Apidologie

, Volume 41, Issue 6, pp 636–642 | Cite as

Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content

  • Mara Garcia Tavares
  • Carlos Roberto Carvalho
  • Fernanda Aparecida Ferrari Soares
Original Article

Abstract

The stingless bees of the genus Melipona comprise a group with approximately 40 Neotropical species. Despite their ecological and economic importance, the size of the genomes of these species remains poorly known. Thus, the present study measured the DNA content of 15 Melipona species. The mean genome size (1C) of the females ranged from 0.27 pg to 1.38 pg, with increments of, approximately, 0.12 pg. It was possible to recognize two groups of species: the first presented relatively low DNA content (average = 0.29 pg), while the second showed high DNA content (average = 0.98 pg). This result corroborates the cytogenetic classification of these species into two groups, one of them comprising species with a low heterochromatin content (<50%), and the other species with high heterochromatin content (>50%). Amongst the groups with low and high DNA content, there was no significant correlation between the DNA content and the size of the bees. The data obtained may aid in the selection of species which are suitable for sequencing projects, besides providing an overview of the diversity in the genome size of the Melipona genus.

flow cytometry genome size Hymenoptera Melipona 

Variation de la taille du génome chez les espèces de Melipona et classification en sous-groupes en fonction du contenu de leur ADN

cytométrie de flux taille du génome Hymenoptera Melipona 

Variation der Genomgrößen in Melipona-Arten (Hymenoptera: Apidae) und ihre Unterteilung anhand des DNA-Gehalts

Zusammenfassung

Zu den stachellosen Bienen der neotropischen Gattung Melipona zählen etwa 40 Arten. Ungeachtet ihrer ökologischen Bedeutung sind jedoch Daten zum Umfang der Genome dieser Arten bisher nur spärlich vorhanden. Das Ziel dieser Studie ist es daher, den DNA-Gehalt von 15 Arten der Gattung Melipona zu quantifizieren, und die Eignung solcher Daten zur Bewertung einer zytogenetischen Klassifizierung dieser Arten in zwei Gruppen zu überprüfen, die auf der Grundlage ihres Heterochromatingehalts vorgeschlagen wurde. Der DNA-Gehalt des Zellkerns von weiblichen Larven wurde gegen einen internen Standard einer weiblichen Scaptotrigona xantotricha gemessen. Die mit Propidiumiodid versetzte Suspension wurde mit einem Durchflusszytometer mit einer Laserquelle (488 nm) analysiert. Die Fluoreszenz des PI wurde durch einen RG 610 Bandpassfilter geleitet und in 1024 Kanäle konvertiert. Der Standardpeak der Zellkerne wurde auf Kanal 100 eingestellt und mehr als 10 000 Zellkerne wurden analysiert. Drei unabhängige Wiederholungen wurden durchgeführt, wobei Histogramme mit Variationskoeffizienten von mehr als 5 % ausgeschlossen wurden. Die mittlere Genomgröße (1C) der weiblichen Tiere reichte von 0,27 pg bis 1,38 pg, mit Schritten von 0,12 pg (Tab. I). Es war möglich, zwei Gruppen von Arten zu erkennen: die erste hatte einen relativ niedrigen DNA-Gehalt, während die zweite einen hohen DNA-Gehalt aufwies. Diese Daten unterstützen die zytogenetische Klassifikation dieser Arten in zwei Gruppen, die auf der Basis ihres Heterochromatingehalts vorgenommen wurde. Innerhalb der Gruppen mit niedrigem und hohem DNA-Gehalt gab es keine signifikante Korrelation zwischen dem DNA-Gehalt und der Größe der Bienen (Abb. 1a und b). Die hier erhaltenen Daten können zur Auswahl von geeigneten Arten für Sequenzierungsprojekte beitragen, da die Größe des Genoms in solchen Projekten eine entscheidende Eigenschaft sein kann. Die Daten liefern außerdem einen Überblick über die Vielfalt der Genomgrößen in der Gattung Melipona.

Durchflusszytometrie Genomgröße Hymenoptera Melipona 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardila-Garcia A.M., Gregory T.R. (2009) An exploration of genome size diversity in dragonflies and damselflies (Insecta: Odonata), J. Zool. 278, 163–173.CrossRefGoogle Scholar
  2. Boulesteix M., Weiss M., Biémont C. (2006) Differences in genome size between closely related species: the Drosophila melanogaster species subgroup, Mol. Biol. Evol. 23, 162–167.PubMedCrossRefGoogle Scholar
  3. Camargo J.M.F., Kerr W.E., Lopes C.R. (1967) Morfologia externa de Melipona (Melipona) marginata Lepeletier (Hymenoptera, Apoidea), Papeis Avulsos Zool. 20, 229–258.Google Scholar
  4. Cruz C.D. (2009) Programa Genes: Aplicativo Computacional em Genética e Estatística. Versão Windows — 2009, Viçosa, UFV.Google Scholar
  5. Dolezel J., Bartos J. (2005) Plant DNA flow cytometry and estimation of nuclear genome size, Ann. Bot. 95, 99–110.PubMedCrossRefGoogle Scholar
  6. Dolezel J., Bartos J., Voglmayr H., Greilhuber J. (2003) Nuclear DNA content and genome size of trouts and human, Cytometry 51A, 127–128.CrossRefGoogle Scholar
  7. Fernandes-Salomão T.M., Muro-Abad J.I., Campos L.A.O., Araújo E.F. (2002) Mitochondrial and nuclear DNA characterization in the Melipona species (Hymenoptera, Meliponini) by RFLP analysis, Hereditas 137, 229–233.CrossRefGoogle Scholar
  8. Fernandes-Salomão T.M., Rocha R.B., Campos L.A.O., Araújo E.F. (2005) The first internal transcribed spacer (ITS-1) of Melipona species (Hymenoptera, Apidae, Meliponini): characterization and phylogenetic analysis, Insectes Soc. 52, 11–18.CrossRefGoogle Scholar
  9. Finston T.L., Hebert P.D., Foottit R.B. (1995) Genome size variation in Aphids, Insect Biochem. Mol. Biol. 25, 189–196.Google Scholar
  10. Gambi M.C., Ramela L., Sella G., Protto P., Aldriei E. (1997) Variation in genome size of benthic polychaetes: systematic and ecological relationships, J. Mar. Biol. Assoc. UK 77, 1045–1057.CrossRefGoogle Scholar
  11. Garagna S., Rebecchi L., Guidi A. (1996) Genome size variation in Tardigrada, Zool. J. Linn. Soc. 116, 115–121.CrossRefGoogle Scholar
  12. Geraci N.S., Jonston J.S., Robinson J.P., Wikel S.K., Hill C.A. (2007) Variation in genome size of argasid and ixodid ticks, Insect Biochem. Mol. Biol. 37, 399–408.PubMedCrossRefGoogle Scholar
  13. Gregory T.R. (2002) Genome size and developmental complexity, Genetica 115, 131–146.PubMedCrossRefGoogle Scholar
  14. Gregory T.R. (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership, Ann. Bot. 95, 133–146.PubMedCrossRefGoogle Scholar
  15. Gregory T.R. (2009) Animal Genome Size Database, http://www.genomesize.com (accessed on 10 July 2009).Google Scholar
  16. Gregory T.R., Hebert P.D.N. (1999) The modulation of DNA content: proximate causes and ultimate consequences, Genome Res. 9, 317–324.PubMedGoogle Scholar
  17. Gregory T.R., Hebert P.D.N. (2002) Genome size estimates for some oligochaete annelids, Can. J. Zool. 80, 1485–1489.CrossRefGoogle Scholar
  18. Gregory T.R., Hebert P.D.N. (2003) Genome size variation in lepidopteran insects, Can J. Zool. 81, 1399–1405.CrossRefGoogle Scholar
  19. Gregory T.R., Shorthouse D.P. (2003) Genome sizes of spiders, J. Heredity 94, 285–290.CrossRefGoogle Scholar
  20. Gregory T.R., Hebert P.D.N., Kolasa J. (2000) Evolutionary implications of the relationship between genome size and body size in flatworms and copepods, Heredity 84, 201–208.PubMedCrossRefGoogle Scholar
  21. Hardie D.C., Gregory T.R., Hebert P.D.N. (2002) From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry, J. Histochem. Cytochem. 50, 735–749.PubMedCrossRefGoogle Scholar
  22. Heard T.A. (1999) The role of stingless bees in crop pollination, Annu. Rev. Entomol. 44, 183–206.PubMedCrossRefGoogle Scholar
  23. Hughes-Schrader S., Schrader F. (1956) Polyteny as a factor in the chromosomal evolution of the Pentatomini (Hemiptera), Chromosoma 8, 135–151.PubMedCrossRefGoogle Scholar
  24. Jordan J.R., Brosemer R.W. (1974) Characterization of DNA from three different bee species, J. Insect Physiol. 20, 2513–2520.PubMedCrossRefGoogle Scholar
  25. Kerr W.E. (1948) Estudos sobre o gênero Melipona, Anais Escola Superior Luiz de Queiroz 5, 182–276.Google Scholar
  26. Kerr W.E. (1952) A variação do número de cromossomas na evolução dos Hymenoptera, Sci. Gen. 4, 182–190.Google Scholar
  27. Kerr W.E., Carvalho G.A., Nascimento V.M. (1996) Abelha Uruçu. Biologia, Manejo e Conservação, Coleção Manejo da Vida Silvestre, n° 2, Belo Horizonte, Acangaú.Google Scholar
  28. Lopes D.M., Carvalho C.R., Clarindo W.R., Praça M.M., Tavares M.G. (2009) Genome size estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry, Apidologie 40, 517–523.CrossRefGoogle Scholar
  29. Lopes D.M., Pompolo S.G., Campos L.A.O., Tavares M.G. (2008) Cytogenetic characterization of Melipona rufiventris Lepeletier 1836 and Melipona mondury Smith 1863 (Hymenoptera, Apidae) by C banding and fluorochromes staining, Genet. Mol. Biol. 31, 49–52.CrossRefGoogle Scholar
  30. Loureiro J., Rodriguez E., Doležel J., Santos C. (2006a) Comparison of four nuclear isolation buffers for plant DNA flow cytometry, Ann. Bot. 98, 679–689.PubMedCrossRefGoogle Scholar
  31. Loureiro J., Rodriguez E., Doležel J., Santos C. (2006b) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content, Ann. Bot. 98, 515–527.PubMedCrossRefGoogle Scholar
  32. McLaren I., Sévigny J.M. (1989) Evolutionary and ecological significance of genome sizes in the copepod genus Pseudocalanus, Can. J. Zool. 67, 565–569.CrossRefGoogle Scholar
  33. Michener C.D. (2000) The bees of the world, The John Hopkins University Press, Baltimore.Google Scholar
  34. Moure J.S. (1992) Melikerria e Eomelipona, dois subgêneros novos em Melipona Illiger 1806 (Hyneoptera, Apidae), Anais do Encontro Brasileiro de Biologia de Abelhas e outros Insetos sociais, Naturalia (edição especial), 62–66.Google Scholar
  35. Otto F.J. (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA, in: Darzynkiewiez Z., Crissman H.A., Robinson J.P. (Eds.), Methods in Cell Biology, Vol. 33, Academic Press, San Diego, pp. 105–110.Google Scholar
  36. Pompolo S.G. (1994) Análise dos cariótipos de 19 gêneros de abelhas da subfamília Meliponinae, Anais do 1° Encontro sobre Abelhas, Ribeirão Preto, SP, Brasil 1, pp. 143–146.Google Scholar
  37. Rocha M.P., Pompolo S.G. (1998) Karyotypes and heterochromatin variation (C-bands) in Melipona species (Hymenoptera, Apidae, Meliponinae), Genet. Mol. Biol. 21, 41–45.CrossRefGoogle Scholar
  38. Rocha M.P., Pompolo S.G., Campos L.A.O. (2003) Citogenética da tribo Meliponini (Hymenoptera, Apidae), in: Melo G.A.R., Santos I.A. (Eds.), Apoidea Neotropica. Homenagem aos 90 anos de Jesus Santiago Moure, UNESC, Santa Catarina, Brasil, pp. 311–320.Google Scholar
  39. Rocha M.P., Pompolo S.G., Dergam J.A., Fernandes A., Campos L.A.O. (2002) DNA characterization and karyotypic evolution in the bee genus Melipona (Hymenoptera Meliponini), Hereditas 136, 19–27.PubMedCrossRefGoogle Scholar
  40. Rothfels K., Sexmith E., Heimburger M., Krause M.O. (1996) Chromosome size and DNA content of species of Anemone L. and related genera (Ranunculaceae), Chromosoma 20, 54–74.CrossRefGoogle Scholar
  41. Sella G., Redi C.A., Ramella L. (1993) Genome size and karyotype length in some intersticial polychaeta species of the genus Ophryotrocha (Dorvilleidae), Genome 36, 652–657.PubMedCrossRefGoogle Scholar
  42. Tarelho Z.V.S. (1973) Contribuição ao estudo citogenético dos Apoidea. Dissertação de Mestrado. Universidade de São Paulo, Ribeirão Preto, 112 p.Google Scholar
  43. Shapiro H.M. (2003) Practical flow cytometry, 4th ed., John Wiley & Sons, New Jersey.CrossRefGoogle Scholar
  44. The honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera, Nature 443, 931–949.CrossRefGoogle Scholar
  45. Tsutsui N.D., Suarez A.V., Spagna J.C., Johnston J.S. (2008) The evolution of genome size in ants, BMC Evol. Biol. 8, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Mara Garcia Tavares
    • 1
  • Carlos Roberto Carvalho
    • 1
  • Fernanda Aparecida Ferrari Soares
    • 1
  1. 1.Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations