (2007) Complementary sex determination in the parasitoid wasp Cotesia vestalis (C. plutellae), J. Evol. Biol. 20, 340–348.PubMedCrossRefGoogle Scholar
  48. De la Rúa P., Jaffé R., Dall’Olio R., Muñoz I., Serrano J. (2009) Biodiversity, conservation and current threats to European honeybees, Apidologie 40, 263–284.CrossRefGoogle Scholar
  49. Dias B.S.F., Raw A., Imperatriz-Fonseca V.L. (1999) International pollinators initiative: The São Paulo declaration on pollinators., Brazilian Ministry of the Environment, Brasilia. [online] http://www. cbd.int/doc/case-studies/agr/cs-agr-pollinator-rpt. pdf (accessed on 2 February 2009).Google Scholar
  50. Dick C.W., Roubik D.W., Gruber K.F., Bermingham E. (2004) Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography, Mol. Ecol. 13, 3775–3785.PubMedCrossRefGoogle Scholar
  51. Duchateau M.J., Hoshiba H., Velthuis H.H.W. (1994) Diploid males in the bumblebee Bombus ter- restris: sex determination, sex alleles and viability, Entomol. Exp. Appl. 71, 263–269.CrossRefGoogle Scholar
  52. Eickwort G.C., Ginsberg H.S. (1980) Foraging and mating behavior in Apoidea, Annu. Rev. Entomol. 25, 421–446.CrossRefGoogle Scholar
  53. Ellegren H., Sheldon B.C. (2008) Genetic basis of fitness differences in natural populations, Nature 452, 169–175.PubMedCrossRefGoogle Scholar
  54. Ellis J.S., Knight M.E., Darvill B., Goulson D. (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae), Mol. Ecol. 15, 4375–4386.PubMedCrossRefGoogle Scholar
  55. Else G., Felton J., Stubbs A. (1978) The Conservation of Bees and Wasps, Nature Conservancy Council, Peterborough.Google Scholar
  56. Estoup A., Scholl A., Pouvreau A., Solignac M. (1995) Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites, Mol. Ecol. 4, 89–94.PubMedCrossRefGoogle Scholar
  57. Estoup A., Solignac M., Cornuet J.M., Goudet J., Scholl A. (1996) Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe, Mol. Ecol. 5, 19–31.PubMedCrossRefGoogle Scholar
  58. Excoffier L., Heckel G. (2006) Computer programs for population genetics data analysis: a survival guide, Nat. Rev. Genet. 7, 745–758.PubMedCrossRefGoogle Scholar
  59. Falconer D.S., Mackay T.F.C. (1996) Introduction to Quantitative Genetics, Longman, Essex, UK.Google Scholar
  60. Fisher R.A. (1930) The Genetic Theory of Natural Selection, Dover, New York.Google Scholar
  61. Fitzpatrick U., Murray M.G., Paxton R.J., Breen J., Cotton D., Santorum V., Brown M.J.F. (2006) Rarity and decline in bumblebees — A test of causes and correlates in the Irish fauna, Biol. Conserv. 136, 185–194.CrossRefGoogle Scholar
  62. Fontaine C., Dajoz I., Meriguet J., Loreau M. (2006) Functional Diversity of Plant-Pollinator Interaction Webs Enhances the Persistence of Plant Communities, PLoS Biol. 4, e1.PubMedCrossRefGoogle Scholar
  63. Franck P., Cameron E., Good G., Rasplus J.Y., Oldroyd B.P. (2004) Nest architecture and genetic differentiation in a species complex of Australian stingless bees, Mol. Ecol. 13, 2317–2331.PubMedCrossRefGoogle Scholar
  64. Frankham R. (1995 a) Effective population size/adult population size ratios in wildlife: a review, Genet. Res. 66, 95–107.CrossRefGoogle Scholar
  65. Frankham R. (1995b) Inbreeding and extinction: a threshold effect, Conserv. Biol. 9, 792–799.CrossRefGoogle Scholar
  66. Frankham R. (1998) Inbreeding and extinction: island populations, Conserv. Biol. 12, 665–675.CrossRefGoogle Scholar
  67. Frankham R. (2005) Genetics and extinction, Biol. Conserv. 126, 131–140.CrossRefGoogle Scholar
  68. Frankham R., Ballou J.D., Briscoe D.A. (2002) Introduction to conservation genetics, Cambridge University Press, Cambridge.Google Scholar
  69. Franzén M., Larsson M. (2007) Pollen harvesting and reproductive rates in specialized solitary bees, Ann. Zool. Fenn. 44, 405–414.Google Scholar
  70. Gadau J., Gerloff C.U., Krüger N., Chan H., Schmid-Hempel P., Wile A., Page R.E.J. (2001) A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae), J. Hered. 87, 234–242.CrossRefGoogle Scholar
  71. Gaggiotti O.E. (2003) Genetic threats to population persistence, Ann. Zool. Fenn. 40, 155–168.Google Scholar
  72. Gerloff C.U., Schmid-Hempel P. (2005) Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera: Apidae), Oikos 111, 67–80.CrossRefGoogle Scholar
  73. Gibbs J. (2009) Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae), Zootaxa 2032, 1–38.Google Scholar
  74. Gibson G. (2002) Microarrays in ecology and evolution: a preview, Mol. Ecol. 11, 17–24.PubMedCrossRefGoogle Scholar
  75. Gilpin M.E. (1991) The genetic effective size of a metapopulation, Biol. J. Linn. Soc. Lond. 42, 165–175.CrossRefGoogle Scholar
  76. Glémin S. (2003) How are deleterious mutations purged? Drift versus nonrandom mating, Evolution 57, 2678–2687.PubMedGoogle Scholar
  77. Goulson D., Lye G.C., Darvil B. (2008) Decline and conservation of bumble bees, Annu. Rev. Entomol. 53, 191–208.PubMedCrossRefGoogle Scholar
  78. Green C.L., Oldroyd B.P. (2002) Queen mating frequency and maternity of males in the stingless bee Trigona carbonaria Smith, Insectes Soc. 49, 196–202.CrossRefGoogle Scholar
  79. Grixti J.C., Packer L. (2006) Changes in the bee fauna (Hymenoptera: Apoidea) of an old field site in southern Ontario, revisited after 34 years, Can. Entomol. 138, 147–164.CrossRefGoogle Scholar
  80. Grixti J.C., Wong L.T., Cameron S.A., Favret C. (2009) Decline of bumble bees (Bombus) in the North American Midwest, Biol. Conserv. 142, 75–84.CrossRefGoogle Scholar
  81. Hanski I., Saccheri I. (2006) Molecular-Level Variation Affects Population Growth in a Butterfly Metapopulation, PLoS Biol. 4, e129.PubMedCrossRefGoogle Scholar
  82. Harbo J.R., Harris J.W. (1999) Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae), J. Econ. Entomol. 92, 261–265.Google Scholar
  83. Hasselmann M., Gempe T., Schiott M., Nunes-Silva C.G., Otte M., Beye M. (2008) Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees, Nature 454, 519–522.PubMedCrossRefGoogle Scholar
  84. Hebert P.N.D., Ratnasingham S., DeWaard J.R. (2003) Barcoding animal life: cytochrome c oxidase sub-unit 1 divergences among closely related species, Proc. R. Soc. Ser. B Biol. Sci. 270, S96-S99.CrossRefGoogle Scholar
  85. Hedrick P.W. (2000) Genetics of Populations, Second edn, Jones and Bartlett Publishers, Sudbury, Massachusetts.Google Scholar
  86. Hedrick P.W. (2004) Recent developments in conservation genetics, For. Ecol. Manage. 197, 3–19.CrossRefGoogle Scholar
  87. Hedrick P.W., Gilpin M.E. (1997) Genetic effective size of a metapopulation, in: Hanski I.A., Gilpin M.E. (Eds.), Metapopulation biology: ecology, genetics, and evolution, Academic Press Inc. San Diego, USA, pp. 165–181.Google Scholar
  88. Hedrick P.W., Parker J.D. (1997) Evolutionary genetics and genetic variation of haplodiploids and X-lined genes, Annu. Rev. Ecol. Syst. 28, 55–83.CrossRefGoogle Scholar
  89. Hedrick P.W., Kalinowski S.T. (2000) Inbreeding depression in conservation biology, Annu. Rev. Ecol. Syst. 31, 139–162.CrossRefGoogle Scholar
  90. Hedrick P.W., Gadau J., Page R.E.J. (2006) Genetic sex determination and extinction, Trends Ecol. Evol. 21, 55–57.PubMedCrossRefGoogle Scholar
  91. Heimpel G.E., de Boer J.G. (2008) Sex determination in the Hymenoptera, Annu. Rev. Entomol. 53, 209–230.PubMedCrossRefGoogle Scholar
  92. Henter H.J. (2003) Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa, Evolution 57, 1793–1803.PubMedGoogle Scholar
  93. Herrmann F., Westphal C., Moritz R.F.A., Steffan-Dewenter I. (2007) Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes, Mol. Ecol. 16, 1167–1178.PubMedCrossRefGoogle Scholar
  94. Holehouse K.A., Hammond R.L., Bourke A.F.G. (2003) Non-lethal sampling of DNA from bumble bees for conservation genetics, Insectes Soc. 50, 277–285.CrossRefGoogle Scholar
  95. Holloway A.K., Heimpel G.E., Strand M.R., Antolin M.F. (1999) Survival of diploid males in Bracon sp. near hebetor (Hymenoptera: Braconidae), Ann. Entomol. Soc. Am. 92, 110–116.Google Scholar
  96. Jacquard A. (1975) Inbreeding: One word, several meanings, Theor. Popul. Biol. 7, 338–363.PubMedCrossRefGoogle Scholar
  97. Keller L.F., Waller D.M. (2002) Inbreeding effects in wild populations, Trends Ecol. Evol. 17, 230–241.CrossRefGoogle Scholar
  98. Kerr W.E. (1987) Sex determination in bees. XXI. Number of XO-heteroalleles in a natural population of Melipona compressipes fasciculata (Apidae), Insectes Soc. 34, 274–279.CrossRefGoogle Scholar
  99. Kerr W.E. (1997) Sex determination in honey bees (Apinae and Meliponinae) and its consequences, Braz. J. Genet. 20, 4.CrossRefGoogle Scholar
  100. Kim S., Misra A. (2007) SNP genotyping: Technologies and biomedical applications, Annu. Rev. Biomed. Eng. 9, 289–320.PubMedCrossRefGoogle Scholar
  101. Klein A.M., Vaissière B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. (2007) Importance of pollinators in changing landscapes for world crops, Proc. R. Soc. Lond., Ser. B Biol. Sci. 274, 303–313.CrossRefGoogle Scholar
  102. Knight M.E., Martin A.P., Bishop S., Osborne J.L., Hale R.J., Sanderson R.A., Goulson D. (2005) An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species, Mol. Ecol. 14, 1811–1820.PubMedCrossRefGoogle Scholar
  103. Kosior A., Celary W., Olejniczak P., Fijal J., Król W., Solarz W., Plonka P. (2007) The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of western and central Europe, Oryx 41, 79–88.CrossRefGoogle Scholar
  104. Kraus F.B., Weinhold S., Moritz R.F.A. (2008) Genetic structure of drone congregations of the stingless bee Scaptotrigona mexicana, Insectes Soc. 55, 22–27.CrossRefGoogle Scholar
  105. Kremen C., Williams N.M., Thorp R.W. (2002) Crop pollination from native bees at risk from agricultural intensification, Proc. Natl Acad. Sci. USA 99, 16812–16816.PubMedCrossRefGoogle Scholar
  106. Kremen C., Williams N.M., Aizen M.A., Gemmill-Herren B., LeBuhn G., Minckley R., Packer L., Potts S.G., Roulston T.a., Steffan-Dewenter I., Vazquez D.P., Winfree R., Adams L., Crone E.E., Greenleaf S.S., Keitt T.H., Klein A.-M., Regetz J., Ricketts T.H. (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change, Ecol. Lett. 10, 299–314.PubMedCrossRefGoogle Scholar
  107. Krieger M.J.B., Ross K.G., Chang C.W., Keller L. (1999) Frequency and origin of triploidy in the fire ant Solenopsis invicta, Heredity 82, 142–150.CrossRefGoogle Scholar
  108. Kuhlmann M., Else G.R., Dawson A., Quicke D.L.J. (2007) Molecular, biogeographical and phenological evidence for the existence of three western European sibling species in the Colletes succinctus group (Hymenoptera: Apidae), Org. Divers. Evol. 7, 155–165.CrossRefGoogle Scholar
  109. Kukuk P.F., May B. (1990) Diploid males in a primitively eusocial bee, Lasioglossum (Dialictus) zephyrum, Evolution 44, 1522–1528.CrossRefGoogle Scholar
  110. Lacy R.C. (1993) Vortex: a computer simulation model for population viability analysis, Wildl. Res. 20, 45–64.CrossRefGoogle Scholar
  111. Lapidge K.L., Oldroyd B.P., Spivak M. (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees, Naturwissenschaften 89, 565–568.PubMedGoogle Scholar
  112. Le Conte Y., De Vaublanc G., Crauser D., Jeanne F., Rousselle J.C., Becard J.M. (2007) Honey bee colonies that have survived Varroa destructor, Apidologie 38, 566–572.CrossRefGoogle Scholar
  113. Leberg P.L., Firmin B.D. (2008) Role of inbreeding depression and purging in captive breeding and restoration programmes, Mol. Ecol. 2008, 334–343.CrossRefGoogle Scholar
  114. Liebert A.E., Johnson R.N., Switz G.T., Starks P.T. (2004) Triploid females and diploid males: under-reported phenomena in Polistes wasps? Insectes Soc. 51, 205–211.Google Scholar
  115. Liebert A.E., Sumana A., Starks P.T. (2005) Diploid males and their triploid offspring in the paper wasp Polistes dominulus, Biol. Lett. 1, 200–203.PubMedCrossRefGoogle Scholar
  116. Lopez-Uribe M.M., Almanza M.T., Ordonez M. (2007) Diploid male frequencies in Colombian populations of euglossine bees, Biotropica 39, 299–314.CrossRefGoogle Scholar
  117. Lozier J.D., Cameron S.A. (2009) Comparative genetic analyses of historical and contemporary collections highlight contrasting demographic histories for the bumble bees Bombus pensylvanicus and B. impatiens in Illinois, Mol. Ecol., doi:10.1111/j.1365.294X.2009.04160x.Google Scholar
  118. Luikart G., England P.R. (1999) Statistical analysis of microsatellite DNA data, Trends Ecol. Evol. 14, 253–256.PubMedCrossRefGoogle Scholar
  119. Luna M.G., Hawkins B.A. (2004) Effects of Inbreeding Versus Outbreeding in Nasonia vitripennis (Hymenoptera: Pteromalidae), Environ. Entomol. 33, 765–775.CrossRefGoogle Scholar
  120. Lynch M., Conery J., Burger R. (1995) Mutation accumulation and the extinction of small populations, Am. Nat. 146, 489–518.CrossRefGoogle Scholar
  121. Lynch M., Walsh B. (1998) Genetics and Analysis of Quantitative Traits, Sinauer Associates Inc., Sunderland, MA, USA.Google Scholar
  122. Margulies M., Egholm M., Altman W.E., Attiya S., Bader J.S., Bemben L.A., Berka J., Braverman M.S., Chen Y.-J., Chen Z., Dewell S.B., Du L., Fierro J.M., Gomes X.V., Godwin B.C., He W., Helgesen S., Ho C.H., Irzyk G.P., Jando S.C., Alenquer M.L.I., Jarvie T.P., Jirage K.B., Kim J.-B., Knight J.R., Lanza J.R., Leamon J.H., Lefkowitz S.M., Lei M., Li J., Lohman K.L., Lu H., Makhijani V.B., McDade K.E., McKenna M.P., Myers E.W., Nickerson E., Nobile J.R., Plant R., Puc B.P., Ronan M.T., Roth G.T., Sarkis G.J., Simons J.F., Simpson J.W., Srinivasan M., Tartaro K.R., Tomasz A., Vogt K.A., Volkmer G.A., Wang S.H., Wang Y., Weiner M.P., Yu P., Begley R.F., Rothberg J.M. (2005) Genome sequencing in microfabricated high-density picolitre reactors, Nature 437, 376–380.PubMedGoogle Scholar
  123. McCorquodale D.B., Owen R.E. (1994) Laying sequence, diploid males and nest usurpation in the leafcutter bee, Megachile rotundata (Hymenoptera: Megachilidae), J. Insect. Behav. 7, 731–738.CrossRefGoogle Scholar
  124. Michener C.D. (2000) The bees of the world, The Johns Hopkins University Press, Baltimore, Maryland.Google Scholar
  125. Michener C.D., Rettenmeyer C.W. (1956) The ethology of Andrena erythronii with comparative data on other species, Univ. Kans. Sci. Bull. 37, 645–684.Google Scholar
  126. Minckley R.L., Wcislo W.T., Yanega D., Buchmann S.L. (1994) Behavior and phenology of a specialist bee (Dieunomia) and sunflower (Helianthus) pollen availability, Ecology 75, 1406–1419.CrossRefGoogle Scholar
  127. Mitchell-Olds T., Willis J.H., Goldstein D.B. (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 8, 845–856.PubMedCrossRefGoogle Scholar
  128. Morin P.A., Luikart G., Wayne R.K. (2004) SNPs in ecology, evolution and conservation, Trends Ecol. Evol. 19, 208–216.CrossRefGoogle Scholar
  129. Moritz C., Cicero C. (2004) DNA barcoding: promise and pitfalls, PLoS Biol. 2, e279.CrossRefGoogle Scholar
  130. Müller A., Diener S., Schnyder S., Stutz K., Sedivy C., Dorn S. (2006) Quantitative pollen requirements of solitary bees: Implications for bee conservation and the evolution of bee—flower relationships, Biol. Conserv. 130, 604–615.CrossRefGoogle Scholar
  131. Murray T.E., Fitzpatrick U., Brown M.J.F., Paxton R.J. (2008) Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs, Conserv. Genet. 9, 653–666.CrossRefGoogle Scholar
  132. Murray T.E., Kuhlmann M., Potts S.G. (2009) Conservation ecology of bees: populations, species and communities, Apidologie 40, 211–236.CrossRefGoogle Scholar
  133. Navajas M., Migeon A., Alaux C., Martin-Magniette M.L., Robinson G.E., Evans J.D., Cros-Arteil S., Crauser D., Le Conte Y. (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection, BMC Genomics 9, 301.PubMedCrossRefGoogle Scholar
  134. Neumann N.F., Galvez F. (2002) DNA microarrays and toxicogenomics: applications for ecotoxicology? Biotechnol. Adv. 20, 391–419.PubMedCrossRefGoogle Scholar
  135. Nevins J.R., Potti A. (2007) Mining gene expression profiles: expression signatures as cancer phenotypes, Nat. Rev. Genet. 8, 601–609.PubMedCrossRefGoogle Scholar
  136. Nielsen R. (2005) Molecular signatures of natural selection, Annu. Rev. Genet. 39, 197–218.PubMedCrossRefGoogle Scholar
  137. Nielsen R., Hellmann I., Hubisz M., Bustamante C., Clark A.G. (2007) Recent and ongoing selection in the human genome, Nat. Rev. Genet. 8, 857–868.PubMedCrossRefGoogle Scholar
  138. NRC (2007) Status of pollinators in North America, National Academies Press, Washington, DC.Google Scholar
  139. Olesen J.M., Bascompte J., Dupont Y.L., Jordano P. (2007) The modularity of pollination networks, Proc. Natl Acad. Sci. USA 104, 19891–19896.PubMedCrossRefGoogle Scholar
  140. Otterstatter M.C., Thomson J.D. (2008) Does Pathogen Spillover from Commercially Reared Bumble Bees Threaten Wild Pollinators? PLoS ONE 3, e2771.PubMedCrossRefGoogle Scholar
  141. Owen R.E. (1985) The opportunity for polymorphism and genic variation in social hymenoptera with worker-produced males, Heredity 54, 25–36.CrossRefGoogle Scholar
  142. Owen R.E., Packer L. (1994) Estimation of the proportion of diploid males in populations of Hymenoptera, Heredity 72, 219–227.CrossRefGoogle Scholar
  143. Packer L., Owen R.E. (1990) Allozyme variation, linkage disequilibrium and diploid male production in a primitively social bee Augochlorella striata (Hymenoptera: Halictidae), Heredity 65, 241–248.CrossRefGoogle Scholar
  144. Packer L., Owen R. (2001) Population genetic aspects of pollinator decline, Conserv. Ecol. 5, 4.Google Scholar
  145. Packer L., Zayed A., Grixti J.C., Ruz L., Owen R.E., Vivallo F., Toro H. (2005) Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees, Conserv. Biol. 19, 195–202.CrossRefGoogle Scholar
  146. Page R.E. (1980) The evolution of multiple mating behavior by honey bee queens (Apis mellifera), Genetics 96, 263–273.PubMedGoogle Scholar
  147. Palmer K.A., Oldroyd B.P., Quezada-Euán J.J.G., Paxton R.J., May-Itza W.D.J. (2002) Paternity frequency and maternity of males in some stingless bee species, Mol. Ecol. 11, 2107–2113.PubMedCrossRefGoogle Scholar
  148. Pamilo P., Crozier R.H. (1997) Population biology of social insect conservation, Mem. Mus. Vict. 56, 411–419.Google Scholar
  149. Pauw A. (2007) Collapse of a pollination web in small conservation areas, Ecology 88, 1759–1769.PubMedCrossRefGoogle Scholar
  150. Paxton R.J. (2005) Male mating behaviour and mating systems of bees: an overview, Apidologie 36, 145–156.CrossRefGoogle Scholar
  151. Paxton R.J., Thorén P.A., Gyllenstrand N., Tengö J. (2000) Microsatellite DNA analysis reveals low diploid male production in a communal bee with inbreeding, Biol. J. Linn. Soc. Lond. 69, 483–502.CrossRefGoogle Scholar
  152. Paxton R.J., Bego L.R., Shah M.M., Mateus S. (2003) Low mating frequency of queens in the stingless bee Scaptotrigona postica and worker maternity of males, Behav. Ecol. Sociobiol. 53, 174–181.Google Scholar
  153. Pfrender M.E., Spitze K., Hicks J., Morgan K., Latta L., Lynch M. (2000) Lack of concordance between genetic diversity estimates at the molecular and quantitative-trait levels, Conserv. Genet. 1, 263–269.CrossRefGoogle Scholar
  154. Plowright R.C., Pallett M.J. (1979) Worker-male conflict and inbreeding in bumble bees (Hymenoptera: Apidae), Can. Entomol. 111, 289–294.CrossRefGoogle Scholar
  155. Quezada-Euán J.J.G., Paxton R.J., Palmer K.A., Itza W.D.M., Tay W.T., Oldroyd B.P. (2007) Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini), Apidologie 38, 247–258.CrossRefGoogle Scholar
  156. Ralls K., Ballou J. (1983) Extinction: lessons from zoos, in: Schonewald-Cox C.M., Chambers S.M., MacBryde B., Thomas L. (Eds.), Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations, Benjamin/Cummings Menlo Park, CA.Google Scholar
  157. Ralls K., Ballou J.D., Templeton A. (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals, Conserv. Biol. 2, 185–193.CrossRefGoogle Scholar
  158. Reed D.H., Frankham R. (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis, Evolution 55, 1095–1103.PubMedGoogle Scholar
  159. Reed D.H., Frankham R. (2003) Correlation between fitness and genetic diversity, Conserv. Biol. 17, 230–237.CrossRefGoogle Scholar
  160. Ross K.G., Fletcher D.J.C. (1986) Diploid male production — a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae), Behav. Ecol. Sociobiol. 19, 283–291.CrossRefGoogle Scholar
  161. Roubik D.W. (2001) Ups and Downs in Pollinator Populations: When is there a Decline? Conserv. Ecol. 5, 2. [online] http://www.consecol.org/vol5/ iss1/art2 (accessed on 2 February 2009).Google Scholar
  162. Roubik D.W., Weigt L.A., Bonilla M.A. (1996) Population genetics, diploid males, and limits to social evolution of euglossine bees, Evolution 50, 931–935.CrossRefGoogle Scholar
  163. Sabeti P.C., Schaffner S.F., Fry B., Lohmueller J., Varilly P., Shamovsky O., Palma A., Mikkelsen T.S., Altshuler D., Lander E.S. (2006) Positive natural selection in the human lineage, Science 312, 1614–1620.PubMedCrossRefGoogle Scholar
  164. Saccheri I., Kuussaari M., Kankare M., Vikman P., Fortelius W., Hanski I. (1998) Inbreeding and extinction in a butterfly metapopulation, Nature 392, 491–494.CrossRefGoogle Scholar
  165. Schena M., Shalon D., Davis R.W., Brown P.O. (1995) Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray, Science 270, 467–470.PubMedCrossRefGoogle Scholar
  166. Schmid-Hempel P., Schmid-Hempel R., Brunner P.C., Seeman O.D., Allen G.R. (2007) Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck, Heredity 99, 414–422.PubMedCrossRefGoogle Scholar
  167. Schremph A., Aron S., Heinze J. (2006) Sex determination and inbreeding depresion in an ant with regular sib-mating, Heredity 97, 75–80.CrossRefGoogle Scholar
  168. Shendure J., Mitra R.D., Varma C., Church G.M. (2004) Advanced sequencing technologies: methods and goals, Nat. Rev. Genet. 5, 335–344.PubMedCrossRefGoogle Scholar
  169. Simmonds F.J. (1947) Improvement of the sex ratio of a parasite by selection, Can. Entomol. 79, 41–44.CrossRefGoogle Scholar
  170. Spielman D., Brook B.W., Frankham R. (2004) Most species are not driven to extinction before genetic factors impact them, Proc. Natl Acad. Sci. USA 101, 15261–15264.PubMedCrossRefGoogle Scholar
  171. Stouthamer R., Luck R.F., Werren J.H. (1992) Genetics of sex determination and the improvement of biological control using parasitoids, Environ. Entomol. 21, 427–435.Google Scholar
  172. Stow A., Silberbauer L., Beattie A.J., Briscoe D.A. (2007) Fine-scale genetic structure and firecreated habitat patchiness in the Australian allodapine bee, Exoneura nigrescens (Hymenoptera: Apidae), J. Hered. 98, 60–66.PubMedCrossRefGoogle Scholar
  173. Strange J.P., Knoblett J., Griswold T. (2009) DNA amplification from pin-mounted bumble bees (Bombus) in a museum collection: effects of fragment size and specimen age on successful PCR, Apidologie, DOI: 10.1051/apido/2008070.Google Scholar
  174. Strassmann J. (2001) The rarity of multiple mating by females of social Hymenoptera, Insectes Soc. 48, 1–13.CrossRefGoogle Scholar
  175. Strausberg R.L., Levy S., Rogers Y.-H. (2008) Emerging DNA sequencing technologies for human genomic medicine, Drug Discov. Today 13, 569–577.PubMedCrossRefGoogle Scholar
  176. Takahashi N.C., Peruquetti R.C., Del Lama M.A., de Oliveira Campos L.A. (2001) A reanalysis of diploid male frequencies in euglossine bees (Hymenoptera: Apidae), Evolution 55, 1897–1899.PubMedCrossRefGoogle Scholar
  177. Takahashi J., Ayabe T., Mitsuhata M., Shimizu I., Ono M. (2008) Diploid male production in a rare and locally distributed bumblebee, Bombus florilegus (Hymenoptera, Apidae), Insectes Soc. 55, 43–50.CrossRefGoogle Scholar
  178. Tavares M.G., Dias L.A.D., Borges A.A., Lopes D.M., Busse A.H.P., Costa R.G., Salomao T.M.F., Campos L.A.D. (2007) Genetic divergence between populations of the stingless bee uruqu amarela (Melipona rufiventris group, Hymenoptera, Meliponini): Is there a new Melipona species in the Brazilian state of Minas Gerais? Genet. Mol. Biol. 30, 667–675.CrossRefGoogle Scholar
  179. Templeton A.R., Read B. (1994) Inbreeding: one word, several meanings, much confusion, in: Loeschcke V., Tomiuk J., Jain S.K. (Eds.), Conservation Genetics, Birkhäuser-Verlag Basel, Switzerland, pp. 91–106.Google Scholar
  180. The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera, Nature 443, 931–949.CrossRefGoogle Scholar
  181. Twyman R.M. (2004) SNP discovery and typing technologies for pharmacogenomics, Curr. Top. Med. Chem. 4, 1423–1431.PubMedCrossRefGoogle Scholar
  182. Vamosi J.C., Knight T.M., Steets J.A., Mazer S.J., Burd M., Ashman T.-L. (2006) Pollination decays in biodiversity hotspots, Proc. Natl Acad. Sci. USA 103, 956–961.PubMedCrossRefGoogle Scholar
  183. van ’t Veer L.J., Bernards R. (2008) Enabling personalized cancer medicine through analysis of geneexpression patterns, Nature 452, 564–570.CrossRefGoogle Scholar
  184. van Wilgenburg E., Driessen G., Beukeboom L. (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Front. Zool. 3, 1–15.PubMedCrossRefGoogle Scholar
  185. Vilas C., San Miguel E., Amaro R., Garcia C. (2006) Relative contribution of inbreeding depression and eroded adaptive diversify to extinction risk in small populations of shore Campion, Conserv. Biol. 20, 229–238.PubMedCrossRefGoogle Scholar
  186. Wadlow R., Ramaswamy S. (2005) DNA microarrays in clinical cancer research, Curr. Mol. Med. 5, 111–120.PubMedCrossRefGoogle Scholar
  187. Wandeler P., Hoeck P.E.A., Keller L.F. (2007) Back to the future: museum specimens in population genetics, Trends Ecol. Evol. 22, 634–642.PubMedCrossRefGoogle Scholar
  188. Wang J. (2005) Estimation of effective population sizes from data on genetic markers, Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1395–1409.PubMedCrossRefGoogle Scholar
  189. Werren J.H. (1993) The evolution of inbreeding in haplodiploid organisms, in: Thornhill N.W. (Ed.), The natural history of inbreeding and outbreeding: theoretical and empirical perspectives, The University of Chicago Press Chicago, pp. 42–59.Google Scholar
  190. Westemeier R.L., Brawn J.D., Simpson S.A., Esker T.L., Jansen R.W., Walk J.W., Kershner E.L., Bouzat J.L., Paige K.N. (1998) Tracking the longterm decline and recovery of an isolated population, Science 282, 1695–1698.PubMedCrossRefGoogle Scholar
  191. Whitfield C.W., Band M.R., Bonaldo M.F., Kumar C.G., Liu L., Pardinas J.R., Robertson H.M., Soares M.B., Robinson G.E. (2002) Annotated Expressed Sequence Tags and cDNA Microarrays for Studies of Brain and Behavior in the Honey Bee, Genome Res. 12, 555–566.PubMedCrossRefGoogle Scholar
  192. Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsui N.D. (2006) Thrice Out of Africa: Ancient and Recent Expansions of the Honey Bee, Apis mellifera, Science 314, 642–645.PubMedCrossRefGoogle Scholar
  193. Whitlock M.C., Barton N.H. (1997) The effective size of a subdivided population, Genetics 146, 427–441.PubMedGoogle Scholar
  194. Widmer A., Schmid-Hempel P. (1999) The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae), Mol. Ecol. 8, 387–398.PubMedCrossRefGoogle Scholar
  195. Wilfert L., Gadau J., Baer B., Schmid-Hempel P. (2007 a) Natural variation in the genetic architecture of a host-parasite interaction in the bumblebee Bombus terrestris, Mol. Ecol. 16, 1327–1339.PubMedCrossRefGoogle Scholar
  196. Wilfert L., Gadau J., Schmid-Hempel P. (2007b) The genetic architecture of immune defense and reproduction in male Bombus terrestris bumblebees, Evolution 61, 804–815.PubMedCrossRefGoogle Scholar
  197. Williams N., Minckley R., Silviera F. (2001) Variation in native bee faunas and its implications for detecting community changes, Conserv. Ecol. 5, 7.Google Scholar
  198. Woyke J. (1979) Sex determination in Apis cerana indica, J. Apic. Res. 18, 122–127.Google Scholar
  199. Wu Z., Hopper K.R., Ode P.J., Fuester R.W., Chen J., Heimpel G.E. (2003) Complementary Sex Determination In Hymenopteran Parasitoids And Its Implications For Biological Control., Entomol. Sin. 10, 81–93.Google Scholar
  200. Yokoyama S., Nei M. (1979) Population dynamics of sex-determining alleles in honey bees and selfincompatibility alleles in plants, Genetics 91, 609–626.PubMedGoogle Scholar
  201. Zayed A. (2004) Effective population size in Hymenoptera with complementary sex determination, Heredity 93, 627–630.PubMedCrossRefGoogle Scholar
  202. Zayed A., Packer L. (2001) High levels of diploid male production in a primitively eusocial bee (Hymenoptera: Halictidae), Heredity 87, 631–636.PubMedCrossRefGoogle Scholar
  203. Zayed A., Packer L. (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations, Proc. Natl Acad. Sci. USA 102, 10742–10746.PubMedCrossRefGoogle Scholar
  204. Zayed A., Packer L. (2007) The population genetics of a solitary oligolectic sweat bee, Lasioglossum (Sphecodogastra) oenotherae (Hymenoptera: Halictidae), Heredity 99, 397–405.PubMedCrossRefGoogle Scholar
  205. Zayed A., Whitfield C.W. (2008) A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera, Proc. Natl Acad. Sci. USA 105, 3421–3426.PubMedCrossRefGoogle Scholar
  206. Zayed A., Roubik D.W., Packer L. (2004) Use of diploid male frequency data as an indicator of pollinator decline, Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, S9-S12.CrossRefGoogle Scholar
  207. Zayed A., Packer L., Grixti J.C., Ruz L., Toro H., Owen R.E. (2005) Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation, Conserv. Genet. 6, 1017–1026.CrossRefGoogle Scholar
  208. Zayed A., Constantin S.A., Packer L. (2007) Successful biological invasion despite a severe genetic load, PLoS ONE 2, e868.PubMedCrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  1. 1.Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations