Advertisement

Apidologie

, Volume 40, Issue 3, pp 388–409 | Cite as

Ecological impacts of invasive alien species on bees

  • Jane C. StoutEmail author
  • Carolina L. Morales
Review Article

Abstract

We review direct and indirect impacts of invasive alien species (focussing on plants and insects) on native bees worldwide. Although there is a rapidly growing body of research into the effects of invasive alien plants on native plant pollination via disruption of native mutualisms, there has been little research on the impacts of invasive alien plants directly on bees. Such impacts are likely to vary according to the taxon of plant, the functional specificity of the native bees, and ecosystem context. Conversely, there have been more attempts to document impacts of invasive alien social bees on native bees. Most of these studies only indirectly evaluate competition for resources, have focused on a few native species and findings are sometimes contradictory. However, some studies showed strong negative impacts, suggesting that effects might be species-specific. Additionally, pathogen spillover and reproductive disruption due to interspecific mating has been demonstrated among some closely related taxa. Where we lack unequivocal evidence for impacts however, this should not be interpreted as lack of effect. We recommend that future studies are robustly designed and consider impacts on genetic, species (particularly solitary bees) and ecosystem biodiversity.

Apis mellifera Bombus non-native species pollinator plant invasion 

Impacts écologiques d’espèces invasives étrangères sur les abeilles

Apis mellifera Bombus pollinisateur espèce non indigène espèce invasive plante parasite protection conservation 

Ökologische Folgen invasiver fremder Arten auf Bienen

Zusammenfassung

Invasive fremde Arten sind wichtige Antreiber globaler Umweltveränderungen, indem sie direkt oder indirekt auf die einheimische Biodiversität und die Ökosystemprozesse Einfluss nehmen. Die durch einheimische Bienen erbrachten Bestäubungsleistungen werden allgemein durch einen weiten Bereich menschlicher Aktivitäten als gefährdet angesehen, im Blickpunkt dieser zusammenfassenden Untersuchung stehen potentielle Gefährdungen durch invasive Arten. Ziel des Artikels ist, den möglichen Einfluss invasiver fremder Arten auf die einheimischen Bienen abzuschätzen, um Gefährdungen bestimmen und Forschungsprioritäten in diesem Gebiet festlegen zu können. Wir berücksichtigten die Auswirkungen invasiver fremder Pflanzen, Bienen und Parasiten auf das Verhalten, die Populationen und Gesellschaften einheimischer Bienen und die Leistungen, die sie für das Ökosystem erbringen.

Invasive fremde Pflanzen können direkt oder indirekt auf die einheimischen Bienen Einfluss nehmen (Abb. 1). Direkter Einfluss beinhaltet die Bereitstellung von Blütenressourcen, wobei deren Wert entsprechend ihrer morphologischen Zugänglichkeit, Nährwert und der zeitlichen und räumlichen Verfügbarkeit der Belohnungen variiert. Ein indirekter Einfluss liegt vor, wenn invasive fremde Pflanzen die einheimische Pflanzengemeinschaft beeinflussen (entweder durch Wettbewerb um abiotische Ressourcen oder um biotische Ressourcen einschließlich der Bestäubung) (Tab. I). Insgesamt können Beeinflussungen des individuellen Verhaltens und Überlebens relativ leicht bestimmt werden, während dagegen Einflüsse auf Populationen oder Gesellschaften wesentlich schwerer vorauszusehen sind und bislang nur wenig untersucht wurden.

Der überwiegende Teil der Forschungen über die Auswirkung fremder invasiver Insekten auf die einheimischen Bienen hat sich auf die Auswirkungen von eingeführten sozialen Arten von Honigbienen oder Hummeln bezogen, die um Ressourcen oder Nistplätze in Konkurrenz stehen, die Verbreitung von Pathogenen und Krankheiten verursachen oder die Populationsstruktur durch Hybridisation oder Introgression beeinflussen. Trotz erheblicher Aufmerksamkeit der Forschung gibt es wenig schlüssige Nachweise für eine Kompetition zwischen fremden und einheimischen Bienen um Futterres-sourcen, hauptsächlich weil Untersuchungen zur Kompetition schwierig durchzuführen und zu interpretieren sind. Allerdings haben einige Untersuchungen eine Verminderung der Fitness einheimischer Bienen bei Anwesenheit invasiver fremder Bienen nachgewiesen. Es gibt allerdings so gut wie keine Untersuchungen zur Kompetition um andere Ressourcen als Futterressourcen, dies schließt Nistplätze trotz ihres offensichtlichen kompetitiven Potentials ein. Kürzlich wurde offensichtlich, dass insbesondere in Nordamerika eine der größten von eingeführten Bestäubern ausgehenden Gefährdungen ist, dass sie möglicherweise neuartige Pathogene und Krankheiten auf die einheimischen Bienen übertragen (Tab. II). Die Fähigkeit eingeführter Arten mit einheimischen Arten zu hybridisieren ist gut bekannt, und mit der Entwicklung molekularere Marker zur Erkennung einer Introgression dürfte das Ausmaß des Problems klarer werden.

Wir schlagen verschiedene Forschungsschwerpunkte vor, nämlich dass (1) Untersuchungen des Ausmaßes der Auswirkungen sollten sowohl in zeitliches als auch räumlicher Hinsicht erweitert werden, in einem robusten Versuchsdesign strukturiert sein und repliziert werden, (2) besondere Aufmerksamkeit sollte den Auswirkungen auf solitäre und spezialisierte Bienenarten zukommen, (3) eine schnelle Erfassung potentieller Auswirkungen neuer Eindringlinge sollte zu einer raschen Entscheidungsfindung, Überwachung und Entschärfung des Problems führen, (4) die Pathologie, Virulenz und Kreuzinfektiösität von Pathogenen und Parasiten muss besser verstanden werden, und (5) die Auswirkungen weiterer Umweltänderungen auf Grund des Klimawandels müssen wegen der potentiellen räumlichen und zeitlichen Verlagerungen bei invasiven und einheimischen Pflanzen und Bestäubern sowie ihrer Interaktionen in Betracht gezogen werden. Wir empfehlen, dass Erhaltungsmaßnahmen einheimischer Bestäuber eine hohe Priorität zukommen sollte und dass diese Angelegenheit auf der Ebene des gesamten Ökosystems betrachtet werden sollte und nicht anhand eines nur artbasierten Ansatzes.

Apis mellifera Bombus nicht einheimische Bestäuber Pflanzeninvasion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner P.A. (2004) Ecological and genetic effects on demographic processes: pollination, clonality and seed production in Dithyrea maritima, Biol. Conserv. 116, 27–34.CrossRefGoogle Scholar
  2. Aizen M.A., Feinsinger P. (1994) Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine ‘Chaco Serrano’, Ecol. Appl. 4, 378–392.CrossRefGoogle Scholar
  3. Aizen M.A., Feinsinger P. (2003) Bees not to be? Responses of insect pollinator faunas and flower pollination to habitat fragmentation, in: Bradshaw G., Marquet P. (Eds.), How landscapes change: Human disturbance and ecosystem disruptions in the Americas, Springer-Verlag, Berlin, pp. 111–129.Google Scholar
  4. Aizen M.A., Morales C.L., Morales J.M. (2008) Invasive mutualists erode native pollination webs, PLoS Biol. 6, e31.PubMedCrossRefGoogle Scholar
  5. Akratanakul P., Burgett M. (1975) Varroa jacobsoni: a prospective pest of honeybees in many parts of the world, Bee World 56, 119–120.Google Scholar
  6. Altshuler D.L. (1999) Novel interactions of nonpollinating ants with pollinators and fruit consumers in a tropical forest, Oecologia 119, 600–606.CrossRefGoogle Scholar
  7. Arretz V., MacFarlane R. (1986) The introduction of Bombus ruderatus to Chile for red clover pollination, Bee World 67, 15–22.Google Scholar
  8. Ashworth L., Aguilar R., Galetto L., Aizen M.A. (2004) Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J. Ecol. 92, 717–719.CrossRefGoogle Scholar
  9. Barthell J.F., Frankie G.W., Thorp R.W. (1998) Invader effects in a community of cavity nesting megachilid bees (Hymenoptera: Megachilidae), Environ. Entomol. 27, 240–247.Google Scholar
  10. Barthell J.F., Randall J.M., Thorp R.W., Wenner A.M. (2001) Promotion of seed set in yellow star-thistle by honey bees: evidence of an invasive mutualism, Ecol. Appl. 11, 1870–1883.CrossRefGoogle Scholar
  11. Bartomeus I., Bosch J., Vila M. (2008a) High invasive pollen transfer, yet low deposition on native stigmas in a Carpobrotus-invaded community, Ann. Bot. 102, 417–424.PubMedCrossRefGoogle Scholar
  12. Bartomeus I., Vilà M., Santamaría L. (2008b) Contrasting effects of invasive plants in plant— pollinator networks, Oecologia 155, 761–770.PubMedCrossRefGoogle Scholar
  13. Beekman M., Ratnieks F.L.W. (2000) Long-range foraging by the honey-bee, Apis mellifera L., Funct. Ecol. 14, 490–496.CrossRefGoogle Scholar
  14. Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemüller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science 313, 351–354.PubMedCrossRefGoogle Scholar
  15. Bjerknes A.-L., Totland Ø., Hegland S.J., Nielsen A. (2007) Do alien plant invasions really affect pollination success in native plant species? Biol. Conserv. 138, 1–12.CrossRefGoogle Scholar
  16. Bronstein J.L. (1995) The plant-pollinator landscape, in: Hansson L., Fahrig L., Merriam G. (Eds.), Mosaic landscapes and ecological processes, Chapman and Hall, London, pp. 256–288.Google Scholar
  17. Brosi B.J., Daily G.C., Shih T.M., Oviedo F., Duran G. (2008) The effects of forest fragmentation on bee communities in tropical countryside, J. Appl. Ecol. 45, 773–783.CrossRefGoogle Scholar
  18. Brown B.J., Mitchell R.J., Graham S.A. (2002) Competition for pollination between an invasive species (purple loosestrife) and a native congener, Ecology 83, 2328–2336.CrossRefGoogle Scholar
  19. Brown M.J.F., Loosli R., Schmid-Hempel P. (2000) Condition-dependent expression of virulence in a trypanosome infecting bumblebees, Oikos 91, 421–427.CrossRefGoogle Scholar
  20. Brown M.J.F., Schmid-Hempel R., Schmid-Hempel P. (2003) Strong context-dependent virulence in a host-parasite system: reconciling genetic evidence with theory, J. Anim. Ecol. 72, 994–1002.CrossRefGoogle Scholar
  21. Bull J.J. (1994) Virulence, Evolution 48, 1423–1437.CrossRefGoogle Scholar
  22. Buttermore R.E., Pomeroy N., Hobson W., Semmens T., Hart R. (1998) Assessment of the genetic base of Tasmaninan bumble bees (Bombus terrestris) for development as pollination agents, J. Apic. Res. 37, 23–25.Google Scholar
  23. Butz Huryn V. (1997) Ecological impacts of introduced honey bees, Q. Rev. Biol. 72, 275–97.CrossRefGoogle Scholar
  24. Butz Huryn V.M., Moller H. (1995) An assessment of the contribution of honey bees (Apis mellifera) to weed reproduction in New Zealand protected natural areas, N. Z. J. Ecol. 19, 111–122.Google Scholar
  25. Carey F., Lewis J., MacGregor J., Martin-Smith M. (1959) Pharmacological and chemical observations on some toxic nectars, J. Pharm. Pharmacol. 11, 269T-274T.CrossRefGoogle Scholar
  26. Chapman R.E., Bourke A.F.G. (2001) The influence of sociality on the conservation biology of social insects, Ecol. Lett. 4, 650–662.CrossRefGoogle Scholar
  27. Chittka L., Schurkens S. (2001) Successful invasion of a floral market, Nature 411, 653.PubMedCrossRefGoogle Scholar
  28. Colla S.R., Otterstatter M.C., Gegear R.J., Thomson J.D. (2006) Plight of the bumble bee: Pathogen spillover from commercial to wild populations, Biol. Conserv. 129, 461–467.CrossRefGoogle Scholar
  29. Committee on the Status of Pollinators in North America, National Research Council (2007) Status of Pollinators in North America. The National Academies Press, Washington, D.C. [online] http://books.nap.edu/openbook.php?isbn=0309102898 (accessed on 03 March 2009).Google Scholar
  30. Cook S.M., Awmack C.S., Murray D.A., Williams I.H. (2003) Are honey bees’ foraging preferences affected by pollen amino acid composition? Ecol. Entomol. 28, 622–627.CrossRefGoogle Scholar
  31. Corbet S.A., Bee J., Dasmahapatra K., Gale S., Gorringe E., La Ferla B., Moorhouse T., Trevail A., Van Bergen Y., Vorontsova M. (2001) Native or exotic? Double or single? Evaluating plants for pollinator-friendly gardens, Ann. Bot. 87, 219–232.CrossRefGoogle Scholar
  32. Cresswell J.E., Osborne J.L., Goulson D. (2000) An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees, Ecol. Entomol. 25, 249–255.CrossRefGoogle Scholar
  33. Darvill B., Knight M.E., Goulson D. (2004) Use of genetic markers to quantify bumblebee foraging range and nest density, Oikos 107, 471–478.CrossRefGoogle Scholar
  34. de Jong D.D., Morse R.A., Eickwort G.C. (1982) Mite pests of honey bees, Annu. Rev. Entomol. 27, 229–252.CrossRefGoogle Scholar
  35. De La Rúa P., Serrano J., Galián J. (2002) Biodiversity of Apis mellifera populations from Tenerife (Canary Islands) and hybridisation with East European races, Biodiv. Conserv. 11, 59–67.CrossRefGoogle Scholar
  36. De La Rúa P., Jaffé R., Dall’Olio R., Muñoz I., Serrano J. (2009) Biodiversity, conservation and current threats to European honeybees, Apidologie 40, 263–284.CrossRefGoogle Scholar
  37. Dehnen-Schmutz K., Williamson M. (2006) Rhododendron ponticum in Britain and Ireland: Social, economic and ecological factors in its successful invasion, Environ. Hist. 12, 325–350.CrossRefGoogle Scholar
  38. Donovan B.J. (1980) Interactions between native and introduced bees in New Zealand. N. Z. J. Ecol. 3, 104–116.Google Scholar
  39. Dornhaus A., Chittka L. (1999) Evolutionary origins of bee dances, Nature 401, 38–38.CrossRefGoogle Scholar
  40. Dornhaus A., Chittka L. (2001) Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications, Behav. Ecol. Sociobiol. 50, 570–576.CrossRefGoogle Scholar
  41. Dupont Y.L., Hansen D.M., Valido A., Olesen J.M. (2004) Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands, Biol. Conserv. 118, 301–311.CrossRefGoogle Scholar
  42. Durrer S., Schmid-Hempel P. (1994) Shared use of flowers leads to horizontal pathogen transmission, Phil. Trans. R. Soc. Lond. 258, 299–302.Google Scholar
  43. Edwards M., Jenner M. (2005) Field guide to the bumblebees of Great Britain and Ireland, Ocelli Limited, United Kingdom.Google Scholar
  44. Estay P. (2007) Bombus en Chile: Especies, Biologia y Manejo, Colección de Libros INIA 22, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigacion La Platina, Santiago, Chile.Google Scholar
  45. Fitzpatrick U., Murray T.E., Paxton R.J., Breen J., Cotton D., Santorum V., Brown M.J.F. (2007) Rarity and decline in bumblebees — A test of causes and correlates in the Irish fauna, Biol. Conserv. 136, 185–194.CrossRefGoogle Scholar
  46. Genersch E., Yue C., Fries I., de Miranda J.R. (2006) Detection of deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities, J. Invertebr. Pathol. 91, 61–63.PubMedCrossRefGoogle Scholar
  47. Ghazoul J. (2002) Flowers at the front line of invasion? Ecol. Entomol. 27, 639–640.CrossRefGoogle Scholar
  48. Ghazoul J. (2004) Alien abduction: disruption of native plant-pollinator interactions by invasive species, Biotropica 36, 156–164.Google Scholar
  49. Ghazoul J. (2005) Buzziness as usual? Questioning the global pollination crisis, Trends Ecol. Evol. 20, 367–373.PubMedCrossRefGoogle Scholar
  50. Goka K. (2006) Worldwide migration of parasitic mites as a result of bumblebee commercialization, Popul. Ecol. 48, 285–291.CrossRefGoogle Scholar
  51. Goka K., Okabe K., Yoneda M., Niwa S. (2001) Bumblebee commercialization will cause worldwide migration of parasitic mites, Mol. Ecol. 10, 2095–2099.PubMedCrossRefGoogle Scholar
  52. Goodell K. (2000) The impact of honey bees on native solitary bees: competition and indirect effects, PhD Dissertation, State University of New York, New York.Google Scholar
  53. Goulson D. (2003) Effects of introduced bees on native ecosystems, Annu. Rev. Ecol. Evol. System. 34, 1–26.CrossRefGoogle Scholar
  54. Goulson D., Stout J.C. (2001) Homing ability of the bumblebee, Bombus terrestris, Apidologie 32, 105–112.CrossRefGoogle Scholar
  55. Goulson D., Stout J., Kells A. (2002) Do alien bumblebees compete with native flower-visiting insects in Tasmania? J. Insect Conserv. 6, 179–189.CrossRefGoogle Scholar
  56. Goulson D., Lye G.C., Darvill B. (2008) Decline and conservation of bumble bees, Annu. Rev. Entomol. 53, 191–208.PubMedCrossRefGoogle Scholar
  57. Grabas G.P., Laverty T.M. (1999) The effect of purple loosestrife (Lythrum salicaria L.; Lythraceae) on the pollination and reproductive success of sympatric co-flowering wetland plants, Ecoscience 6, 230–242.Google Scholar
  58. Gross C.L. (2001) The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem, Biol. Conserv. 102, 89–95.CrossRefGoogle Scholar
  59. Gross C.L., Mackay D. (1998) Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae), Biol. Conserv. 86, 169–178.CrossRefGoogle Scholar
  60. Groves R.H. (1998) Recent incursions of weeds to Australia 1971–1995, CRC for Weed Management Systems Technical Series 3, 1–74.Google Scholar
  61. Herrmann F., Westphal C., Moritz R.F.A., Steffan-Dewenter I. (2007) Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes, Mol. Ecol. 16, 1167–1178.PubMedCrossRefGoogle Scholar
  62. Higes M., Martín R., Meana A. (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93–95.PubMedCrossRefGoogle Scholar
  63. Hoehn P., Tscharntke T., Tylianakis J.M., Steffan-Dewenter I. (2008) Functional group diversity of bee pollinators increases crop yield, Proc. R. Soc. B: Biol. Sci. 275, 2283–2291.CrossRefGoogle Scholar
  64. Hoffmann D., Pettis J., Neumann P. (2008) Potential host shift of the small hive beetle (Aethina tumida) to bumblebee colonies (Bombus impatiens), Insectes Soc. 55, 153–162.CrossRefGoogle Scholar
  65. Holzschuh A., Steffan-Dewenter I., Kleijn D., Tscharntke T. (2007) Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context, J. Appl. Ecol. 44, 41–49.CrossRefGoogle Scholar
  66. Horskins K., Turner V. (1999) Resource use and foraging patterns of honeybees, Apis mellifera, and native insects on flowers of Eucalyptus costata, Aust. J. Ecol. 24, 221–227.CrossRefGoogle Scholar
  67. Huang W.-F., Jiang J.-H., Chen Y.-W., Wang C.-H. (2007) A Nosema ceranae isolate from the honeybee Apis mellifera, Apidologie 38, 30–37.CrossRefGoogle Scholar
  68. Inari N., Nagamitsu T., Kenta T., Goka K., Hiura T. (2005) Spatial and temporal pattern of introduced Bombus terrestris abundance in Hokkaido, Japan, and its potential impact on native bumblebees, Popul. Ecol. 47, 77–82.CrossRefGoogle Scholar
  69. Ings T.C., Raine N.E., Chittka L. (2005a) Mating preference of commercially imported bumblebees (Bombus terrestris) in Britain (Hymenoptera: Apidae), Entomol. Gen. 28, 233–238.Google Scholar
  70. Ings T.C., Schikora J., Chittka L. (2005b) Bumblebees, humble pollinators or assiduous invaders? A population comparison of foraging performance in Bombus terrestris, Oecologia 144, 508–516.PubMedCrossRefGoogle Scholar
  71. Ings T.C., Ward N.L., Chittka L. (2006) Can commercially imported bumble bees out-compete their native conspecifics? J. Appl. Ecol. 43, 940–948.CrossRefGoogle Scholar
  72. Inouye D. (1977) Species structure of bumblebee communities in North America and Europe, in: Mattson W.J. (Ed.), The role of arthropods in forest ecosystems, Springer-Verlag, New York, pp. 35–40.Google Scholar
  73. Inouye D.W. (1980) The terminology of floral larceny, Ecology 61, 1251–1253.CrossRefGoogle Scholar
  74. Jakobsson A., Padrón B., Traveset A. (2007) Pollen transfer from invasive Carpobrotus spp. to natives — A study of pollinator behaviour and reproduction success, Biol. Conserv. 141, 136–145.CrossRefGoogle Scholar
  75. Jensen A.B., Palmer K.A., Boomsma J.J., Pedersen (2005) Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe, Molec. Ecol. 14, 93–106.CrossRefGoogle Scholar
  76. Jesse L.C., Moloney K.A., Obrycki J.J. (2006) Insect pollinators of the invasive plant, Rosa multiflora (Rosaceae), in Iowa, USA, Weed Biol. Manage. 6, 235–240.CrossRefGoogle Scholar
  77. Kanbe Y., Okada I., Yoneda M., Goka K., Tsuchida K. (2008) Interspecific mating of the introduced bumblebee Bombus terrestris and the native Japanese bumblebee Bombus hypocrita sapporoensis results in inviable hybrids, Naturwissenschaften, 95, 1003–1008.PubMedCrossRefGoogle Scholar
  78. Kato M., Shibata A., Yasui T., Nagamasu H. (1999) Impact of introduced honeybee, Apis mellifera, upon native bee communities in the Bonin (Ogasawara) Islands, Res. Popul. Ecol. 41, 217–228.CrossRefGoogle Scholar
  79. Kearns C.A., Inouye D.W., Waser N.M. (1998) Endangered mutualisms: the conservation of plant-pollinator interactions, Annu. Rev. Ecol. System. 29, 83–112.CrossRefGoogle Scholar
  80. Keller I., Fluri P., Imdorf A. (2005) Pollen nutrition and colony development in honey bees: part I, Bee World 86, 3–10.Google Scholar
  81. Kenis M., Auger-Rozenberg M., Roques A., Timms L., Péré C., Cock M., Settele J., Augustin S., Lopez-Vaamonde C. (2009) Ecological effects of invasive alien insects, Biol. Invasions 11, 21–45.CrossRefGoogle Scholar
  82. Kenta T., Inari N., Nagamitsu T., Goka K., Hiura T. (2007) Commercialized European bumblebee can cause pollination disturbance: An experiment on seven native plant species in Japan, Biol. Conserv. 134, 298–309.CrossRefGoogle Scholar
  83. Klein A.M., Vaissière B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. (2007) Importance of pollinators in changing landscapes for world crops, Proc. R. Soc. B Biol. Sci. 274, 303–313.CrossRefGoogle Scholar
  84. Knight M.E., Martin A.P., Bishop S., Osborne J.L., Hale R.J., Sanderson R.A., Goulson D. (2005) An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species, Mol. Ecol. 14, 1811–1820.PubMedCrossRefGoogle Scholar
  85. Koca I., Koca A.F. (2007) Poisoning by mad honey: A brief review, Food Chem. Toxicol. 45, 1315–1318.PubMedCrossRefGoogle Scholar
  86. Kremen C., Williams N.M., Thorp R.W. (2002) Crop pollination from native bees at risk from agricultural intensification, Proc. Natl. Acad. Sci. USA 99, 16812–16816.PubMedCrossRefGoogle Scholar
  87. Lach L. (2008) Argentine ants displace floral arthropods in a biodiversity hotspot, Diver. Distrib. 14, 281–290.CrossRefGoogle Scholar
  88. Lambdon P.W., Pyšek P., Basnou C., Hejda M., Arianoutsou M., Essl F., Jarošík V., Pergl J., Winter M., Anastasiu P., Andriopoulos P., Bazos I., Brundu G., Celesti-Grapow L., Chassot P., Delipetrou P., Josefsson M., Kark S., Klotz S., Kokkoris Y., Kühn I., Marchante H., Perglová I., Pino J., Vilà M., Zikos A., Roy D., Hulme P.E. (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs, Preslia 80, 101–149.Google Scholar
  89. Larson D.L., Royer R.A., Royer M.R. (2006) Insect visitation and pollen deposition in an invaded prairie plant community, Biol. Conserv. 130, 148–159.CrossRefGoogle Scholar
  90. Levine J.M., D’Antonio C.M. (2003) Forecasting biological invasions with increasing international trade, Conserv. Biol. 17, 322–326.CrossRefGoogle Scholar
  91. Levine J.M., Vila M., D’Antonio C.M., Dukes J.S., Grigulis K., Lavorel S. (2003) Mechanisms underlying the impacts of exotic plant invasions, Proc. R. Soc. Lond. B Biol. Sci. 270, 775–781.CrossRefGoogle Scholar
  92. Liu H., Pemberton R.W. (2008) Solitary invasive orchid bee outperforms co-occurring native bees to promote fruit set of an invasive Solanum, Oecologia DOI 10.1007/s00442-008-1232-6.Google Scholar
  93. Lockwood J., Hoopes M., Marchetti M. (2007) Invasion Ecology, Wiley-Blackwell.Google Scholar
  94. Lodge D. (1993) Biological invasions: lessons for ecology, Trends Ecol. Evol. 8, 133–137.PubMedCrossRefGoogle Scholar
  95. Lopezaraiza Mikel M. (2006) The impact of alien species on native pollination systems, PhD Thesis, University of Bristol, Bristol.Google Scholar
  96. Lopezaraiza-Mikel M.E., Hayes R.B., Whalley M.R., Memmott J. (2007) The impact of an alien plant on a native plant-pollinator network: an experimental approach, Ecol. Lett. 10, 539–550.PubMedCrossRefGoogle Scholar
  97. Losey J.E., Vaughan M. (2006) The economic value of ecological services provided by insects, Bioscience 56, 311–323.CrossRefGoogle Scholar
  98. MacFarlane R.P., Gurr B.L. (1995) Distribution of bumble bees in New Zealand, N. Z. Entomol. 18, 29–36.Google Scholar
  99. Macfarlane R.P., Lipa J.J., Liu H.J. (1995) Bumble bee pathogens and internal enemies, Bee World 76, 130–148.Google Scholar
  100. Martin P.H. (1999) Norway maple (Acer platanoides) invasion of a natural forest stand: understory consequence and regeneration pattern, Biol. Invasions 1, 215–222.CrossRefGoogle Scholar
  101. Memmott J., Waser N.M. (2002) Integration of alien plants into a native flower pollinator visitation web, Proc. R. Soc. B Biol. Sci. 269, 2395–2399.CrossRefGoogle Scholar
  102. Memmott J., Waser N.M., Price M.V. (2004) Tolerance of pollination networks to species extinctions, Proc. R. Soc. B Biol. Sci. 271, 2605–2611.CrossRefGoogle Scholar
  103. Mendes do Carmo R., Franceschinelli E.V., Silveira F.A. (2004) Introduced honeybees (Apis mellifera) reduce pollination success without affecting the floral resource taken by native pollinators, Biotropica 36, 371–376.Google Scholar
  104. Milbau A., Stout J.C. (2008) Factors associated with alien plants transitioning from casual, to naturalized, to invasive, Conserv. Biol. 22, 308–317.PubMedCrossRefGoogle Scholar
  105. Moller H. (1996) Lessons for invasion theory from social insects, Biol. Conserv. 78, 125–142.CrossRefGoogle Scholar
  106. Mooney H.A., Cleland E.E. (2001) The evolutionary impact of invasive species, Proc. Natl. Acad. Sci. USA 98, 5446–5451.PubMedCrossRefGoogle Scholar
  107. Moragues E., Traveset A. (2005) Effects of Carpobrotus spp. on the pollination success of native plant species of the Balearic Islands, Biol. Conserv. 122, 611–619.CrossRefGoogle Scholar
  108. Morales C.L. (2007) Introducción de abejorros (Bombus) no nativos: causas, consecuencias ecológicas y perspectivas, Ecol. Austral 17, 51–65.Google Scholar
  109. Morales C.L., Aizen M.A. (2002) Does invasion of exotic plants promote invasion of exotic flower visitors? A case study from the temperate forests of the southern Andes, Biol. Invasions 4, 87–100.CrossRefGoogle Scholar
  110. Morales C.L., Aizen M.A. (2006) Invasive mutualisms and the structure of plant—pollinator interactions in the temperate forests of north-west Patagonia, Argentina, J. Ecol. 94, 171–180.CrossRefGoogle Scholar
  111. Moritz R.F.A., Härtel S., Neumann P. (2005) Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity, Ecoscience 12, 289–301.CrossRefGoogle Scholar
  112. Muñoz A.A., Cavieres L.A. (2008) The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities, J. Ecol. 96, 459–467.CrossRefGoogle Scholar
  113. Murray T.E., Kuhlmann M., Potts S.G. (2009) Conservation ecology of bees: populations species and communities, Apidologie 40, 211–236.CrossRefGoogle Scholar
  114. Nagamitsu T., Kenta T., Inari N., Kato E., Hiura T. (2007) Abundance, body size, and morphology of bumblebees in an area where an exotic species, Bombus terrestris, has colonized in Japan, Ecol. Res. 22, 331–341.CrossRefGoogle Scholar
  115. Nielsen C., Heimes C., Kollmann J. (2008) Little evidence for negative effects of an invasive alien plant on pollinator services, Biol. Invasions 10, 1353–1363.CrossRefGoogle Scholar
  116. Ono M. (1997) Ecological implications of introducing Bombus terrestris and significance of domestication of Japanese native bumblebee (Bombus spp.), in: Proc. Int. Workshop on Biological Invasions of Ecosystem by Pests and Beneficial Organisms, NIAES, Ministry of Agriculture, Forestry and Fisheries, Japan, Tsukuba, pp. 244–252.Google Scholar
  117. Osborne J.L., Martin A.P., Carreck N.L., Swain J.L., Knight M.E., Goulson D., Hale R.J., Sanderson R.A. (2008) Bumblebee flight distances in relation to the forage landscape, J. Anim. Ecol. 77, 406–415.PubMedCrossRefGoogle Scholar
  118. Otterstatter M.C., Thomson J.D. (2008) Does pathogen spillover from commercially reared bumble bees threaten wild pollinators? PLoS Biol. 3, 1–9.Google Scholar
  119. Otti O., Schmid-Hempel P. (2007) Nosema bombi: A pollinator parasite with detrimental fitness effects, J. Invertebr. Pathol. 96, 118–124.PubMedCrossRefGoogle Scholar
  120. Paini D.R. (2004) Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review, Aust. Ecol. 29, 399–407.CrossRefGoogle Scholar
  121. Paini D.R., Roberts J.D. (2005) Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus), Biol. Conserv. 123, 103–112.CrossRefGoogle Scholar
  122. Paini D.R., Williams M.R., Roberts J.D. (2005) No short-term impact of honey bees on the reproductive success of an Australian native bee, Apidologie 36, 613–621.CrossRefGoogle Scholar
  123. Parker I.M. (1997) Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub, Ecology 78, 1457–1470.Google Scholar
  124. Parker I.M., Simberloff D., Lonsdale W.M., Goodell K., Wonham M., Kareiva P.M., Williamson M.H., Von Holle B., Moyle P.B., Byers J.E., Goldwasser L. (1999) Impact: Toward a framework for understanding the ecological effects of invaders, Biol. Invasions 1, 3–19.CrossRefGoogle Scholar
  125. Pimentel D., Zuniga R., Morrison D. (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States, Ecol. Econ. 52, 273–288.CrossRefGoogle Scholar
  126. Pleasants J. (1981) Bumblebee response to variation in nectar availability, Ecology 62, 1648–1661.CrossRefGoogle Scholar
  127. Ponchau O., Iserbyt S., Verhaeghe J.C., Rasmont P. (2006) Is the caste-ratio of the oligolectic bumblebee Bombus gerstaeckeri Morawitz (Hymenoptera: Apidae) biased to queens? Ann. Soc. Entomol. Fr. 42, 207–214.Google Scholar
  128. Pyšek P., Pyšek A. (1995) Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic, J. Veg. Sci. 6, 711–718.CrossRefGoogle Scholar
  129. Pyšek P., Jarošík V., Kučera T. (2003) Inclusion of native and alien species in temperate nature reserves: an historical study from Central Europe, Conserv. Biol. 17, 1414–1424.CrossRefGoogle Scholar
  130. Reichard S.H., White P. (2001) Horticulture as a pathway of invasive plant introductions in the United States, BioScience 51, 103–113.CrossRefGoogle Scholar
  131. Richardson D.M., Allsopp N., D’Antonio C.M., Milton S.J., Rejmánek M. (2000) Plant invasions — the role of mutualisms, Biol. Rev. 75, 65–93.PubMedCrossRefGoogle Scholar
  132. Roig Alsina A., Aizen M. (1996) Bombus ruderatus Fabricius, un nuevo Bombus para la Argentina (Hymenoptera: Apidea), Physis 5, 49–50.Google Scholar
  133. Roubik D. (1978) Competitive interactions between neotropical pollinators and Africanized honey bees, Science 201, 2030–1032.CrossRefGoogle Scholar
  134. Roubik D. (1982) Ecological impact of Africanized honeybees on native neotropical pollinators, in: Jaisson P. (Ed.), Social Insects in the Tropics 1, Univ. Paris-Nord, pp. 233–247.Google Scholar
  135. Roubik D. (1983) Experimental community studies: time-series tests of competition between African and Neotropical bees, Ecology 64, 971–978.CrossRefGoogle Scholar
  136. Roubik D. (1991) Aspects of Africanized honey bee ecology in tropical America, in: Spirak M., Fletcher D.J.C., Breed M.D. (Eds.), The “African” honeybee, Westview Press, Boulder, Colorado, pp. 259–281.Google Scholar
  137. Roubik D. (1996) African honey bees as exotic pollinators in French Guiana, in: Matheson A., Buchmann S.L., O’Toole C., Westrich P., Williams I.D. (Eds.), The Conservation of Bees, Lin Soc Symp Series 18, Academic Press, London, pp. 73–182.Google Scholar
  138. Roubik D. (2001) Ups and downs in pollinator populations: when is there a decline? Conserv. Ecol. 5, 2.Google Scholar
  139. Roubik D.W., Wolda H. (2001) Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion, Popul. Ecol. 43, 53–62.CrossRefGoogle Scholar
  140. Roulston T.H., Cane J.H., Buchmann S.L. (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol. Monogr. 70, 617–643.Google Scholar
  141. Ruz L. (2002) Bee pollinators introduced to Chile: a review, in: Kevan P., Imperatriz Fonseca V. (Eds.), Pollinating bees — the conservation link between agriculture and nature, Ministry of Environment Brasília, pp. 155–167.Google Scholar
  142. Ruz L., Herrera R. (2001) Preliminary observations on foraging activities if Bombus dahlbomii and Bombus terrestris (Hym: Apidae) on native and non-native vegetation in Chile, Acta Hortic. 561, 165–169.Google Scholar
  143. Sakagami S. (1976) Specific differences in the bionomic characters of bumblebees: a comparative review, J. Fac. Sci., Hokkaido University Series VI, Zoology 20, 390–447.Google Scholar
  144. Sala O.E., Chapin III F.S., Armesto J.J., Berlow E., Bloomfield J., Dirzo R., Huber-Sanwald E., Huenneke L.F., Jackson R.B., Kinzig A., Leemans R., Lodge D.M., Mooney H.A., Oesterheld M., Poff N.L., Sykes M., Walker B.H., Walker M., Wall D.H. (2000) Global biodiversity scenarios for the year 2100, Science 287, 1770–1774.PubMedCrossRefGoogle Scholar
  145. Schaffer W.M., Zeh D.W., Buchmann S.L., Kleinhans S., Schaffer M.V., Antrim J. (1983) Competition for nectar between introduced honey bees and native North American bees and ants, Ecology 64, 564–577.CrossRefGoogle Scholar
  146. Schmid-Hempel P. (1998) Parasites in social insects, Princeton University Press.Google Scholar
  147. Schmid Hempel P., Loosli R. (1998) A contribution to the knowledge of Nosema infections in bumble bees, Bombus spp., Apidologie 29, 525–535.CrossRefGoogle Scholar
  148. Schneider S.S., Hoffman G.D., Smith D.R. (2004) The African honey bee: Factors contributing to a successful biological invasion, Annu. Rev. Entomol. 49, 351–376.CrossRefGoogle Scholar
  149. Semmens T., Turner E., Buttermore R. (1993) Bombus terrestris (L.) (Hymenoptera, Apidae) now established in Tasmania, J. Aust. Entomol. Soc. 32.Google Scholar
  150. Simberloff D. (1991) Keystone species and community effects of biological introductions, in: Ginzburg L. (Ed.), Assessing Ecological Risks of Biotechnology, Butterworth-Heinemann, Boston, MA, pp. 1–19.Google Scholar
  151. Spiewok S., Neumann P. (2006) Infestation of commercial bumblebee (Bombus impatiens) field colonies by small hive beetles (Aethina tumida), Ecol. Entomol. 31, 623–628.CrossRefGoogle Scholar
  152. Steffan-Dewenter I., Kuhn A. (2003) Honeybee foraging in differentially structured landscapes, Proc. R. Soc. B Biol. Sci. 270, 569–575.CrossRefGoogle Scholar
  153. Steffan-Dewenter I., Westphal C. (2008) The interplay of pollinator diversity, pollination services and landscape change, J. Appl. Ecol. 45, 737–741.CrossRefGoogle Scholar
  154. Stokes K.E., Buckley Y.M., Sheppard A.W. (2006) A modelling approach to estimate the effect of exotic pollinators on exotic weed population dynamics: bumblebees and broom in Australia, Div. Distrib. 12, 593–600.CrossRefGoogle Scholar
  155. Stout J.C. (2007) Pollination of invasive Rhododendron ponticum (Ericaceae) in Ireland, Apidologie 38, 198–206.CrossRefGoogle Scholar
  156. Stout J., Goulson D. (2000) Bumblebees in Tasmania: their distribution and potential impact on Australian flora and fauna, Bee World 81, 80–86.Google Scholar
  157. Stout J., Kells A., Goulson D. (2002) Pollination of the invasive exotic shrub Lupinus arboreus (Fabaceae) by introduced bees in Tasmania, Biol. Conserv. 106, 425–434.CrossRefGoogle Scholar
  158. Stout J.C., Parnell J.A.N., Arroyo J., Crowe T.P. (2006) Pollination ecology and seed production of Rhododendron ponticum in native and exotic habitats, Biodiv. Conserv. 15, 755–777.CrossRefGoogle Scholar
  159. Sugden E.A., Pyke G.H. (1991) Effects of honey bees on colonies of Exoneura asimillima, an Australian native bee, Aust. Ecol. 16, 171–181.CrossRefGoogle Scholar
  160. Sudgen E.A., Thorp R.W., Buchmann S.L. (1996) Honey bee, native bee competition: focal point for environmental change and apicultural response in Australia, Bee World 77, 26–44.Google Scholar
  161. Tepedino V., Alston D., Bradley B., Toler T., Griswold T. (2007) Orchard pollination in Capitol Reef National Park, Utah, USA. Honey bees or native bees? Biodiv. Conserv. 16, 3083–3094.CrossRefGoogle Scholar
  162. Tepedino V.J., Bradley B.A., Griswold T.L. (2008) Might flowers of invasive plants increase native bee carrying capacity? Intimations from Capitol Reef National Park, Utah, Nat. Areas J. 28, 44–50.CrossRefGoogle Scholar
  163. Thomson D.M. (2004) Detecting the effects of introduced species: a case study of competition between Apis and Bombus, Oikos 114, 407–418.CrossRefGoogle Scholar
  164. Thomson D.M. (2006) Competitive interactions between the invasive European honey bee and native bumble bees, Ecology 85, 458–470.CrossRefGoogle Scholar
  165. Thorp R.W. (2003) Bumble bees (Hymenoptea: Apidae): commercial use and environmental concerns, in: Strickler K., Cane J.H. (Eds.), For non native crops, whence pollinators of the future? Thomas Say Publications in Entomology: Proceedings, Entomological Society of America, Lanham, MD, pp. 21–40.Google Scholar
  166. Thorp R., Shepherd M. (2005) Species profile: Subgenus Bombus, in: Shepherd M., Vaughan M., Black S. (Eds.), Red List of Pollinator Insects of North America, Xerces Society for Invertebrate Conservation, CD-ROM Version 1, Portland, OR.Google Scholar
  167. Totland O., Nielsen A., Bjerknes A.-L., Ohlson M. (2006) Effects of an exotic plant and habitat disturbance on pollinator visitation and reproduction in a boreal forest herb, Am. J. Bot. 93, 868–873.PubMedCrossRefGoogle Scholar
  168. Traveset A., Richardson D.M. (2006) Biological invasions as disruptors of plant reproductive mutualisms, Trends Ecol. Evol. 21, 208–216.PubMedCrossRefGoogle Scholar
  169. Tscharntke T., Klein A.M., Kruess A., Steffan-Dewenter I., Thies C. (2005) Landscape perspectives on agricultural intensification and biodiversity — ecosystem service management, Ecol. Lett. 8, 857–874.CrossRefGoogle Scholar
  170. Valentine D.H. (1978) The pollination of introduced species, with special reference to the British Isles and the genus Impatiens, in: Richards A.J. (Ed.), The pollination of flowers by insects, Academic Press, London, pp. 117–123.Google Scholar
  171. Vázquez D.P., Aizen M.A. (2004) Asymmetric specialization: a pervasive feature of plant-pollinator interactions, Ecology 85, 1251–1257.CrossRefGoogle Scholar
  172. Velthuis H.H., van Doorn A. (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination, Apidologie 37, 421–451.CrossRefGoogle Scholar
  173. Vergara C. (2008) Environmental impact of exotic bees introduced for crop pollination, in: James R., Pitts-Singer T.L. (Eds.), Bee pollination in agricultural ecosystems, Oxford University Press, pp. 145–166.Google Scholar
  174. Vilà M., Weiner J. (2004) Are invasive plant species better competitors than native plant species? — evidence from pair-wise experiments, Oikos 105, 229–238.CrossRefGoogle Scholar
  175. Walther-Hellwig K., Fokul G., Frankl R., Büchler R., Ekschmitt K., Wolters V. (2006) Increased density of honeybee colonies affects foraging bumblebees, Apidologie 37, 517–532CrossRefGoogle Scholar
  176. Waser N.M., Chittka L., Price M.V., Williams N.M., Ollerton J. (1996) Generalization in pollination systems, and why it matters, Ecology 77, 1043–1060.CrossRefGoogle Scholar
  177. Westphal C., Steffan-Dewenter I., Tscharntke T. (2003) Mass flowering crops enhance pollinator densities at a landscape scale, Ecol. Lett. 6, 961–965.CrossRefGoogle Scholar
  178. Westphal C., Steffan-Dewenter I., Tscharntke T. (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence, Oecologia 149, 289–300.PubMedCrossRefGoogle Scholar
  179. White E.M., Wilson J.C., Clarke A.R. (2006) Biotic indirect effects: a neglected concept in invasion biology, Diver. Distrib. 12, 443–455.CrossRefGoogle Scholar
  180. Williams P.H., Osborne J. (2009) Bumblebee conservation and vulnerability world-wide, Apidologie 40, 367–387.CrossRefGoogle Scholar
  181. Williamson M. (1996) Biological Invasions. Chapman & Hall, London.Google Scholar
  182. Windle P.N., Chavarría G. (2005) The tragedy of the commons revisited: invasive species (Forum), Front. Ecol. Environ. 3, 109–115.CrossRefGoogle Scholar
  183. Winfree R., Williams N.M., Dushoff J., Kremen C. (2007) Native bees provide insurance against ongoing honey bee losses, Ecol. Lett. 10.Google Scholar
  184. Winter K., Adams L., Thorp R.W., Inouye D.S., Day L., Ascher J., Buchmann S.L. (2006) Importation of non-native Bumble bees into North America: Potential consequences of using Bombus terrestris and other non-native bumblebees for Greenhouse Crop Pollination in Canada, Mexico, and the United States, White Paper of the North American Pollinator Protection Campaign.Google Scholar
  185. Wolda H., Roubik D. (1986) Nocturnal bee abundance and seasonal bee activity in a Panamanian forest, Ecology 76, 426–433.CrossRefGoogle Scholar
  186. Yang G. (2005) Harm of introducing the western honeybee Apis mellifera L. to the Chinese honeybee Apis cerana F. and its ecological impact, Acta Entomol. Sin. 48, 401–406.Google Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  1. 1.School of Natural SciencesTrinity College DublinDublin 2Republic of Ireland
  2. 2.Laboratorio EcotonoINIBIOMA (CONICET-Universidad Nacional del Comahue)BarilocheArgentina

Personalised recommendations