Agronomy for Sustainable Development

, Volume 29, Issue 1, pp 11–30 | Cite as

Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review

  • Yann Devos
  • Matty Demont
  • Koen Dillen
  • Dirk Reheul
  • Matthias Kaiser
  • Olivier Sanvido
Review Article

Abstract

The adoption of genetically modified (GM) crops in the European Union (EU) raises questions on the feasibility of coexistence between GM and non-GM crops. Regulations to ensure that different cropping systems can develop side-by-side without excluding any agricultural option are currently implemented or developed by member states. The aim of this review is to explore whether nationally or regionally proposed coexistence strategies comply with the general principles established by the European Commission that ask for science-based and proportionate coexistence measures. In the first part, existing legal requirements and potential sources of adventitious mixing are reviewed. It is discussed what type of coexistence measures might be necessary to keep GM inputs below the legal tolerance threshold of 0.9%. Concentrating on cross-fertilisation as the major biological source of adventitious mixing in maize, it is then assessed to which extent available scientific data on cross-fertilisation can explain the diversity of currently proposed isolation distances by several member states. In the second part, it is analysed whether currently proposed isolation distances reflect contending policy objectives towards GM crops that largely exceed the economic scope of coexistence. It is investigated how coexistence is intersecting with a wider debate about the role of GM crops in agriculture. Based on the analysis of existing cross-fertilisation data, it is concluded that some of the currently proposed isolation distances are not in line with the coexistence principles laid down by the European Commission: they are (i) excessive from a scientific point of view; (ii) difficult to implement in practice; (iii) rarely proportional to the regional heterogeneity in the agricultural landscape; and (iv) not proportional to the farmers’ basic economic incentives for coexistence. Hence, the range of proposed isolation distances cannot simply be explained by different interpretations of available scientific data, possible error intervals and remaining uncertainties inherent in the scientific process. It is argued that other than scientific issues must be at play. One might thus claim that coexistence has become an arena of contending values and visions on the future of agriculture and on the role GM crops might play therein.

adventitious mixing Bt-maize coexistence cross-fertilisation flexible measures genetically modified (GM) crops isolation distances liability fixed measures sustainable development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott A., Schiermeier Q. (2007) Showdown for Europe, Nature 450, 928–929.PubMedGoogle Scholar
  2. Alston J.M., Hyde J., Marra M.C., Mitchell P.D. (2002) An ex ante analysis of the benefits from the adoption of corn rootworm resistant transgenic corn technology, AgBioForum 5, 71–84.Google Scholar
  3. Altieri M.A. (2005) The myth of coexistence: why transgenic crops are not compatible with agroecologically based systems of production, B. Sci. Technol. Soc. 25, 1–11.Google Scholar
  4. Angevin F., Klein E.K., Choimet C., Gauffreteau A., Lavigne C., Messéan A., Meynard J.M. (2008) Modelling impacts of cropping systems and climate on maize cross-pollination in agricultural landscape: the MAPOD model, Eur. J. Agron. 28, 471–484.Google Scholar
  5. Aylor D.E., Schultes N.P., Shields E.J. (2003) An aerobiological framework for assessing cross-pollination in maize, Agr. Forest Meteorol. 119, 111–129.Google Scholar
  6. Bannert M., Stamp P. (2007) Cross-pollination of maize at long distance, Eur. J. Agron. 27, 44–51.Google Scholar
  7. Bates S.L., Zhao J.-Z., Roush R.T., Shelton A.M. (2005) Insect resistance management in GM crops: past, present and future, Nat. Biotechnol. 25, 57–62.Google Scholar
  8. Beckie H.J., Hall L.M. (2008) Simple to complex: Modelling crop pollen-mediated gene flow, Plant Sci. 175, 615–628.Google Scholar
  9. Beckie H.J., Harker K.N., Hall S.I., Légère A., Sikkema P.H., Clayton G.W., Thomas A.G., Leeson J.Y., Ségiun-Swartz G., Simard M.J. (2006) A decade of herbicide-resistant crops in Canada, Can. J. Plant Sci. 86, 1243–1264.Google Scholar
  10. Beckmann V., Soregaroli C., Wesseler J. (2006) Coexistence rules and regulations in the European Union, Am. J. Agr. Econ. 88, 1193–1199.Google Scholar
  11. Beckmann V., Wesseler J. (2007) Spatial dimension of externalities and the Coase theorem: Implications for co-existence of transgenic crops, in: Heijman W. (Ed.), Regional Externalities, Springer, Berlin Heidelberg, pp. 223–242.Google Scholar
  12. Bello A., Porcuna J.L., Gonzálvez V., Fabeiro C. (2007) Organic farming integrity in maize cultivation in Spain, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 373–374.Google Scholar
  13. Binimelis R. (2008) Coexistence of plants and coexistence of farmers is an individual choice possible? J. Agr. Environ. Ethic. 21, 437–457.Google Scholar
  14. Bohanec M., Messéan A., Angevin F., ŽnidarŠiè M. (2007) SMAC advisor: A decision-support tool on maize co-existence, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 119–122.Google Scholar
  15. Bonny S. (2008) Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review, Agron. Sustain. Dev. 28, 21–32.Google Scholar
  16. Brimner T.A., Gallivan G.J., Stephenson G.R. (2005) Influence of herbicide-resistant canola on the environmental impact of weed management, Pest Manag. Sci. 61, 47–52.PubMedGoogle Scholar
  17. Brom F.W.A. (2000) Food, consumer concerns, and trust: food ethics for a globalizing market, J. Agr. Environ. Ethic. 12, 127–139.Google Scholar
  18. Budar F., Touzet P., De Paepe R. (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited, Genetica 117, 3–16.PubMedGoogle Scholar
  19. Bullock D.S., Desquilbet M. (2002) The economics of non-GMO segregation and identity preservation, Food Policy 27, 81–99.Google Scholar
  20. Carter C.A., Gruère G.P. (2003) Mandatory labeling of genetically modified foods: does it really provide consumer choice? AgBioForum 6, 68–70.Google Scholar
  21. Cerdeira A.L., Duke S.O. (2006) The current status and environmental impact of glyphosate-resistant crops: a review, J. Environ. Qual. 35, 1633–1658.PubMedGoogle Scholar
  22. Chapman M.A., Burke J.M. (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops, New Phytol. 170, 429–443.PubMedGoogle Scholar
  23. Chapotin S.M., Wolt J.D. (2007) Genetically modified crops for the bioeconomy: meeting public and regulatory expectations, Transgenic Res. 16, 675–688.PubMedGoogle Scholar
  24. D’Hertefeldt T., Jørgensen R.B., Pettersson L.B. (2008) Long-term persistence of GM oilseed rape in the seedbank, Biol. Lett. 4, 314–317.PubMedGoogle Scholar
  25. Damgaard C., Kjellsson G., Haldrup C. (2007) Prediction of the combined effect of various GM contamination sources of seed: a case study of oilseed rape under Danish conditions, Acta Agr. Scand. B-S. P. 57, 248–254.Google Scholar
  26. Daniell H. (2007) Transgene containment by maternal inheritance: effective or elusive? Proc. Natl Acad. Sci. USA 104, 6879–6880.PubMedGoogle Scholar
  27. Daniell H., Kumar S., Dufourmantel N. (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops, Trends Biotechnol. 23, 238–245.PubMedGoogle Scholar
  28. De Schrijver A., Devos Y., Sneyers M. (2007a) Vertical gene flow in the context of risk/safety assessment and co-existence, in: Zollitsch W., Winckler C., Waiblinger S., Haslberger A. (Eds.), Preprints of the 7th Congress of the European Society for Agriculture and Food Ethics (EurSafe2007) on Sustainable Food Production and Ethics, Wageningen Academic Publishers, pp. 57–60.Google Scholar
  29. De Schrijver A., Devos Y., Van den Bulcke M., Cadot P., De Loose M., Reheul D., Sneyers M. (2007b) Risk assessment of GM stacked events obtained from crosses between GM events, Trends Food Sci. Tech. 18, 101–109.Google Scholar
  30. Debeljak M., Ivanovska A., Džeroski S., Meier-Bethke S., Schiemann J. (2007) Modelling spatial distribution of outcrossing rates between neighboring maize fields, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 300–301.Google Scholar
  31. Delage S., Brunet Y., Dupont S., Tulet P., Pinty J.-P., Lac C., Escobar J. (2007) Atmospheric dispersal of maize pollen over the Aquitaine region, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 302–303.Google Scholar
  32. Della Porta G., Ederle D., Bucchini L., Prandi M., Verderio A., Pozzi C. (2008) Maize pollen mediated gene flow in the Po valley (Italy): source-recipient distance and effect of flowering time, Eur. J. Agron. 28, 255–265.Google Scholar
  33. Demeke T., Perry D.J., Scowcroft W.R. (2006) Adventitious presence of GMOs: scientific overview for Canadian grains, Can. J. Plant Sci. 86, 1–23.Google Scholar
  34. Demont M., Devos Y. (2008) Regulating coexistence of GM and non-GM crops without jeopardizing economic incentives, Trends Biotechnol. 26, 353–358.PubMedGoogle Scholar
  35. Demont M., Tollens E. (2004) First impact of biotechnology in the EU: Bt maize adoption in Spain, Ann. Appl. Biol. 145, 197–207.Google Scholar
  36. Demont M., Wesseler J., Tollens E. (2004) Biodiversity versus transgenic sugar beet: The one euro question, Eur. Rev. Agric. Econ. 31, 1–18.Google Scholar
  37. Demont M., Dillen K., Mathijs E., Tollens E. (2007) GM crops in Europe: how much value and for whom? EuroChoices 6, 46–53.Google Scholar
  38. Demont M., Cerovska M., Daems W., Dillen K., Fogarasi J., Mathijs E., Muška F., Soukup J., Tollens E. (2008a) Ex ante impact assessment under imperfect information: biotechnology in new Member States of the EU, J. Agr. Econ. 59, 463–486.Google Scholar
  39. Demont M., Daems W., Dillen K., Mathijs E., Sausse C., Tollens E. (2008b) Regulating coexistence in Europe: beware of the domino-effect! Ecol. Econ. 64, 683–689.Google Scholar
  40. Demont M., Daems W., Dillen K., Mathijs E., Sausse C., Tollens E. (under review) On the proportionality of EU spatial ex ante coexistence regulations, Food Policy.Google Scholar
  41. Devaux C., Lavigne C., Austerlitz F., Klein E.K. (2007) Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers, Mol. Ecol. 16, 487–499.PubMedGoogle Scholar
  42. Devos Y., Reheul D., De Schrijver A. (2005) The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization, Environ. Biosafety Res. 4, 71–87.PubMedGoogle Scholar
  43. Devos Y., Reheul D., De Schrijver A., Cors F., Moens W. (2004) Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow, Environ. Biosafety Res. 3, 135–148.PubMedGoogle Scholar
  44. Devos Y., Reheul D., De Waele D., Van Speybroeck L. (2006) The interplay between societal concerns and the regulatory frame on GM crops in the European Union, Environ. Biosafety Res. 5, 127–149.PubMedGoogle Scholar
  45. Devos Y., Reheul D., Thas O., De Clercq E.M., Cougnon M., Cordemans K. (2007) Implementing isolation perimeters around genetically modified maize fields, Agron. Sustain. Dev. 27, 155–165.Google Scholar
  46. Devos Y., Cougnon M., Thas O., Reheul D. (2008a) A method to search for optimal field allocations of transgenic maize in the context of co-existence, Environ. Biosafety Res. 7, 97–104.PubMedGoogle Scholar
  47. Devos Y., Cougnon M., Vergucht S., Bulcke R., Haesaert G., Steurbaut W., Reheul D. (2008b) Environmental impact of herbicide regimes used with genetically modified herbicide-resistant maize, Transgenic Res., DOI:10.1007/s11248-008-9181-8.Google Scholar
  48. Devos Y., De Schrijver A., Reheul D. (2008c) Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives, Environ. Monit. Assess., DOI:10.1007/s10661-008-0204-y.Google Scholar
  49. Devos Y., Maeseele P., Reheul D., Van Speybroeck L., De Waele D. (2008d) Ethics in the societal debate on genetically modified organisms: a (re)quest for Sense and Sensibility, J. Agr. Environ. Ethic. 21, 29–61.Google Scholar
  50. Devos Y., Thas O., De Clercq E.M., Cougnon M., Cordemans K., Reheul D. (2008e) Feasibility of isolation perimeters for genetically modified maize, Agron. Sustain. Dev. 28, 195–206.Google Scholar
  51. Dolezel M., Eckerstorfer M., Heissenberger A., Bartel A., Gaugitsch H. (2007) The concept of coexistence in the context of other European and national legal obligations — an analysis, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 380–381.Google Scholar
  52. Dolezel M., Pascher K., Grabherr G. (2005) Regionality as a key parameter for co-existence of genetically modified maize with conventional and organic maize, in: Messéan A. (Ed.), Proceedings of the 2nd International Conference on Co-existence between GM and non-GM based agricultural supply chains, Agropolis Productions, pp. 203–206.Google Scholar
  53. Duke S.O., Powles S.B. (2008) Glyphosate: a once-in-a-century herbicide, Pest Manag. Sci. 64, 319–325.PubMedGoogle Scholar
  54. Eastham K., Sweet J. (2002) Genetically modified organisms (GMOs): the significance of gene flow through pollen transfer, European Environment Agency, http://reports.eea.eu.int/environmental_issue _report_2002_28/en/GMOs%20for%20www.pdf.Google Scholar
  55. European Commission (2003) Commission Recommendation of 23 July 2003 on guidelines for the development of national strategies and best practices to ensure the coexistence of genetically modified crops with conventional and organic farming, Official J. European Comm. L189, 36–47.Google Scholar
  56. European Commission (2006) Report on the implementation of national measures on the co-existence of genetically modified crops with conventional and organic farming, European Commission, http://ec.europa.eu/agriculture/coexistence/sec313_en.pdf.Google Scholar
  57. Feil B., Weingartner U., Stamp P. (2003) Controlling the release of pollen from genetically modified maize and increasing its grain yield by growing mixtures of male-sterile and male-fertile plants, Euphytica 130, 163–165.Google Scholar
  58. Friesen L.F., Nelson A.G., Van Acker R.C. (2003) Evidence of contamination of pedigreed canola (Brassica napus) seedlots in western Canada with genetically modified herbicide resistance traits, Agron. J. 95, 1342–1347.Google Scholar
  59. Furtan W.H., Güzel A., Weseen A.S. (2007) Landscape clubs: coexistence of genetically modified and organic crops, Can. J. Agr. Econ. 55, 185–195.Google Scholar
  60. Ganz C., Struzyna-Schulze C., Eder J., Holz F., Schmidt K., Broer I. (2007) “Erprobungsanbau 2005”: Different crops as spacers to minimize cross fertilization between GM and non-GM maize on field scale level, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 267–268.Google Scholar
  61. Gardner J.G., Nelson G. (2008) Herbicides, glyphosate resistance and acute mammalian toxicity: simulating an environmental effect of glyphosate-resistant weeds in the USA, Pest Manag. Sci. 64, 470–478.PubMedGoogle Scholar
  62. Gaskell G., Allansdottir A., Allum N., Corchero C., Fischler C., Hampel J., Jackson J., Kronberger N., Mejlgaard N., Revuelta G., Schreiner C., Stares S., Torgersen H., Wagner W. (2006) Europeans and Biotechnology in 2005: Patterns and Trends, Eurobarometer 64.3, http://ec.europa.eu/research/press/2006/pdf/pr1906_eb_64_3_ final_report-may2006_en.pdf.Google Scholar
  63. Gianessi L.P. (2008) Economic impacts of glyphosate-resistant crops, Pest Manag. Sci. 64, 346–352.PubMedGoogle Scholar
  64. Giannakas K., Fulton M. (2002) Consumption effects of genetic modification: What if consumers are right? Agr. Econ. 19, 97–109.Google Scholar
  65. Goggi A.S., Caragea P., Lopez-Sanchez H., Westgate M., Arritt R., Clark C. (2006) Statistical analysis of outcrossing between adjacent maize grain production fields, Field Crops Res. 99, 147–157.Google Scholar
  66. Goggi A.S., Lopez-Sanchez H., Caragea P., Westgate M., Arritt R., Clark C. (2007) Gene flow in maize fields with different local pollen densities, Int. J. Biometeorol. 51, 493–503.PubMedGoogle Scholar
  67. Gómez-Barbero M., Berbel J., Rodríguez-Cerezo E. (2008) Bt corn in Spain — the performance of the EU’s first GM crop, Nat. Biotechnol. 26, 384–386.PubMedGoogle Scholar
  68. Graef F., Stachow U., Werner A., Schütte G. (2007) Agricultural practice changes with cultivating genetically modified herbicide-tolerant oilseed rape, Agr. Syst. 94, 111–118.Google Scholar
  69. Gruber S., Colbach N., Barbottin A., Pekrun C. (2008) Post-harvest gene escape and approaches for minimizing it, Cab Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 3, 1–17.Google Scholar
  70. Gruère G.P. (2006) A preliminary comparison of the retail level effects of genetically modified food labelling policies in Canada and France, Food Policy 31, 148–161.Google Scholar
  71. Gustafson D.I., Brants I.O., Horak M.J., Remund K.M., Rosenbaum E.W., Soteres J.K. (2006) Empirical modeling of genetically modified maize grain production practices to achieve European Union labeling thresholds, Crop Sci. 46, 2133–2140.Google Scholar
  72. Haegele J.W., Peterson P.A. (2007) The flow of maize pollen in a designed field plot, Maydica 52, 117–125.Google Scholar
  73. Herring R.J. (2008) Opposition to transgenic technologies: ideology, interests and collective action frames, Nature Rev. 9, 458–463.Google Scholar
  74. Hoegemeyer T.C. (2005) Method of producing field corn seed and plants, US Patent 6,875,905 B2.Google Scholar
  75. Hoyle M.H., Cresswell J.E. (2007) The effect of wind direction on cross-pollination in wind-pollinated GM crops, Ecol. Appl. 17, 1234–1243.PubMedGoogle Scholar
  76. Hubbell B.J., Welsh R. (1998) Transgenic crops: engineering a more sustainable agriculture? Agr. Hum. Values 15, 43–56.Google Scholar
  77. Hüsken A., Ammann K., Messeguer J., Papa R., Robson P., Schiemann J., Squire G., Stamp P., Sweet J., Wilhelm R. (2007) A major European synthesis of data on pollen and seed mediated gene flow in maize in the SIGMEA project, in: Stein A., Rodríguez-Cerezo E. (Eds.), Books of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 53–56.Google Scholar
  78. Hüsken A., Dietz-Pfeilstetter A. (2007) Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.), Transgenic Res. 16, 557–569.PubMedGoogle Scholar
  79. Hüsken A., Schiemann J. (2007) Impact of silage maize (Zea mays L.) on GMO quantification and coexistence, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 357–358.Google Scholar
  80. James C. (2007) Global status of commercialized biotech/GM crops: 2007, ISAAA Brief, No. 37, ISAAA, Ithaca.Google Scholar
  81. Jank B., Rath J., Gaugitsch H. (2006) Co-existence of agricultural production systems, Trends Biotechnol. 24, 198–200.PubMedGoogle Scholar
  82. Jarosz N., Loubet B., Durand B., Foueillassar X., Huber L. (2005) Variations in maize pollen emission and deposition in relation to microclimate, Environ. Sci. Technol. 39, 4377–4384.PubMedGoogle Scholar
  83. Jørgensen R.B. (2007) Oilseed rape: co-existence and gene flow from wild species, Adv. Bot. Res. 45, 451–464.Google Scholar
  84. Jørgensen T., Hauser T.P., Jørgensen R.B. (2007) Adventitious presence of other varieties in oilseed rape (Brassica napus) from seed banks and certified seed, Seed Sci. Res. 17, 115–125.Google Scholar
  85. Kaiser M. (2007) Coexistence and ethics: NIMBY-arguments reconsidered, in: Zollitsch W., Winckler C., Waiblinger S., Haslberger A. (Eds.), Preprints of the 7th Congress of the European Society for Agriculture and Food Ethics (EurSafe2007) on Sustainable Food Production and Ethics, Wageningen Academic Publishers, pp. 53–56.Google Scholar
  86. Kalaitzandonakes N.G., Bijman J. (2003) Who is driving biotechnology acceptance? Nat. Biotechnol. 21, 366–369.PubMedGoogle Scholar
  87. Kalaitzandonakes N.G., Magnier A. (2004) Biotech labeling standards and compliance costs in seed production, Choices (2nd Quarter), 1–6.Google Scholar
  88. Kasperson R.E., Kasperson J.X. (1996) The social amplification and attenuation of risk, Ann. Am. Acad. Pol. Soc. Sci. 545, 95–105.Google Scholar
  89. Kleter G.A., Bhula R., Bodnaruk K., Carazo E., Felsot A.S., Harris C.A., Katayama A., Kuiper H.A., Racke K.D., Rubin B., Shevah Y., Stephenson G.R., Tanaka K., Unsworth J., Wauchoppe R.D., Wong S.-S. (2007) Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective, Pest Manag. Sci. 63, 1107–1115.PubMedGoogle Scholar
  90. Kleter G.A., Harris C., Stephenson G., Unsworth J. (2008) Comparison of herbicide regimes and the associated potential environmental effects of glyphosate-resistant crops versus what they replace in Europe, Pest Manag. Sci. 64, 479–488.PubMedGoogle Scholar
  91. Knight J.G., Holdsworth D.K., Mather D.W. (2008) GM food and neophobia: connecting with the gatekeepers of consumer choice, J. Sci. Food Agr. 88, 739–744.Google Scholar
  92. Knispel A.L., McLachlan S., Van Acker R., Friesen L.F. (2008) Gene flow and multiple herbicide resistance in escaped canola populations, Weed Sci. 56, 72–80.Google Scholar
  93. Koch B.A. (2007) Liability and compensation schemes for damage resulting from the presence of genetically modified organisms in non-GM crops, http://ec.europa.eu/agriculture/analysis/external/liability_ gmo/full_text_en.pdf.Google Scholar
  94. Kraic J., Mihalèík P., Singer M., Plaèková A. (2007) Coexistence of genetically modified and conventional maize: practical experience on-farm in Slovakia, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 251–252.Google Scholar
  95. Kuparinen A., Schurr F., Tackenberg O., O’Hara R.B. (2007) Airmediated pollen flow from genetically modified to conventional crops, Ecol. Appl. 17, 431–440.PubMedGoogle Scholar
  96. Langhof M., Hommel B., Hüsken A., Schiemann J., Wehling P., Wilhelm R., Rühl G. (2008) Coexistence in maize: do nonmaize buffer zones reduce gene flow between maize fields? Crop Sci. 48, 305–316.Google Scholar
  97. Lapan H.E., Moschini G. (2004) Innovation and trade with endogenous market failure: The case of genetically modified products, Am. J. Agr. Econ. 86, 634–648.Google Scholar
  98. Lassen J., Jamison A. (2006) Genetic technologies meet the public: The discourses of concern, Sci. Technol. Hum. Val. 31, 8–28.Google Scholar
  99. Lauria G., Adduci G., Lener M., Pazzi F., Selva E. (2005) Applicability of the isolation distance in Italian farming systems, in: Messéan A. (Ed.), Proceedings of the 2nd International Conference on Coexistence between GM and non-GM based agricultural supply chains, Agropolis Productions, pp. 281–283.Google Scholar
  100. Lavigne C., Klein E.K., Mari J.-F., Le Ber F., Adamczyk K., Monod H., Angevin F. (2008) How do genetically modified (GM) crops contribute to background levels of GM pollen in an agricultural landscape? J. Appl. Ecol. 45, 1104–1113.Google Scholar
  101. Lécroart B., Gauffreteau A., Le Bail M., Leclaire M., Messéan A. (2007) Coexistence of GM and non-GM maize: effect of regional structural variables on GM dissemination risk, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 115–118.Google Scholar
  102. Levidow L., Bijman J. (2002) Farm inputs under pressure from the European food industry, Food Policy 27, 31–45.Google Scholar
  103. Levidow L., Boschert K. (2008) Coexistence or contradiction? GM crops versus alternative agricultures in Europe, Geoforum 39, 174–190.Google Scholar
  104. Levidow L., Carr S. (2007) GM crops on trial: technological development as a real world experiment, Futures 39, 408–431.Google Scholar
  105. Levidow L., Carr S., Wield D. (2005) European Union regulation of agribiotechnology: precautionary links between science, expertise and policy, Sci. Public Pol. 32, 261–276.Google Scholar
  106. Lipsius K., Wilhelm R., Richter O., Schmalstieg K.J., Schiemann J. (2007) Meteorological input data requirements to predict cross-pollination of GM maize with Lagrangian approaches, Environ. Biosafety Res. 5, 151–168.Google Scholar
  107. Lofstedt R.E. (2006) How can we make food risk communication better: where are we and where are we going? J. Risk Res. 9, 869–890.Google Scholar
  108. Lutman P.J.W., Berry K., Payne R.W., Simpson E., Sweet J.B., Champion G.T., May M.J., Wightman P., Walker K., Lainsbury M. (2005) Persistence of seeds from crops of conventional and herbicide tolerant oilseed rape (Brassica napus), Proc. R. Soc. Lond. B 272, 1909–1915.Google Scholar
  109. Madsen K.H., Sandøe P. (2005) Ethical reflections on herbicide-resistant crops, Pest Manag. Sci. 61, 318–325.PubMedGoogle Scholar
  110. Maeseele P.A., Schuurman D. (2008) Biotechnology and the popular press in Northern Belgium, Sci. Commun. 29, 435–471.Google Scholar
  111. Malézieux E., Crozat Y., Dupraz C., Laurans M., Makowski D., Ozier-Lafontaine H., Rapidel B., de Tourdonnet S., Valantin-Morison M. (2008) Mixing plant species in cropping systems: concepts, tools and models. A review, Agron. Sustain. Dev., DOI:10.1051/agro:2007057.Google Scholar
  112. Marks L.A., Kalaitzandonakes N., Wilkins L., Zakharova L. (2007) Mass media framing of biotechnology news, Public Underst. Sci. 16, 183–203.Google Scholar
  113. Marra M.C., Piggott N.E. (2006) The value of non-pecuniary characteristics of crop biotechnologies: A new look at the evidence, in: Just R.E., Alston J.M., Zilberman D. (Eds.), Regulating Agricultural Biotechnology: Economics and Policy, Springer, New York, pp. 145–177.Google Scholar
  114. Marsden T. (2008) Agri-food contestations in rural space: GM in its regulatory context, Geoforum 39, 191–203.Google Scholar
  115. Mazzoncini M., Balducci E., Gorelli S., Russu R., Brunori G. (2007) Coexistence scenarios between GM and GM-free corn in Tuscany region (Italy), in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 295–296.Google Scholar
  116. Melé E., Peñas G., Palaudelmás M., Serra J., Salvia J., Pla M., Nadal A., Messeguer J. (2007) Effect of volunteers on maize gene flow, in: Stein A., Rodríguez-Cerezo E. (Eds.), Books of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 249–250.Google Scholar
  117. Menrad K., Reitmeier D. (2008) Assessing economic effects: coexistence of genetically modified maize in agriculture in France and Germany, Sci. Public Pol. 35, 107–119.Google Scholar
  118. Messéan A., Angevin F. (2007) Coexistence measures for maize cultivation: lessons from gene flow and modeling studies, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 23–26.Google Scholar
  119. Messéan A., Angevin F., Gómez-Barbero M., Menrad K., Rodríguez-Cerezo E. (2006) New case studies on the coexistence of GM and non-GM crops in European agriculture, Joint Research Centre, Institute for Prospective Technological Studies, http://ftp.jrc.es/eur22102en.pdf.Google Scholar
  120. Messéan A., Sausse C., Gasquez J., Darmency H. (2007) Occurrence of genetically modified oilseed rape seeds in the harvests of subsequent conventional oilseed rape over time, Eur. J. Agron. 27, 115–122.Google Scholar
  121. Messeguer J., Palaudelmás M., Peñas G., Serra J., Salvia J., Ballester J., Bas M., Pla M., Nadal A., Melé E. (2007) Three year study of a real situation of co-existence in maize, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 93–96.Google Scholar
  122. Messeguer J., Peñas G., Ballester J., Bas M., Serra J., Salvia J., Palaudelmás M., Melé E. (2006) Pollen-mediated gene flow in maize in real situations of coexistence, Plant Biotechnol. J. 4, 633–645.PubMedGoogle Scholar
  123. Munsch M., Camp K.-H., Hüsken A., Christov N., Fouiellassar X., Stamp P. (2007) The Plus-Hybrid system in maize: biocontainment of transgenic pollen and grain yield increase, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 229–230.Google Scholar
  124. Nelson G.C., Bullock D.S. (2003) Simulating a relative environmental effect of glyphosate resistant soybeans, Ecol. Econ. 45, 189–202.Google Scholar
  125. Palaudelmàs M., Messeguer J., Peñas G., Serra J., Salvia J., Pla M., Nadal A., Melé E. (2007) Effect of sowing and flowering dates on maize gene flow, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 235–236.Google Scholar
  126. Pelletier G., Budar F. (2007) The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering, Curr. Opin. Biotech. 18, 121–125.PubMedGoogle Scholar
  127. Perry J.N. (2002) Sensitive dependencies and separation distances for genetically modified herbicide-tolerant crops, Proc. R. Soc. Lond. B 269, 1173–1176.Google Scholar
  128. Philips L. (1988) Economics of Imperfect Information, Cambridge Press, Cambridge.Google Scholar
  129. Pivard S., Adamczyk K., Lecomte J., Lavigne C., Bouvier A., Deville A., Gouyon P.H., Huet S. (2008) Where do the feral oilseed rape populations come from? A large-scale study of their possible origin in a farmland area, J. Appl. Ecol. 45, 476–485.Google Scholar
  130. Pla M., La Paz J.-L., Peñas G., García N., Palaudelmàs M., Esteve T., Messeguer J., Melé E. (2006) Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study, Transgenic Res. 15, 219–228.PubMedGoogle Scholar
  131. Powles S.B. (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt, Pest Manag. Sci. 64, 360–365.PubMedGoogle Scholar
  132. Ruf S., Karcher D., Bock R. (2007) Determining the transgene containment level provided by chloroplast transformation, Proc. Natl Acad. Sci. USA 104, 6998–7002.PubMedGoogle Scholar
  133. Russell A.W. (2008) GMOs and their contexts: a comparison of potential and actual performance of GM crops in a local agricultural setting, Geoforum 39, 213–222.Google Scholar
  134. Sabellek K., Lipsius K., Richter O., Wilhelm R. (2007) Influence of flowering heterogeneity on cross-pollination rates in maize: experiments and modeling, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 265–266.Google Scholar
  135. Sanvido O., Romeis J., Bigler F. (2007) Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation, Adv. Biochem. Engin./Biotechnol. 107, 235–278.Google Scholar
  136. Sanvido O., Widmer F., Winzeler M., Streit B., Szerencsits E., Bigler F. (2008) Definition and feasibility of isolation distances for transgenic maize, Transgenic Res. 17, 317–355.PubMedGoogle Scholar
  137. Schiemann J. (2003) Co-existence of genetically modified crops with conventional and organic farming, Environ. Biosafety Res. 2, 213–217.PubMedGoogle Scholar
  138. SCP (2001) Opinion of the Scientific Committee on Plants concerning the adventitious presence of GM seeds in conventional seeds, http://ec.europa.eu/comm/food/fs/sc/scp/out93_gmo_en.pdf.Google Scholar
  139. Shipitalo M.J., Malone R.W., Owens L.B. (2008) Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff, J. Environ. Qual. 37, 401–408.PubMedGoogle Scholar
  140. Smyth S., Khachatourians G.G., Phillips P.W.B. (2002) Liabilities and economics of transgenic crops, Nature Biotechnol. 20, 537–541.Google Scholar
  141. Stamp P., Chowchong S., Menzi M., Weingartner U., Kaeser O. (2000) Increase in the yield of cytoplasmic male sterile maize revisited, Crop Sci. 40, 1586–1587.Google Scholar
  142. Streiffer R., Rubel A. (2004) Democratic principles and mandatory labelling of genetically modified food, Pub. Affairs Quart. 18, 223–248.Google Scholar
  143. Sundstrom F., Williams J., Van Deynze A., Bradford K.J. (2002) Identity preservation of agricultural commodities, ANR Publication, No. 8077.Google Scholar
  144. Svab Z., Maliga P. (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment, Proc. Natl Acad. Sci. USA 104, 7003–7008.PubMedGoogle Scholar
  145. van de Wiel C.C.M., Dolstra O., Thissen J.T.N.M., Groeneveld R.M.W., Kok E.J., Scholtens I.M.J., Smulders M.J.M., Lotz L.A.P. (2007) Pollen-mediated gene flow in maize under agronomical conditions representative for the Netherlands, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 269–270.Google Scholar
  146. van de Wiel C.C.M., Lotz L.A.P. (2006) Outcrossing and coexistence of genetically modified with (genetically) unmodified crops: a case study of the situation in the Netherlands, Neth. J. Agr. Sci. 54, 17–35.Google Scholar
  147. Verhoog H., Matze M., Lammerts Van Bueren E., Baars T. (2003) The role of the concept of the natural (naturalness) in organic farming, J. Agr. Environ. Ethic. 16, 29–49.Google Scholar
  148. Verma D., Daniell H. (2007) Chloroplast vector systems for biotechnology applications, Plant Physiol. 145, 1129–1143.PubMedGoogle Scholar
  149. Viaud V., Monod H., Lavigne C., Angevin F., Adamczyk K. (2007) Spatial sensitivity of maize gene flow to landscape patterns: a simulation approach, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 123–126.Google Scholar
  150. Viner B., Arritt R. (2007) Predicting dispersion and viability of maize pollen using a fluid dynamic model of atmospheric turbulence, in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, p. 297.Google Scholar
  151. Weber W.E., Bringezu T., Broer I., Holz F., Eder J. (2007) Coexistence between GM and non-GM maize crops — tested in 2004 at the field scale level (Erprobungsanbau 2004), J. Agron. Crop Sci. 193, 79–92.Google Scholar
  152. Weekes R., Allnutt T., Boffey C., Morgan S., Bilton M., Daniels R., Henry C. (2007) A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK, Transgenic Res. 16, 203–211.PubMedGoogle Scholar
  153. Weekes R., Deppe C., Allnutt T., Boffey C., Morgan D., Morgan S., Bilton M., Daniels R., Henry C. (2005) Crop-to-crop gene flow using farm scale sites of oilseed rape (Brassica napus) in the UK, Transgenic Res. 14, 749–759.PubMedGoogle Scholar
  154. Weider C., Camp K.-H., Christov N., Hüsken A., Fouiellassar X., Stamp P. (2007) GM pollen containment by cytoplasmic male sterility (CMS) in maize (Zea mays L.), in: Stein A.J., Rodríguez-Cerezo E. (Eds.), Book of abstracts of the third International Conference on Coexistence between Genetically Modified (GM) and non-GM-based Agricultural Supply Chains, European Commission, pp. 65–68.Google Scholar
  155. Weingartner U., Camp K.-H., Stamp P. (2004) Impact of male sterility and xenia on grain quality traits of maize, Eur. J. Agron. 21, 239–247.Google Scholar
  156. Weingartner U., Kaeser O., Long M., Stamp P. (2002) Combining cytoplasmic male sterility and xenia increases grain yield of maize hybrids, Crop Sci. 42, 1848–1856.Google Scholar
  157. Winickoff D., Jasanoff S., Busch L., Grove-White R., Wynne B. (2005) Adjudicating the GM food wars: science, risk, and democracy in world trade law, Yale J. Int. L. 30, 81–123.Google Scholar
  158. Wu F. (2006) Mycotoxin reduction in Bt corn: potential economic, health, and regulatory impacts, Transgenic Res. 15, 277–289.PubMedGoogle Scholar
  159. Wu F. (2007) Bt corn and impact on mycotoxins, Cab Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2, 1–8.Google Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • Yann Devos
    • 1
  • Matty Demont
    • 2
    • 3
  • Koen Dillen
    • 3
  • Dirk Reheul
    • 1
  • Matthias Kaiser
    • 4
  • Olivier Sanvido
    • 5
  1. 1.Department of Plant Production, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Africa Rice Center (WARDA)Saint-LouisSenegal
  3. 3.Centre for Agricultural and Food EconomicsKatholieke Universiteit LeuvenLeuvenBelgium
  4. 4.The National Committee for Research Ethics in Science and TechnologyOsloNorway
  5. 5.Agroscope Reckenholz Tänikon Research Station ARTZürichSwitzerland

Personalised recommendations