Apidologie

, Volume 40, Issue 3, pp 211–236 | Cite as

Conservation ecology of bees: populations, species and communities

  • Tomás E. Murray
  • Michael Kuhlmann
  • Simon G. Potts
Review Article

Abstract

Recent concerns regarding the decline of plant and pollinator species, and the impact on ecosystem functioning, has focused attention on the local and global threats to bee diversity. As evidence for bee declines is now accumulating from over broad taxonomic and geographic scales, we review the role of ecology in bee conservation at the levels of species, populations and communities. Bee populations and communities are typified by considerable spatiotemporal variation; whereby autecological traits, population size and growth rate, and plant-pollinator network architecture all play a role in their vulnerability to extinction. As contemporary insect conservation management is broadly based on species- and habitattargeted approaches, ecological data will be central to integrating management strategies into a broader, landscape scale of dynamic, interconnected habitats capable of delivering bee conservation in the context of global environmental change.

conservation biodiversity population community plant-pollinator 

Écologie de la conservation des abeilles: populations, espèces et communautés

Apoidea biodiversité protection relation plante insecte pollinisateur 

Ökologische Aspekte des Schutzes von Bienen: Populationen, Arten, Artgemeinschaften

Zusammenfassung

Die meisten der bereits ausgestorbenen oder vom Aussterben bedrohten Arten sind Insekten. Nichtsdestotrotz ist der Schutz von Insekten bisher weitgehend vernachlässigt worden. Die Befürchtungen jedoch, dass Pflanzen und ihre Bestäuber Rückgänge verzeichnen und dementsprechend Ökosystemfunktionen negativ beeinflussen können, hat letztendlich die lokalen und globalen Bedrohungen der Bienendiversität ins Schlaglicht gerückt. Anzeichen für den Rückgang von Bienen häufen sich sowohl in taxonomischer als auch in geographischer Hinsicht. Wir geben hier eine Übersicht über die Rolle ökologischer Faktoren im Bienenschutz, wobei wir besonders die Frage der Arten, Populationen und Artgemeinschaften beleuchten.

Erfolreicher Artenschutz erfordert zunächst ein grundlegendes Verständnis von zwischenartlichen Wechselwirkungen und von autökologischen Merkmalen (Abb. 1 und Tab. I). Das Aussterben von Bienenarten ist in vielen Fällen nicht dokumentiert und demzufolge sind vergleichende Analysen wichtig, um autökologische Faktoren erkennen zu können, die mit der Anfälligkeit zum Artenrückgang verknüpft sein können. Bienenpopulationen und Bienengemeinschaften zeichnen sich durch erhebliche raumzeitliche Schwankungen hinsichtlich ihrer Häufigkeit und Zusammensetzung aus, so dass die Variabilität dieser ökologischen Daten dazu führen kann, dass lange Beobachtungszeiträme notwendig sind, um faktische Rückgange sichtbar machen zu können. Im Idealfall würde die Bestimmung kritischer Werte der Populationsgrössen und des Populationswachstums experimentelle Ansätze erfordern. In der Praxis werden aufgrund der logistischen Anforderungen, dem Problem fehlender Wiederholungen und den räumlichen Grössenordnungen jedoch meist Modellansätze bevorzugt, um Populationsrückgänge und Antworten auf regelnde Massnahmen sichtbar zu machen. Wir diskutieren hier die Erfassung von drei Schlüsselparametern für die Abschätzung von Populationsgrössen und Wachstumsraten: Ausbreitungsrate, Paarungssystem, sowie Prädatoren, Parasiten und Pathogene. Die Antwort von Einzeltieren, Populationen und Artgemeinschaften von Bienen auf anthropogen bedingte Umweltveränderungen ist primär bedingt durch die räumliche und zeitliche Verteilung von floralen sowie Nist- und Überwinterungsresourcen, die jeweils in Beziehung stehen zum Sammelverhalten und der Ausbreitungsfähigkeit der Bienen. Obwohl die primären Faktoren, die die Verteilung dieser Resourcen bestimmen, bekannt sind, nämlich Habitatverlust, bzw. Fragmentierung, ergeben empirische Daten bezüglich der Antwort der Bienengemeinschaften auf diese Faktoren kein einheitliches Bild (Tab. II). Netzwerktheoretische Ansätzen in Untersuchungen zur Architektur von Pflanzen/Bestäuber Netzwerken lassen jetzt Fortschritte erkennen und haben unsere Fähigkeit verbessert, Interaktionen zwischen Arten auf der Ebene von Gemeinschaften definieren und vorhersehen zu können. Mit Blick auf die globalen Umweltveränderungen wird die akkurate Abschätzung der Zahl, Stärke, Symmetrie und Variabilität dieser Interaktionen und ihr Einfluss auf die Toleranz von Bienengemeinschaften gegen das Aussterben zunehmend an Bedeutung gewinnen. Da gegenwärtige Artenschutzmassnahmen im wesentlichen den Schutz von einzelnen Arten oder von Habitaten im Blick haben, werden ökologische Daten entscheidend sein für die Integration dieser beiden Managementstrategien auf einer breiteren, landschaftsorientierten Ebene von dynamischen und untereinander verbundenden Habitaten, die dann dazu beitragen können, dass Bienenschutz im Kontext globaler Umweltveränderungen möglich wird.

Artenschutz Biodiversität Population Artengemeinschaft Pflanzen-Bestäuber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizen M.A., Feinsinger P. (1994) Habitat Fragmentation, Native Insect Pollinators, and Feral Honey-Bees in Argentine Chaco Serrano, Ecol. Appl. 4, 378–392.Google Scholar
  2. Alcock J. (1997) Competition from large males and the alternative mating tactics of small males of Dawson’s burrowing bee (Amegilla dawsoni) (Apidae, Apinae, Anthophorini), J. Insect Behav. 10, 99–113.Google Scholar
  3. Ashworth L., Aguilar R., Galetto L., Aizen M.A. (2004) Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J. Ecol. 92, 717–719.Google Scholar
  4. Askew R.R. (1971) Parasitic Insects, Heinemann Educational Books, London, UK.Google Scholar
  5. Banaszak J. (1995) Changes in Fauna of Wild Bees in Europe, Pedagogical University, Bydgoszcz, Poland.Google Scholar
  6. Bascompte J., Jordano P. (2007) Plant-animal mutualistic networks: The architecture of biodiversity, Annu. Rev. Ecol. Evol. Syst. 38, 567–593.Google Scholar
  7. Becker P., Moure J.S., Peralta F.J.A. (1991) More about euglossine bees in Amazonian forest fragments, Biotropica 23, 586–591.Google Scholar
  8. Biesmeijer J.C., Roberts S.P., Reemer M., Ohlemueller R., Edwards M., Peeters T., Schaffers A., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science 313, 351–354.PubMedGoogle Scholar
  9. Blanchetot A. (1992) DNA fingerprinting analysis in the solitary bee Megachile rotundata — variability and nest mate genetic-relationships, Genome 35, 681–688.PubMedGoogle Scholar
  10. Bogusch P., Kratochvil L., Straka J. (2006) Generalist cuckoo bees (Hymenoptera: Apoidea: Sphecodes) are species-specialist at the individual level, Behav. Ecol. Sociobiol. 60, 422–429.Google Scholar
  11. Boomsma J.J., Schmid-Hempel P., Hughes W.O.H. (2005) Life histories and parasite pressure across the major groups of social insects, in: Fellowes M.D.E., Holloway G.J., Rolff J. (Eds.), Insect Evolutionary Ecology, CABI Publishing, London, pp. 139–176.Google Scholar
  12. Brady S.G., Sipes S., Pearson A., Danforth B.N. (2006) Recent and simultaneous origins of eusociality in halictid bees, Proc. R. Soc. B Biol. Sci. 273, 1643–1649.Google Scholar
  13. Brosi B.J., Daily G.C., Shih T.M., Oviedo F., Durán G. (2008) The effects of forest fragmentation on bee communities in tropical countryside, J. Appl. Ecol. 45, 773–783.Google Scholar
  14. Brussard P.F. (1991) The role of ecology in biological conservation, Ecol. Appl. 1, 6–12.Google Scholar
  15. Buchmann S.L., Nabhan G.P. (1996) The Forgotten Pollinators, Island Press, Washington, DC.Google Scholar
  16. Byrne A., Fitzpatrick Ú. (2009) Bee conservation policy at the global, regional and national levels, Apidologie 40, 194–210.Google Scholar
  17. Cane J.H. (1991) Soils of ground-nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth, and climate, J. Kans. Entomol. Soc. 64, 406–413.Google Scholar
  18. Cane J.H. (2001) Habitat fragmentation and native bees: a premature verdict? Conserv. Ecol. 5.Google Scholar
  19. Cane J.H., Tepedino V.J. (2001) Causes and extent of declines among native North American invertebrate pollinators: Detection, evidence, and consequences, Conserv. Ecol. 5, http://www.consecol. org/vol5/iss1/art1/ (accessed on 16 February 2009).Google Scholar
  20. Cane J.H., Sipes S. (2006) Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty, in: Waser N.M., Ollerton J. (Eds.), Plant-pollinator interactions from specialization to generalization, University of Chicago Press, Chicago, pp. 99–122.Google Scholar
  21. Cane J.H., Minckley R.L., Kervin L.J., Roulston T.H., Williams N.M. (2006) Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation, Ecol. Appl. 16, 632–644.PubMedGoogle Scholar
  22. Chacoff N.A., Aizen M.A. (2006) Edge effects on flower-visiting insects in grapefruit plantations bordering premontane subtropical forest, J. Appl. Ecol. 43, 18–27.Google Scholar
  23. Chapman R.E., Bourke A.F.G. (2001) The influence of sociality on the conservation biology of social insects, Ecol. Lett. 4, 650–662.Google Scholar
  24. Cornell H.V., Hawkins B.A. (2003) Herbivore responses to plant secondary compound: a test of phytochemical coevolution theory, Am. Nat. 161, 507–522.PubMedGoogle Scholar
  25. Cox-Foster D.L., Conlan S., Holmes E.C., Palacios G., Evans J.D., Moran N.A., Quan P.L., Briese T., Hornig M., Geiser D.M., Martinson V., van Engelsdorp D., Kalkstein A.L., Drysdale A., Hui J., Zhai J.H., Cui L.W., Hutchison S.K., Simons J.F., Egholm M., Pettis J.S., Lipkin W.I. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder, Science 318, 283–287.PubMedGoogle Scholar
  26. Cresswell J.E., Osborne J.L., Goulson D. (2000) An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees, Ecol. Entomol. 25, 249–255.Google Scholar
  27. Crozier R.H., Pamilo P. (1996) Evolution of Social Insect Colonies: Sex Allocation and Kin Selection Oxford University Press, New York.Google Scholar
  28. Danforth B.N. (1999) Emergence dynamics and bet hedging in a desert bee, Perdita portalis, Proc. R. Soc. B 266, 1985–1994.Google Scholar
  29. Danforth B.N. (2002) Evolution of sociality in a primitively eusocial lineage of bees, Proc. Natl Acad. Sci. USA 99, 286–290.PubMedGoogle Scholar
  30. Danforth B.N., Ballard S., Ji L.J. (2003) Gene flow and population structure in an oligolectic desert bee, Macrotera (Macroteropsis) portalis (Hymenoptera: Andrenidae), J. Kans. Entomol. Soc. 76, 221–235.Google Scholar
  31. Defra (2005) Environmental Stewardship. Defra, London, UK, [online] www.defra.gov.uk/erdp/ schemes/es/default.htm (accessed 16 February 2009).Google Scholar
  32. DeFries R.S., Foley J.A., Asner G.P. (2004) Land-use choices: balancing human needs and ecosystem function, Frontiers Ecol. Environ. 2, 249–257.Google Scholar
  33. Diaz S. et al. (2005) Biodiversity regulation of ecosystem services, in: Hassan R., Scholes R., Ash N. (Eds.), Ecosystems and Human Well-Being: Current State and Trends, Vol. 1, Island Press, Washington, DC, pp. 297–329.Google Scholar
  34. Dick C.W., Roubik D.W., Gruber K.F., Bermingham E. (2004) Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography, Mol. Ecol. 13, 3775–3785.PubMedGoogle Scholar
  35. Donaldson J., Nanni I., Zachariades C., Kemper J., Thompson J.D. (2002) Effects of habitat fragmentation on pollinator diversity and plant reproductive success in renosterveld shrublands of South Africa, Conserv. Biol. 16, 1267–1276.Google Scholar
  36. Dormann C.F., Schweiger O., Arens P., Augenstein I., Aviron S., Bailey D., Baudry J., Billeter R., Bugter R., Bukácek R., Burel F., Cerny M., De Cock R., De Blust G., DeFilippi R., Diekötter T., Dirksen J., Durka W., Edwards P.J., Frenzel M., Hamersky R., Hendrikx F., Herzog F., Klotz S., Koolstra B., Lausch A., Le Coeur D., Liira J., Maelfait J.P., Opdam P., Roubalova M., Schermann-Legionnet A., Schermann N., Schmidt T., Smulders M.J.M., Speelmans M., Simova P., Verboom J., van Wingerden W., Zobel M. (2008) Prediction uncertainty of environmental change effects on temperate European biodiversity, Ecol. Lett. 11, 234–244.Google Scholar
  37. Dukas R. (2005) Bumble bee predators reduce pollinator density and plant fitness, Ecology 86, 1401–1406.Google Scholar
  38. Durrer S., Schmid-Hempel P. (1995) Parasites and the regional distribution of bumblebee species, Ecography 18, 114–122.Google Scholar
  39. Eickwort G.C., Eickwort J.M., Gordon J., Eickwort M.A. (1996) Solitary behavior in a high altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae), Behav. Ecol. Sociobiol. 38, 227–233.Google Scholar
  40. Eickwort G.C., Ginsberg H.S. (1980) Foraging and mating-behavior in Apoidea, Annu. Rev. Entomol. 25, 421–446.Google Scholar
  41. Eltz T. (2004) Spatio-temporal variation of apine bee attraction to honeybaits in Bornean forests, J. Trop. Ecol. 20, 317–324.Google Scholar
  42. Eltz T., Bruhl C.A., van der Kaars S., Linsenmair K.E. (2002) Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia, Oecologia 131, 27–34.Google Scholar
  43. Eviner V.T., Likens G.E. (2008) The effects of pathogens on terrestrial ecosystem function, in: Ostfeld R., Keesing F., Eviner V.T. (Eds.), Infectious Disease Ecology: The Effects of Ecosystems on Disease and of Disease on Ecosystems, Princeton University Press, pp. 260–283.Google Scholar
  44. Falk S. (1991) A review of scarce and threatened bees, wasp and ants of Great Britain. Research and Survey in Nature Conservation No. 35, Nature Conservancy Council, UK.Google Scholar
  45. FAO (2008) Rapid Assessment of Pollinators’ Status [online] http://www.cbd.int/doc/case-studies/agr/ cs-agr-fao.pdf (accessed 16 February 2008).Google Scholar
  46. Fenster C.B., Armbruster W.S., Wilson P., Dudash M.R., Thomson J.D. (2004) Pollination syndromes and floral specialization, Annu. Rev. Ecol. Evol. Syst. 35, 375–403.Google Scholar
  47. Firbank L.G., Heard M.S., Woiwod I.P., Hawes C., Haughton A.J., Champion G.T., Scott R.J., Hill M.O., Dewar A.M., Squire G.R., May M.J., Brooks D.R., Bohan D.A., Daniels R.E., Osborne J.L., Roy D.B., Black H.I.J., Rothery P., Perry J.N. (2003) An introduction to the Farm-Scale Evaluations of genetically modified herbicidetolerant crops, J. Appl. Ecol. 40, 2–16.Google Scholar
  48. Fisher D.O., Owens I.P.F. (2004) The comparative method in conservation biology, Trends Ecol. Evol. 19, 391–398.PubMedGoogle Scholar
  49. Fitzpatrick Ú., Murray T.E., Paxton R.J., Brown M.J.F. (2007) Building on IUCN regional red lists to produce lists of species of conservation priority: a model with Irish bees, Conserv. Biol. 5, 1324–1332.Google Scholar
  50. Fortuna M.A., Bascompte J. (2006) Habitat loss and the structure of plant-animal mutualistic networks, Ecol. Lett. 9, 278–283.Google Scholar
  51. Forup M.L., Henson K.S.E., Craze P.G., Memmott J. (2008) The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands, J. Appl. Ecol. 45, 742–752.Google Scholar
  52. Frankham R., Ballou J.D., Briscoe D.A. (2002) Introduction to Conservation Genetics, Cambridge University Press.Google Scholar
  53. Franzén M., Larsson M., Nilsson S.G. (2009) Small local population sizes and high habitat patch fidelity in a specialised solitary bee, J. Insect Conserv. 13, 89–95.Google Scholar
  54. Frommer U. (2008) Grundlagen der Ausbreitung und aktuellen nördlichen Verbreitung der Efeu-Seidenbiene Colletes hederae Schmidt & Westrich, 1993 in Deutschland (Hymenoptera: Apidae), Mitt. Int. Entomol. Ver. 33, 59–74.Google Scholar
  55. Frommer U., Flügel H.-J. (2005) Zur Ausbreitung der Furchenbiene Halictus scabiosae (Rossi, 1790) in Mitteleuropa unter besonderer Berücksichtigung der Situation in Hessen, Mitt. Int. Entomol. Ver. 30, 51–79.Google Scholar
  56. Gathmann A., Tscharntke T. (2002) Foraging ranges of solitary bees, J. Anim. Ecol. 71, 757–764.Google Scholar
  57. Gegear R.J., Otterstatter M.C., Thomson J.D. (2006) Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information, Proc. R. Soc. Lond. B Biol. Sci. 273, 1073–1078.Google Scholar
  58. Ghazoul J. (2005) Buzziness as usual? Questioning the global pollination crisis, Trends Ecol. Evol. 20, 367–373.PubMedGoogle Scholar
  59. Gilbert F., Gonzales A., Evans-Freke I. (1998) Corridors maintain species richness in the fragmented landscapes of a microecosystem, Proc. R. Soc. Lond. B Biol. Sci. 265, 577–582.Google Scholar
  60. Goulson D. (2003) Bumblebees: their behaviour and ecology, Oxford University Press, Oxford.Google Scholar
  61. Greenleaf S.S., Kremen C. (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower, Proc. Natl Acad. Sci. USA 103, 13890–13895.PubMedGoogle Scholar
  62. Greenleaf S.S., Williams N.M., Winfree R., Kremen C. (2007) Bee foraging ranges and their relationship to body size, Oecologia 153, 589–596.PubMedGoogle Scholar
  63. Haeseler V. (1973) Zur Kenntnis der Aculeaten- und Chrysididenfauna Schleswig-Holsteins und angrenzender Gebiete (Hymenoptera) 2. Beitrag, Schr. Naturwiss. Ver. Schleswig-Holst. 43, 51–60.Google Scholar
  64. Haeseler V. (1974) Aculeate Hymenopteren über Nord- und Ostsee nach Untersuchungen auf Feuerschiffen, Entomol. Scand. 5, 123–136.Google Scholar
  65. Haeseler V. (1976) Zur Aculeatenfauna der Nordfriesischen Insel Amrum (Hymenoptera), Schr. Naturwiss. Vereins Schleswig-Holstein 46, 59–78.Google Scholar
  66. Haeseler V. (1978) Zur Fauna der aculeaten Hymenopteren der Nordseeinsel Mellum. Ein Beitrag zur Besiedlung küstennaher Inseln, Zool. Jb. Syst. 105, 368–385.Google Scholar
  67. Hanski I. (1998) Metapopulation dynamics, Nature 396, 41–49.Google Scholar
  68. Hanski I., Pöyry J. (2006) Insect populations in fragmented habitats, in: Stewart A.J.A., New T.R., Lewis O.T. (Eds.), Insect Conservation Biology, R. Entomol. Soc. Int. Symp. on Insect Conservation Biology, University of Sussex, 12–14 September, 2005, CAB International, Wallingford, UK.Google Scholar
  69. Hedrick P.W., Parker J.D. (1997) Evolutionary genetics and genetic variation of haplodiploids and x-linked genes, Annu. Rev. Ecol. Syst. 28, 55–83.Google Scholar
  70. Hendrickx F., Maelfait J.P., van Wingerden W., Schweiger O., Speelmasn W., Aviron S., Augenstein I., Billeter R., Bailey D., Bukacek R., Burel F., Diekötter T., Dirksen J., Herzog F., Liira J., Roubalova M., Vandomme V., Bugter R. (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural diversity, J.Appl. Ecol. 44, 340–351.Google Scholar
  71. Holzschuh A., Steffan-Dewenter I., Kleijn D., Tscharntke T. (2007) Diversity fo flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context, J. Appl. Ecol. 44, 41–49.Google Scholar
  72. Johansen C.A. (1977) Pesticides and pollinators, Annu. Rev. Entomol. 22, 177–192.Google Scholar
  73. Kathirithamby J. (1989) Review of the order Strepsiptera, Syst. Entomol. 14, 41–92.Google Scholar
  74. Kearns C.A., Inouye D.W., Waser N.M. (1998) Endangered mutualisms: the conservation of plant-pollinator interactions, Annu. Rev. Ecol. Syst. 29, 83–112.Google Scholar
  75. Kevan P.G. (1975) Forest application of the insecticide fenitrothion and its effect on wild bee pollinators (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium SPP.) in: Southern New Brunswick, Canada, Biol. Conserv. 7, 301–309.Google Scholar
  76. Kim K.C., Byrne L. (2006) Biodiversity loss and the taxonomic bottleneck: emerging biodiversity science, Ecol. Res. 21, 794–810.Google Scholar
  77. Kleijn D., Raemakers I. (2008) A retrospective analysis of pollen host plant use by stable and declining bumble bee species, Ecology 89, 1811–1823.PubMedGoogle Scholar
  78. Klein A.M., Steffan-Dewenter I., Buchori D., Tscharntke T. (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flowervisiting and trap-nesting bees and wasps, Conserv. Biol. 16, 1003–1014.Google Scholar
  79. Klein A.-M., Steffan-Dewenter I., Tscharntke T. (2003) Fruit set of highland coffee increases with the diversity of pollinating bees, Proc. R. Soc. Lond. B Biol. Sci. 270, 955–961.Google Scholar
  80. Knerer G. (1992) The biology and social behaviour of Evylaeus malachurus (K.) (Hymenoptera; Halictidae) in different climatic regions of Europe, Zool. Jahrb. Abt. Syst. Oekol. Geogr. Tiere 119, 261–290.Google Scholar
  81. Knight T.M., Chase J.M., Hillebrand H., Holt R.D. (2006) Predation on mutualists can reduce the strength of trophic cascades, Ecol. Lett. 9, 1173–1178.PubMedGoogle Scholar
  82. Koeniger G. (1991) Differences in filling of the spermatheca after natural and artificial insemination of the queen honeybee, Apidologie 22, 439–441.Google Scholar
  83. Koh L.P., Dunn R.R., Sodhi N.S., Colwell R.K., Proctor H.C., Smith V.C. (2004) Species coextinctions and the biodiversity crisis, Science 305, 1632–1634.PubMedGoogle Scholar
  84. Kosior A., Celary W., Olejniczak P., Fijal J., Król W., Solarz W., Plonka P. (2007) The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe, Oryx 41, 79–88.Google Scholar
  85. Kotiaho J.S., Kaitala V., Komonen A., Päivinen J. (2005) Predicting the risk of extinction from shared ecological characteristics, Proc. Natl Acad. Sci. USA 102, 1963–1967.PubMedGoogle Scholar
  86. Kratochwil A., Klatt M. (1989) Apoide Hymenopteren an Ruderalstellen der Stadt Freiburg i. Br. (BRD) — submediterrane Faunenelemente an Standorten kleinräumig hoher Persistenz, Zool. Jahrb. Syst. 116, 379–389.Google Scholar
  87. Kremen C., Ricketts T. (2000) Global perspectives on pollination disruptions. Conserv. Biol. 14, 1226–1228.Google Scholar
  88. Kremen C., Williams N.M., Thorp R.W. (2002) Crop pollination from native bees at risk from agricultural intensity, Proc. Natl Acad. Sci. USA 99, 16812–16816.PubMedGoogle Scholar
  89. Kremen C., Williams N.M., Bugg R.L., Fay J.P., Thorp R.W. (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California, Ecol. Lett. 7, 1109–1119.Google Scholar
  90. Kremen C., Williams N.M., Aizen M.A., Gemmill-Herren B., LeBuhn G., Minckley R.L., Packer L., Potts S.G., Roulston T., Steffan-Dewenter I., Vásquez D.P., Winfree R., Adams L., Crone E.E., Greenleaf S.S., Keitt T.H., Klein A.-M., Regetz J., Ricketts T.H. (2007) Pollination and other ecosystem services provided by mobile organisms: a conceptual framework for the effects of land-use change, Ecol. Lett. 10, 299–314.PubMedGoogle Scholar
  91. Kuhlmann M. (2000) Die Struktur von Stechimmenzönosen (Hymenoptera Aculeata) ausgewählter Kalkmagerrasen des Diemeltales unter besonderer Berücksichtigung der Nutzungsgeschichte und des Requisitenangebotes, Abh. Westf. Mus. Naturkd. 62, 3–102.Google Scholar
  92. Kuhlmann M., Else G.R., Dawson A., Quicke D.L.J. (2007) Molecular, biogeographical and phonological evidence for the existence of three western European sibling species in the Colletes succinctus group (Hymenoptera: Apidae), Org. Divers. Evol. 7, 155–165.Google Scholar
  93. Lande R., Engen S., Saether B.-E. (2003) Stochastic population dynamics in ecology and conservation, Oxford University Press, USA.Google Scholar
  94. Larsen T.H., Williams N., Kremen C. (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning, Ecol. Lett. 8, 538–547.PubMedGoogle Scholar
  95. Lewis O.T. (2006) Climate change, species-area curves and the extinction crises, Phil. Trans. R. Soc. B 361, 163–171.PubMedGoogle Scholar
  96. Linsley E.G. (1958) The ecology of solitary bees, Hilgardia 27, 543–599.Google Scholar
  97. Mayer C., Kuhlmann M. (2004) Synchrony of pollinators and plants in the winter rainfall area of South Africa — observations from a drought year, Trans. R. Soc. S. Afr. 59, 55–57.Google Scholar
  98. Meek B., Loxton D., Sparks T., Pywell R., Pickett H., Nowakowski M. (2002) The effect of arable field margin composition on invertebrate biodiversity, Biol. Conserv. 106, 259–271.Google Scholar
  99. Memmott J., Waser N.M. (2002) Integration of alien plants into a native flower-pollinator visitation web, Proc. R. Soc. Lond. B Biol. Sci. 269, 2395–2399.Google Scholar
  100. Memmott J., Waser N.M., Price M.V. (2004) Tolerance of pollination networks to species extinctions, Proc. R. Soc. Lond. B Biol. Sci. 271, 2605–2611.Google Scholar
  101. Memmott J., Craze P.G., Waser N.M., Price M.V. (2007) Global warming and the disruption of plant-pollinator interactions, Ecol. Lett. 10, 710–717.PubMedGoogle Scholar
  102. Michener C.D. (1974) The social behavior of the bees, Harvard University Press.Google Scholar
  103. Michener C.D. (2007) The bees of the world, 2nd ed., Johns Hopkins Press, Baltimore.Google Scholar
  104. Minckley R.L., Cane J.H., Kervin L. (2000) Origins and ecological consequences of pollen specialization among desert bees, Proc. R. Soc. Lond. B Biol. Sci. 267, 265–271.Google Scholar
  105. Minckley R.L., Wcislo W.T., Yanega D., Buchmann S.L. (1994) Behavior and Phenology of a Specialist Bee (Dieunomia) and Sunflower (Helianthus) Pollen Availability, Ecology 75, 1406–1419.Google Scholar
  106. Moldenke A.R. (1979) Host-plant coevolution and the diversity of bees in relation to the flora of North America, Phytologia 43, 357–419.Google Scholar
  107. Morandin L.A., Winston M.L. (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola, Ecol. Appl. 15, 871–881.Google Scholar
  108. Moretti M., de Bello F., Roberts S.P.M., Potts S.G. (2009) Taxonomical versus functional responses of bee communities to fire in two contrasting climatic regions, J. Anim. Ecol. 78, 98–108.PubMedGoogle Scholar
  109. Moritz R.F.A., Kraus F.B., Kryger P., Crewe R.M. (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees, J. Insect Conserv. 11, 391–397.Google Scholar
  110. Müller A. (1996) Host-plant specialization in western palearctic anthidiine bees (Hymenoptera: Apoidea: Megachilidae), Ecol. Monogr. 66, 235–257.Google Scholar
  111. Müller A., Kuhlmann M. (2008) Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera: Colletidae) — the Asteraceae paradox, Biol. J. Linn. Soc. 95, 719–733.Google Scholar
  112. Müller A., Diener S., Schnyder S., Stutz K., Sedivy C., Dorn S. (2006) Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee-flower relationships, Biol. Conserv. 130, 604–615.Google Scholar
  113. National Research Council of the National Academies (2006) Status of Pollinators in North America. National Academy Press, Washington, DC.Google Scholar
  114. Norris K. (2004) Managing threatened species: the ecological toolbox, evolutionary theory and declining-population paradigm, J. Appl. Ecol. 41, 413–426.Google Scholar
  115. O’Grady J.J., Reed D.H., Brook B.W., Frankham R. (2004) What are the best correlates of predicted extinction risk? Biol. Conserv. 118, 513–520.Google Scholar
  116. O’Toole C., Raw A. (1991) Bees of the World, Sterling Publishing, New York.Google Scholar
  117. Okuyama T., Holland J.N. (2008) Network structural properties mediate the stability of mutualistic communities, Ecol. Lett. 11, 208–216.PubMedGoogle Scholar
  118. Oldroyd B.P., Nanork P. (2009) Conservation of Asian honeybees, Apidologie, 40, 296–312.Google Scholar
  119. Packer L., Owen R. (2001) Population genetic aspects of pollinator decline, Conserv. Ecol. 5.Google Scholar
  120. Packer L., Zayed A., Grixti J.C., Ruz L., Owen R.E., Vivallo F., Toro H. (2005) Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees, Conserv. Biol. 19, 195–202.Google Scholar
  121. Pamilo P., Crozier R.H. (1997) Population biology of social insect conservation, Mem. Mus. Victoria 56, 411–419.Google Scholar
  122. Pamilo P., Gertsch P., Thorén P., Seppa P. (1997) Molecular population genetics of social insects, Annu. Rev. Ecol. Syst. 28, 1–25.Google Scholar
  123. Paxton R.J. (2005) Male mating behaviour and mating systems of bees: an overview, Apidologie 36, 145–156.Google Scholar
  124. Paxton R.J., Fries I., Pieniazek N.J., Tengö J. (1997) High incidence of infection of an undescribed microsporidium (Microspora) in the communal bee Andrena scotica (Hymenoptera, Andrenidae), Apidologie 28, 129–141.Google Scholar
  125. Paxton R.J., Giovanetti M., Andrietti F., Scamoni E., Scanni B. (1999) Mating in a communal bee Andrena agilissima (Hymenoptera: Andrenidae), Ecol. Ethol. Evol. 11, 371–382.Google Scholar
  126. Paxton R.J., Thorén P.A., Estoup A., Tengo J. (2001) Queen-worker conflict over male production and the sex ratio in a facultatively polyandrous bumblebee, Bombus hypnorum: the consequences of nest usurpation, Mol. Ecol. 10, 2489–2498.PubMedGoogle Scholar
  127. Paxton R.J., Ayasse M., Field J., Soro A. (2002) Complex sociogenetic organization and reproductive skew in a primitively eusocial sweat bee, Lasioglossum malachurum, as revealed by microsatellites, Mol. Ecol. 11, 2405–2416.PubMedGoogle Scholar
  128. Pekkarinen A. (1997) Oligolectic bee species in Northern Europe (Hymenoptera, Apoidea), Entomol. Fenn. 8, 205–214.Google Scholar
  129. Petanidou T., Ellis W.N., Ellisadam A.C. (1995) Ecogeographical patterns in the incidence of brood parasitism in bees, Biol. J. Linn. Soc. 55, 261–272.Google Scholar
  130. Petanidou T., Kallimanis A.S., Tzanopoulos J., Sgardelis S.P., Pantis J.D. (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization, Ecol. Lett. 11, 564–575.PubMedGoogle Scholar
  131. Peters G. (1972) Ursachen für den Rückgang der seltenen heimischen Hummelarten (Hym., Bombus et Psithyrus), Entomol. Ber. 1972, 85–90.Google Scholar
  132. Peters J.M., Queller D.C., Imperatriz-Fonseca V.L., Roubik D.W., Strassmann J.E. (1999) Mate number, kin selection and social conflicts in stingless bees and honeybees, Proc. R. Soc. Lond. B Biol. Sci. 266, 379–384.Google Scholar
  133. Pimm S.L., Ayres M., Balmford A., Branch G., Brandon K., Brooks T., Bustamante R., Costanza R., Cowling R., Curran L.M., Dobson A., Farber S., da Fonseca G.A., Gascon C., Kitching R., McNeely J., Lovejoy T., Mittermeier R.A., Myers N., Patz J.A., Raffle B., Rapport D., Raven P., Roberts C., Rodriguez J.P., Rylands A.B., Tucker C., Safina C., Samper C., Stiassny M.L., Supriatna J., Wall D.H., Wilcove D. (2001) Can we defy nature’s end? Science 293, 2207–2208.PubMedGoogle Scholar
  134. Pohl H., Beutel R.G. (2008) The evolution of Strepsiptera (Hexapoda), Zoology 111, 318–338.PubMedGoogle Scholar
  135. Potts S.G., Willmer P.G. (1997) Abiotic and biotic factors influencing nest-site selection in Halictus rubicundus, a gound nesting halictine bee, Ecol. Entomol. 22, 319–328.Google Scholar
  136. Potts S.G., Vulliamy B., Dafni A., Ne’eman G., Willmer P. (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642.Google Scholar
  137. Potts S.G., Vulliamy B., Roberts S., O’Toole C., Dafni A., Ne’eman G., Willmer P. (2005) Role of nesting resources in organising diverse bee communities in a Mediterranean landscape, Ecol. Entomol. 30, 78–85.Google Scholar
  138. Potts S.G., Petanidou T., Roberts S., O’Toole C., Hulbert A., Willmer P. (2006) Plant-pollinator biodiversity and pollination services in a complex Mediterranean landscape, Biol. Conserv. 129, 519–529.Google Scholar
  139. Potts S.G., Woodcock B.A., Roberts S.P.M., Tscheulin T., Ramsay A.J., Pilgrim E., Brown V.K., Tallowin J.R. (2009) Enhancing pollinator biodiversity in intensive grasslands, J. Appl. Ecol., DOI 10.1111/j.1365-2664.2009.01609.x.Google Scholar
  140. Powell J.A., Mackie R.A. (1966) Biological relationships of moth and Yucca whipplei (Lepidoptera: Gelechiidae, Blastobasidae, Prodoxidae), Univ. Calif. Publ. Entomol. 42, 1–59.Google Scholar
  141. Powell A.H., Powell G.V.N. (1980) Population dynamics of male euglossine bees in Amazonian forest fragments, Biotropica 19, 176–179.Google Scholar
  142. Praz C.J., Müller A., Dorn S. (2008) Specialized bees fail to develop on no-host pollen: do plants chemically protect their pollen? Ecology 89, 795–804.PubMedGoogle Scholar
  143. Price P.W., Westoby M., Rice B., Atsatt P.R., Fritz R.S., Thompson J.N., Mobley K. (1986) Parasite Mediation in Ecological Interactions, Annu. Rev. Ecol. Syst. 17, 487–505.Google Scholar
  144. Price P.W., Westoby M., Rice B. (1988) ParasiteMediated Competition — Some Predictions and Tests, Am. Nat. 131, 544–555.Google Scholar
  145. Rasmont P. (1988) Monographie écologique et zoogéographique des bourdons de Belgique et de Belgique (Hymenoptera, Apidae, Bombinae), PhD thesis, Faculté des Sciences Agronomique de l’État, Gembloux, Belgium.Google Scholar
  146. Rasmont P., Pauly A., Terzo M., Patiny S., Michez D., Iserbyt S., Barbier Y., Haubruge E. (2005) The survey of wild bees (Hymenoptera, Apoidea) in Belgium and France, FAO report [online] http:// www.fao.org/ag/AGP/AGPS/C-CAB/Castudies/ pdf/1-010.pdf (accessed on 9 February 2009).Google Scholar
  147. Ricketts T. (2004) Do tropical forest fragments enhance pollinator activity in nearby coffee crops, Conserv. Biol. 18, 1–10.Google Scholar
  148. Robertson C. (1925) Heterotropic bees, Ecology 6, 412–436.Google Scholar
  149. Roubik D.W. (1989) Ecology and natural history of tropical bees, Cambridge University Press, Cambridge.Google Scholar
  150. Roubik D.W. (2001) Ups and downs in pollinator populations: when is there a decline? Conservation Ecology 5, http://www.consecol. org/vol5/iss1/art2/ (accessed on 16 February 2009).Google Scholar
  151. Sakagami S.F., Munakata M. (1972) Distribution and bionomics of a transpalearctic eusocial halictine bee, Lasioglossum (Evylaeus) calceatum, in northern Japan, with reference to its solitary life at high latitude, J. Fac. Sci. Hokkaido Univ. Ser VI Zool. 18, 411–439.Google Scholar
  152. Samejima H., Marzuki M., Nagamitsu T., Nakasizuka T. (2004) The effects of human disturbance on a stingless bee community in a tropical rainforest, Biol. Conserv. 120, 577–587.Google Scholar
  153. Sammataro D., Gerson U., Needham G. (2000) Parasitic mites of honey bees: life history, implications and impact, Annu. Rev. Entomol. 45, 519–548.PubMedGoogle Scholar
  154. Schlüns H., Moritz R.F.A., Neumann P., Kryger P., Koeniger G. (2005) Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens, Anim. Behav. 70, 125–131.Google Scholar
  155. Schmid-Hempel P. (2001) On the evolutionary ecology of host-parasite interactions: addressing the question with regard to bumblebees and their parasites, Naturwissenschaften 88, 147–158.PubMedGoogle Scholar
  156. Schmid-Hempel R., Schmid-Hempel P. (2000) Female mating frequencies in Bombus spp. from Central Europe, Insectes Soc. 47, 36–41.Google Scholar
  157. Schmidt J.O., Thoenes S.C. (1992) Criteria for nest site selection in honey-bees (Hymenoptera: Apidae) — preference between pheromone attractants and cavity shapes, Environ. Entomol. 21, 1130–1133.Google Scholar
  158. Schoener T.W. (1979) Generality of the size-distance relation in models of optimal foraging, Am. Nat. 114, 902–914.Google Scholar
  159. Schtickzelle N., Baguette M. (2004) Metapopulation viability analysis of the bog fritillary butterfly using RAMAS/GIS, Oikos 104, 277–290.Google Scholar
  160. Schultz C.B., Hammond P.C. (2003) Using population viability analysis to develop recovery criteria for endangered insects: case study of the Fender’s Blue Butterfly, Conserv. Biol. 17, 1372–1385.Google Scholar
  161. Schweiger O., Maelfait J.P., Van Wingerden W., Hendrikx F., Billeter R., Speelmans M., Augenstein I., Aukema B., Aviron S., Bailey D., Bukacek R., Burel F., Diekötter T., Dirksen J., Frenzel M., Herzog F., Liira J., Roubalova M., Bugter R. (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales, J. Appl. Ecol. 42, 1129–1139.Google Scholar
  162. Scott V.L. (1994) Phenology and trap selection of three species of Hylaeus (Hymenoptera, Colletidae) in upper Michigan, Gt. Lakes Entomol. 27, 39–47.Google Scholar
  163. Scott V.L., Kelley S.T., Strickler K. (2000) Reproductive biology of two Coelioxys cleptoparasites in relation to their Megachile hosts (Hymenoptera: Megachilidae), Ann. Entomol. Soc. Am. 93, 941–948.Google Scholar
  164. Simberloff D. (1988) The contribution of population and community biology to conservation science, Annu. Rev. Ecol. Syst. 19, 473–511.Google Scholar
  165. Simonthomas R.T., Simonthomas A.M.J. (1980) Philanthus triangulum and its recent eruption as a predator of honeybees in an Egyptian oasis, Bee World 61, 97–107.Google Scholar
  166. Singer M.S. (2008) Evolutionary ecology of polyphagy, in: Tilmon K.J. (Ed.), Specialization, speciation, and radiation: The evolutionary biology of herbivorous insects, University of California Press, Berkeley, pp. 29–42.Google Scholar
  167. Smith A.R., Wcislo W.T., O’Donnell S. (2007) Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae), Behav. Ecol. Sociobiol. 61, 1111–1120.Google Scholar
  168. Soucy S.L. (2002) Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae), Ann. Entomol. Soc. Am. 95, 57.Google Scholar
  169. Staples D.F., Taper M.L., Shepard B.B. (2005) Riskbased vaible population monitoring, Conserv. Biol. 19, 1908–1916.Google Scholar
  170. Steffan-Dewenter I. (2003) Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows, Conserv. Biol. 17, 1036–1044.Google Scholar
  171. Steffan-Dewenter I., Münzenberg U., Bürger C., Thies C., Tscharntke T. (2002) Scale-dependent effects of landscape context on three pollinator guilds, Ecology 83, 1421–1432.Google Scholar
  172. Steffan-Dewenter I., Tscharntke T. (1999) Effects of habitat isolation on pollinator communities and seed set, Oceologia 121, 432–440.Google Scholar
  173. Steffan-Dewenter I., Tscharntke T. (2001) Succession of bee communities on fallows, Ecography 24, 83–93.Google Scholar
  174. Steffan-Dewenter I., Tscharntke T. (2002) Insect communities and biotic interactions on fragmented calcareous grasslands — a mini review, Biol. Conserv. 104, 275–284.Google Scholar
  175. Steffan-Dewenter I., Westphal C. (2008) The interplay of pollinator diversity, pollination services and landscape change, J. Appl. Ecol. 45, 737–741.Google Scholar
  176. Steffan-Dewenter I., Potts S.G., Packer L. (2005) Pollinator diversity and crop pollination services are at risk, Trends Ecol. Evol. 20, 651–652.PubMedGoogle Scholar
  177. Stork N.E., Lyal C.H.C. (1993) Extinction or Co-Extinction Rates, Nature 366, 307–307.Google Scholar
  178. Stout J.C., Morales C.L. (2009) Ecological impacts of invasive alien species on bees, Apidologie 40, 388–409.Google Scholar
  179. Strickler K. (1979) Specialization and foraging efficiency of solitary bees, Ecology 60, 998–1009.Google Scholar
  180. Tauber M.J., Tauber C.A., Nyrop J.P., Villani M.G. (1998) Moisture, a vital but neglected factor in the seasonal ecology of insects: hypotheses and tests of mechanisms, Environ. Entomol. 27, 523–530.Google Scholar
  181. Tewksbury J.J., Levey D.J., Haddad N.M., Sargent S., Orrock J.L., Weldon A., Danielson B.J., Brinkerhoff J., Damschen E.I., Townsend P. (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl Acad. Sci. USA 99, 12923–12926.PubMedGoogle Scholar
  182. Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., de Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., van Jaarsveld A.S., Midgley G.F., Miles L., Ortega-Huerta M.A., Peterson A.T., Philips O.L., Williams S.C. (2004) Extinction risk from climate change, Nature 427, 577–280.Google Scholar
  183. Thompson J.N. (2005) The Geographic Mosaic of Coevolution, University of Chicago Press, Chicago, Illinois.Google Scholar
  184. Tilman D., Reich P.B., Knops J., Wedin D., Mielke T. (2001) Diversity and productivity in a long-term grassland experiment, Science 294, 843–845.PubMedGoogle Scholar
  185. Tonhasca A., Blackmer J.L., Albuquerque G.S. (2002) Abundance and diversity of euglossine bees in the fragmented landscape of the Brazilian Atlantic forest, Biotropica 34, 416–422.Google Scholar
  186. Tscharntke T., Brandl R. (2004) Plant-insect interactions in fragmented landscapes, Annu. Rev. Entomol. 49, 405–430.PubMedGoogle Scholar
  187. Tscharntke T., Klein A.M., Kruess A., Steffan-Dewenter I., Thies C. (2005) Landscape perspectives on agricultural intensification and biodiversity — ecosystem service management, Ecol. Lett. 8, 857–874.Google Scholar
  188. Tylianakis J.M., Klein A.-M., Tscharntke T. (2005) Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient, Ecology 86, 3296–3302.Google Scholar
  189. Tylianakis J.M., Didham R.K., Bascompte J., Wardle D.A. (2008) Global change and species interactions in terrestrial ecosystems, Ecol. Lett. 11, 1351–1363.PubMedGoogle Scholar
  190. Vandergast A.G., Gillespie R.G. (2004) Effects of natural forest fragmentation on a Hawaiian spider community, Environ. Entomol. 33, 1296–1305.Google Scholar
  191. Vulliamy B., Potts S.G., Willmer P.G. (2006) The effects of cattle grazing on plant-pollinator communities in a fragmented Mediterranean landscape, Oikos 114, 529–543.Google Scholar
  192. Wagner A.C.W. (1938) Die Stechimmen und Goldwespen des westlichen Norddeutschland, Verh. Ver. Naturwiss. Heimatforsch. Hamburg 26, 94–153.Google Scholar
  193. Wcislo W.T. (1987) The roles of seasonality host synchrony and behavior in the evolutions and distributions of nest parasites in Hymenoptera (Insecta). With special reference to bees (Apoidea), Biol. Rev. (Camb.) 63, 515–544.Google Scholar
  194. Wcislo W.T., Cane J.H. (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies, Annu. Rev. Entomol. 41, 257–286.PubMedGoogle Scholar
  195. Westbury D.B., Woodcock B.A., Harris S.J., Brown V.K., Potts S.G. (2008) The effect of seed mix and management on the abundance of desirable and pernicious unsown species in field margin communities, Weed Sci. 48, 113–123.Google Scholar
  196. Westphal C., Steffan-Dewenter I., Tscharntke T. (2003) Mass flowering crops enhance pollinator densities at a landscape scale, Ecol. Lett. 6, 961–965.Google Scholar
  197. Westphal C., Steffan-Dewenter I., Tscharntke T. (2009) Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees, J. Appl. Ecol. 46, 187–193.Google Scholar
  198. Westrich P. (1989) Die Wildbienen Baden-Württembergs, Stuttgart, Ulmer.Google Scholar
  199. Westrich P. (1996) Habitat requirements of central European bees and the problems of partial habitats, in: Matheson A., Buchmann S.L., Westrich P., Williams, I.H. (Eds.), The conservation of bees, Academic Press, London, pp. 1–16.Google Scholar
  200. Williams I.H., Corbet S.A., Osborne J.L. (1991) Beekeeping, wild bees and pollination in the European Community, Bee World 72, 170–180.Google Scholar
  201. Williams N.M. (2003) Use of novel pollen species by specialist and generalist solitary bees (Hymenoptera: Megachilidae), Oecologia 134, 228–237.PubMedGoogle Scholar
  202. Williams N.M., Kremen C. (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape, Ecol. Appl. 17, 910–921.PubMedGoogle Scholar
  203. Williams N.M., Minckley R.L., Silveiria F.A. (2001) Variation in native bee faunas and its implications for detecting community change, Conserv. Ecol. 5, http://www.consecol.org/vol5/iss1/art7/ (accessed on 16 February 2009).Google Scholar
  204. Williams P.H. (1986) Bumble bees and their decline in Britain. Central Association of Beekeepers, UK.Google Scholar
  205. Williams P.H., Osborne J. (2009) Bumblebee vulnerability and conservation world-wide, Apidologie, 40, 367–387.Google Scholar
  206. Winfree R., Griswold T., Kremen C. (2007) Effect of human disturbance on bee communities in a forested ecosystem, Conserv. Biol. 21, 213–223.PubMedGoogle Scholar
  207. Winfree R., Williams N.M., Gaines H., Ascher J.S., Kremen C. (2008) Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA, J. Appl. Ecol. 45, 793–802.Google Scholar
  208. Wülker W. (1964) Parasite-induced changes of internal and external sex characters in insects, Exp. Parasitol. 15, 561–597.Google Scholar
  209. Zammit J., Hogendoorn K., Schwarz M.P. (2008) Strong constraints to independent nesting in a facultatively social bee: quantifying the effects of enemies-at-the-nest, Insectes Soc. 55, 74–78.Google Scholar
  210. Zayed A. (2009) Bee genetics and conservation, Apidologie, 40, 237–262.Google Scholar
  211. Zayed A., Packer L., Grixti J.C., Ruz L., Owen R.E., Toro H. (2005) Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation, Conserv. Genet. 6, 1017–1026.Google Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • Tomás E. Murray
    • 1
  • Michael Kuhlmann
    • 2
  • Simon G. Potts
    • 3
  1. 1.Crops Research CentreTeagascOak Park, CarlowIreland
  2. 2.Department of EntomologyNatural History MuseumLondonUK
  3. 3.Centre for Agri-Environmental Research, School of Agriculture, Policy and DevelopmentUniversity of ReadingEarley GateUK

Personalised recommendations