Advertisement

Agronomy for Sustainable Development

, Volume 29, Issue 1, pp 185–212 | Cite as

Plant drought stress: effects, mechanisms and management

  • M. Farooq
  • A. Wahid
  • N. Kobayashi
  • D. Fujita
  • S. M. A. Basra
Review Article

Abstract

Scarcity of water is a severe environmental constraint to plant productivity. Drought-induced loss in crop yield probably exceeds losses from all other causes, since both the severity and duration of the stress are critical. Here, we have reviewed the effects of drought stress on the growth, phenology, water and nutrient relations, photosynthesis, assimilate partitioning, and respiration in plants. This article also describes the mechanism of drought resistance in plants on a morphological, physiological and molecular basis. Various management strategies have been proposed to cope with drought stress. Drought stress reduces leaf size, stem extension and root proliferation, disturbs plant water relations and reduces water-use efficiency. Plants display a variety of physiological and biochemical responses at cellular and whole-organism levels towards prevailing drought stress, thus making it a complex phenomenon. CO2 assimilation by leaves is reduced mainly by stomatal closure, membrane damage and disturbed activity of various enzymes, especially those of CO2 fixation and adenosine triphosphate synthesis. Enhanced metabolite flux through the photorespiratory pathway increases the oxidative load on the tissues as both processes generate reactive oxygen species. Injury caused by reactive oxygen species to biological macromolecules under drought stress is among the major deterrents to growth. Plants display a range of mechanisms to withstand drought stress. The major mechanisms include curtailed water loss by increased diffusive resistance, enhanced water uptake with prolific and deep root systems and its efficient use, and smaller and succulent leaves to reduce the transpirational loss. Among the nutrients, potassium ions help in osmotic adjustment; silicon increases root endodermal silicification and improves the cell water balance. Low-molecular-weight osmolytes, including glycinebetaine, proline and other amino acids, organic acids, and polyols, are crucial to sustain cellular functions under drought. Plant growth substances such as salicylic acid, auxins, gibberrellins, cytokinin and abscisic acid modulate the plant responses towards drought. Polyamines, citrulline and several enzymes act as antioxidants and reduce the adverse effects of water deficit. At molecular levels several drought-responsive genes and transcription factors have been identified, such as the dehydration-responsive element-binding gene, aquaporin, late embryogenesis abundant proteins and dehydrins. Plant drought tolerance can be managed by adopting strategies such as mass screening and breeding, marker-assisted selection and exogenous application of hormones and osmoprotectants to seed or growing plants, as well as engineering for drought resistance.

drought response stomatal oscillation osmoprotectants hormones stress proteins drought management CO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbate P.E., Dardanellib J.L., Cantareroc M.G., Maturanoc M., Melchiorid R.J.M., Sueroa E.E. (2004) Climatic and water availability effects on water-use efficiency in wheat, Crop Sci. 44, 474–483.CrossRefGoogle Scholar
  2. Abdul Jaleel C., Manivannan P., Sankar B., Kishorekumar A., Gopi R., Somasundaram R., Panneerselvam R. (2007) Water deficit stress mitigation by calcium chloride in Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid accumulation, Colloid Surf. B 60, 110–116.CrossRefGoogle Scholar
  3. Agarwal P.K., Agarwal P., Reddy M.K., Sopory S.K. (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants, Plant Cell Rep. 25, 1263–1274.PubMedCrossRefGoogle Scholar
  4. Aharon R., Shahak Y., Wininger S., Bendov R., Kapulnik Y., Galili G. (2003) Overexpression of a plasma membrane aquaporins in transgenic tobacco improves plant vigour under favourable growth conditions but not under drought or salt stress, Plant Cell 15, 439–447.PubMedCrossRefGoogle Scholar
  5. Ahmadi A., Baker D.A. (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat, Plant Growth Regul. 35, 81–91.CrossRefGoogle Scholar
  6. Ajouri A., Asgedom H., Becker M. (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency, J. Plant Nutr. Soil Sc. 167, 630–636CrossRefGoogle Scholar
  7. Akashi K., Miyake C., Yokota A. (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger, FEBS Lett. 508, 438–442.PubMedCrossRefGoogle Scholar
  8. Alexieva V., Sergiev I., Mapelli S., Karanov E. (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat, Plant Cell Environ. 24, 1337–1344.CrossRefGoogle Scholar
  9. Alistair M.H., Brownlee C. (2004) The generation of Ca2+ signals in plants, Annu. Rev. Plant Biol. 55, 401–27.CrossRefGoogle Scholar
  10. Andersen M.N., Asch F., Wu Y., Jensen C.R., Næsted H., Mogensen V.O., Koch K.E. (2002) Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize, Plant Physiol. 130, 591–604.PubMedCrossRefGoogle Scholar
  11. Anjum F., Yaseen M., Rasul E., Wahid A., Anjum S. (2003) Water stress in barley (Hordeum vulgare L.). I. Effect on chemical composition and chlorophyll contents, Pakistan J. Agr. Sci. 40, 45–49.Google Scholar
  12. Apel K., Hirt H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol. 55, 373–99.PubMedCrossRefGoogle Scholar
  13. Araus J.L., Slafer G.A., Reynolds M.P., Royo C. (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann. Bot. 89, 925–940.PubMedCrossRefGoogle Scholar
  14. Asch F., Dingkuhnb M., Sow A., Audebert A. (2005) Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice, Field Crop. Res. 93, 223–236.CrossRefGoogle Scholar
  15. Ashraf M., Foolad M.R. (2007) Roles of glycinebetaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot. 59, 206–216.CrossRefGoogle Scholar
  16. Atlin G.N., Lafitte H.R. (2002) Marker-assisted breeding versus direct selection for drought tolerance in rice, in: Saxena N.P., O’Toole J.C. (Eds.), Field screening for drought tolerance in crop plants with emphasis on rice, Proc. Int. Workshop on Field Screening for Drought Tolerance in Rice, Patancheru, India, 11–14 Dec 2000, ICRISAT, Patancheru, India, and The Rockefeller Foundation, New York, p. 208.Google Scholar
  17. Atteya A.M. (2003) Alteration of water relations and yield of corn genotypes in response to drought stress, Bulg. J. Plant Physiol. 29, 63–76.Google Scholar
  18. Azam F., Ashraf M., Ashraf M.Y., Iqbal N. (2005) Effect of exogenous application of glycinebetaine on capitulum size and achene number of sunflower under water stress, Int. J. Biol. Biotechnol. 2, 765–771.Google Scholar
  19. Babu R.C., Nguyen B.D., Chamarerk V.P., Shanmugasundaram P., Chezhian P., Jeyaprakash S.K., Ganesh A., Palchamy S., Sadasivam S., Sarkarung S., Wade L.J., Nguyen H.T. (2003) Genetic analysis of drought resistance in rice by molecular markers, Crop Sci. 43, 1457–1469.CrossRefGoogle Scholar
  20. Bahieldina A., Mahfouz H.T., Eissa H.F., Saleh O.M., Ramadan A.M., Ahmed I.A., Dyer W.E., El-Itriby H.A., Madkour M.A. (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance, Physiol. Plant. 123, 421–427.CrossRefGoogle Scholar
  21. Bajji M., Kinet J., Lutts S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat, Plant Growth Regul. 36, 61–70.CrossRefGoogle Scholar
  22. Ball R.A., Oosterhuis D.M., Mauromoustakos A. (1994) Growth dynamics of the cotton plant during water-deficit stress, Agron. J. 86, 788–795.CrossRefGoogle Scholar
  23. Basnayake J., Fukai S., Ouk M. (2006) Contribution of potential yield, drought tolerance and escape to adaptation of 15 rice varieties in rainfed lowlands in Cambodia. Proceedings of the Australian Agronomy Conference, Australian Society of Agronomy, Birsbane, Australia.Google Scholar
  24. Beck E.H., Fettig S., Knake C., Hartig K., Bhattarai T. (2007) Specific and unspecific responses of plants to cold and drought stress, J. Biosci. 32, 501–510.PubMedCrossRefGoogle Scholar
  25. Bektaşoĝlu B., Esin C.S, Ozyürek Mustafa O., Kubilay G., Resat A. (2006) Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method, Biochem. Bioph. Res. Co. 345, 1194–2000.CrossRefGoogle Scholar
  26. Berlett B.S., Stadtman E.R. (1997) Protein oxidation in aging, disease, and oxidative stress, J. Biol. Chem. 272, 20313–20316.PubMedCrossRefGoogle Scholar
  27. Blokhina O., Virolainen E., Fagerstedt K.V. (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot. 91, 179–194.PubMedCrossRefGoogle Scholar
  28. Borsani O., Valpuesta V., Botella M.A. (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings, Plant Physiol. 126, 1024–1030.PubMedCrossRefGoogle Scholar
  29. Bota J., Flexas J., Medrano H., (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol. 162, 671–681.CrossRefGoogle Scholar
  30. Bouchereau A., Aziz A., Larher F., Tanguy M. (1999). Polyamines and environmental challenges: Rec. Develop, Plant Sci. 140, 103–125.CrossRefGoogle Scholar
  31. Bray E.A. (1997) Plant responses to water deficit, Trends Plant Sci. 2, 48–54.CrossRefGoogle Scholar
  32. Bruce W.B., Edmeades G.O., Barker T.C. (2002) Molecular and physiological approaches to maize improvement for drought tolerance, J. Exp. Bot. 53, 13–25.PubMedCrossRefGoogle Scholar
  33. Buchanan C.D., Lim S., Salzman R.A., Kagiampakis I., Morishige D.T., Weers B.D., Klein R.R., Pratt L.H., Cordonnier-Pratt M.M., Klein P., Mullet J. (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA, Plant Mol. Biol. 58, 699–720.PubMedCrossRefGoogle Scholar
  34. Cattivelli L., Baldi P., Crosetti C., Di Fonzo N., Faccioli P., Grassi M., Mastrangelo A.M., Pecchioni N., Stanca A.M. (2002) Chromosome regions ans stress-related sequences involved in resistance to abiotic stress in triticeae, Plant Mol. Biol. 48, 649–665.CrossRefGoogle Scholar
  35. Cattivelli L., Rizza F., Badeck F.W., Mazzucotelli E., Mastrangelo A.M., Francia E., Mare C., Tondelli A., Stanca A.M. (2008) Drought tolerance improvement in crop plants: An integrative view from breeding to genomics, Field Crop. Res. 105, 1–14.CrossRefGoogle Scholar
  36. Chapman S.C., Edmeades G.O. (1999) Selection improves drought tolerance in tropical maize populations II. Direct and correlated responses among secondary traits, Crop Sci. 39, 1315–1CrossRefGoogle Scholar
  37. Chaves M.M., Oliveira M.M. (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture, J. Exp. Bot. 55, 2365–2384.PubMedCrossRefGoogle Scholar
  38. Chen M., Wang Q.Y., Cheng X.G., Xu Z.S., Li L.C., Ye X.G., Xia L.Q., Ma Y.Z. (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants, Biochem. Bioph. Res. Co. 353, 299–305.CrossRefGoogle Scholar
  39. Chen W., Provart N.J., Glazebrook J., Katagiri F., Chang H.S., Eulgem T., Mauch F., Luan S., Zou G., Whitham S.A., Budworth P.R., Tao Y., Xie Z., Chen X., Lam S., Kreps J.A, Harper J.F., Si-Ammour A., Mauch-Mani B., Heinlein M., Kobayashi K., Hohn T., Dangl J.L., Wang X., Zhu T. (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses, Plant Cell 14, 559–574.PubMedCrossRefGoogle Scholar
  40. Chen W.P., Li P.H., Chen T.H.H. (2000) Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L., Plant Cell Environ. 23, 609–618.CrossRefGoogle Scholar
  41. Cheng S.H., Willmann M.R., Chen H., Sheen J. (2002) Calcium signaling through protein kinases: the Arabidopsis calcium-dependent protein kinase gene family, Plant Physiol. 129, 469–485.PubMedCrossRefGoogle Scholar
  42. Chew O., Whelan J., Miller A.H. (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defences in plants, J. Biol. Chem. 278, 46869–46877.PubMedCrossRefGoogle Scholar
  43. Choi D.W., Rodriguez E.M., Close T.J. (2002) Barley Cbf3 Gene identification, expression pattern, and map location, Plant Physiol. 129, 1781–1787.PubMedCrossRefGoogle Scholar
  44. Close T.J. (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature, Physiol. Plant. 100, 291–296.CrossRefGoogle Scholar
  45. Coca M.A., Almoguera C., Jordano J. (1994) Expression of sunflower low molecular weight heat shock proteins during embryogenesis and persistence after germination: localization and possible functional implications, Plant Mol. Biol. 25, 479–492.PubMedCrossRefGoogle Scholar
  46. Condon A.G., Richards R.A., Rebetzke G.J., Farquhar G.D. (2004) Breeding for high water-use efficiency, J. Exp. Bot. 55, 2447–2460.PubMedCrossRefGoogle Scholar
  47. Cornic G., Bukhov N.G., Wiese C., Bligny R., Heber U. (2000) Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C-3 plants. Role of photosystem I-dependent proton pumping, Planta 210, 468–477.PubMedCrossRefGoogle Scholar
  48. Cornic G., Massacci A. (1996) Leaf photosynthesis under drought stress, in: Baker N.R., (Ed.), Photosynthesis and the Environment, Kluwer Academic Publishers, The Netherlands.Google Scholar
  49. Costa L.D., Vedove G.D., Gianquinto G., Giovanardi R., Peressotti A. (1997) Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress, Potato Res. 40, 19–34.CrossRefGoogle Scholar
  50. Craufurad P.Q., Wheeler T.R., Ellis R.H., Summerfield R.J., Prasad P.V.V. (2000) Escape and tolerance to high temperature at flowering in groundnut, J. Agr. Sci. 135, 371–378.CrossRefGoogle Scholar
  51. Creelman R.A., Mullet J.E. (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress, Proc. Natl Acad. Sci. (USA) 92, 4114–4119.CrossRefGoogle Scholar
  52. DaMatta F.M. (2004) Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding, Braz. J. Plant Physiol. 16, 1–6.CrossRefGoogle Scholar
  53. Davidson E.A., Verchot L.V., Cattanio J.H., Ackerman I.L., Carvalho H.M. (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonian, Biogeochemistry 48, 53–69.CrossRefGoogle Scholar
  54. Deltoro V.I., Calatayud A., Gimeno C., AbadõÂa A., Barreno E. (1998) Changes in chlorophyll a fuorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts, Planta 207, 224–228. =3.1ptCrossRefGoogle Scholar
  55. DeLucia E.H., Heckathorn S.A. (1989) The effect of soil drought on water-use efficiency in a contrasting Great Basin desert and Sierran montane species, Plant Cell Environ. 12, 935–940.CrossRefGoogle Scholar
  56. De Souza J.G., Da Silv J.V. (1987) Partitioning of carbohydrates in annual and perennial cotton (Gossypium hirsutum L.), J. Exp. Bot. 38, 1211–1218.CrossRefGoogle Scholar
  57. Dhanda S.S., Sethi G.S., Behl R.K. (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth, J. Agron. Crop Sci. 190, 6–12.CrossRefGoogle Scholar
  58. Dingkuhn M., Asch F. (1999) Phenological responses of Oryza sativa, O. glaberrima and inter-specific rice cultivars on a toposquence in West Africa, Euphytica 110, 109–126.CrossRefGoogle Scholar
  59. Drennan P.M., Smith M.T., Goldsworthy D., van Staden J. (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw, J. Plant Physiol. 142, 493–496.Google Scholar
  60. Du L.V., Tuong T.P. (2002) Enhancing the performance of dry-seeded rice: effects of seed priming, seedling rate, and time of seedling, in: Pandey S., Mortimer M., Wade L., Tuong T.P., Lopes K., Hardy B. (Eds.), Direct seeding: Research strategies and opportunities, International Research Institute, Manila, Philippines, pp. 241–256.Google Scholar
  61. Du Y.C., Kawamitsu Y., Nose A., Hiyane S., Murayama S., Wasano K., Uchida Y. (1996) Effects of water stress on carbon exchange rate and activities of photosynthetic enzymes in leaves of sugarcane (Saccharum Sp.), Aust. J. Plant Physiol. 23, 719–726.CrossRefGoogle Scholar
  62. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression, Plant J. 33, 751–763.PubMedCrossRefGoogle Scholar
  63. Earl H., Davis R.F. (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize, Agron. J. 95, 688–696.CrossRefGoogle Scholar
  64. Edmeades G.O., Cooper M., Lafitte R., Zinselmeier C., Ribaut J.M., Habben J.E., Löffler C., Bänziger M. (2001) Abiotic stresses and staple crops. Proceedings of the Third International Crop Science Congress, August 18–23, 2000, Hamburg, Germany, CABI.Google Scholar
  65. Egilla J.N., Davies Jr F.T., Boutton T.W (2005) Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations, Photosynthetica 43, 135–140.CrossRefGoogle Scholar
  66. Epstein E. (1994) The anomaly of silicon in plant biology, Proc. Natl Acad. Sci. (USA) 91, 11–17.CrossRefGoogle Scholar
  67. Estrada-Campuzano G., Miralles D.J., Slafer G.A. (2008) Genotypic variability and response to water stress of pre- and post-anthesis phases in triticale, Eur. J. Agron. 28, 171–177.CrossRefGoogle Scholar
  68. Farooq M., Basra S.M.A., Wahid A. (2006) Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield, Plant Growth Regul. 49, 285–294.CrossRefGoogle Scholar
  69. Farooq M., Basra, S.M.A., Ahmad N. (2007) Improving the performance of transplanted rice by seed priming, Plant Growth Regul. 51, 129–137.CrossRefGoogle Scholar
  70. Farooq M., Aziz T., Basra S.M.A., Cheema M.A., Rehamn H. (2008) Chilling tolerance in hybrid maize induced by seed priming with salicylic acid, J. Agron. Crop Sci. 194, 161–168.CrossRefGoogle Scholar
  71. Fazeli F., Ghorbanli M., Niknam V. (2007), Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars, Biol. Plant. 51, 98–103.CrossRefGoogle Scholar
  72. Folkert A.H., Elena A.G., Buitink J. (2001) Mechanisms of plant desiccation tolerance, Trends Plant Sci. 6, 431–438.CrossRefGoogle Scholar
  73. Foyer C.H., Fletcher J.M. (2001) Plant antioxidants: colour me healthy, Biologist 48, 115–120.PubMedGoogle Scholar
  74. Frederick J.R, Camp C.R., Bauer P.J. (2001) Drought-stress effects on branch and main stem seed yield and yield components of determinate soybean, Crop Sci. 41, 759–763.CrossRefGoogle Scholar
  75. Fu B.Y., Xiong J.H., Zhu L.H., Zhao X.Q., Xu H.X., Gao Y.M., Li Y.S., Xu J.L., Li Z.K. (2007) Identification of functional candidate genes for drought tolerance in rice, Mol. Genet. Genom. 278, 599–609.CrossRefGoogle Scholar
  76. Fu J., Huang B. (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress, Environ. Exp. Bot. 45, 105–114.PubMedCrossRefGoogle Scholar
  77. Gao X.P., Wang X.F., Lu Y.F., Zhang L.Y., Shen Y.Y., Liang Z., Zhang D.P. (2004) Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves, Plant Cell Environ. 27, 497–507.CrossRefGoogle Scholar
  78. Garg B.K. (2003) Nutrient uptake and management under drought: nutrient-moisture interaction, Curr. Agric. 27, 1–8.Google Scholar
  79. Gigon A., Matos A., Laffray D., Zuily-fodil Y., Pham-Thi A. (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia), Ann. Bot. 94, 345–351.PubMedCrossRefGoogle Scholar
  80. Gille L., Nohl H. (2001) The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation, Arch. Biochem. Biophys. 388, 34–38.PubMedCrossRefGoogle Scholar
  81. Gnanasiri S.P., Saneoka H., Ogata S. (1991) Cell membrane stability and leaf water relations as affected by potassium nutrition of water-stressed maize, J. Exp. Bot. 42, 739–745.CrossRefGoogle Scholar
  82. Goddijn O.J.M., Verwoerd T.C., Voogd E., Krutwagen P.W.H.H., Degraaf P.T.H.M., Poels J., Vandun K., Ponstein A.S., Damm B., Pen J. (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants, Plant Physiol. 113, 181–190.PubMedCrossRefGoogle Scholar
  83. Goetz M., Godt D.E., Guivarc’h A., Kahmann U., Chriqui D., Roitsch T. (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply, Proc. Natl Acad. Sci. (USA) 98, 6522–6527.CrossRefGoogle Scholar
  84. Golding A.J., Johnson G.N. (2003) Down-regulation of linear and activation of cyclic electron transport during drought, Planta 218, 107–114.PubMedCrossRefGoogle Scholar
  85. Gong H., Chen K., Chen G., Wang S., Zhang C. (2003) Effects of silicon on growth of wheat under drought, J. Plant Nutr. 26, 1055–1063.CrossRefGoogle Scholar
  86. Gong H., Zhu X., Chen K., Wang S., Zhang C. (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought, Plant Sci. 169, 313–321.CrossRefGoogle Scholar
  87. Gorantla M., Babu P.R., Lachagari V.B.R., Reddy A.M.M., Wusirika R., Bennetzen J.L., Reddy A.R. (2006) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings, J. Exp. Bot. 58, 253–265.PubMedCrossRefGoogle Scholar
  88. Grossman A., Takahashi H. (2001) Macronutrient utilization by photo-synthetic eukaryotes and the fabric of interactions, Annu. Rev. Plant Phys. 52, 163–210.CrossRefGoogle Scholar
  89. Halliwell B., Gutteridge J.M.C. (1999) Free radicals in biology and medicine, 3rd ed., Oxford University Press, New York, NY.Google Scholar
  90. Harmon A.C., Gribskov M., Harper J.F. (2000) CDPKs: a kinase for every Ca2+ signal? Trends Plant Sci. 5, 154–159.PubMedCrossRefGoogle Scholar
  91. Harris D., Jones M. (1997) On-farm seed priming to accelerate germination in rainfed, dry-seeded rice. Int. Rice, Res. Notes 22, 30.Google Scholar
  92. Harris D., Tripathi R.S., Joshi A. (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice, in: Pandey S., Mortimer M., Wade L., Tuong T.P., Lopes K., Hardy B. (Eds.), Direct seeding: Research Strategies and Opportunities, International Research Institute, Manila, Philippines, pp. 231–240.Google Scholar
  93. Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. (2000) Plant cellular and molecular responses to high salinity, Annu. Rev. Plant Phys. 51, 463–499.CrossRefGoogle Scholar
  94. Hattori T., Lux A., Tanimoto E., Luxova M., Sugimoto Y., Inanaga S. (2001) The effect of silicon on the growth of sorghum under drought, in: Proceedings of the 6th Symposium of the International Society of Root Research, Nagoya, Japan, 2001, pp. 348–349.Google Scholar
  95. Hattori T., Inanaga S., Tanimoto E., Lux A., Luxova’ M., Sugimoto Y. (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls, Plant Cell Physiol. 44, 743–749.PubMedCrossRefGoogle Scholar
  96. Hattori T., Inanaga S., Hideki, A., Ping A., Shigenori M., Miroslava L., Lux A. (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor, Physiol. Plant. 123, 459–466.CrossRefGoogle Scholar
  97. Havaux M. (1998) Carotenoids as membrane stabilizers in chloroplasts, Trends in Plant Sci. 3, 147–151.CrossRefGoogle Scholar
  98. Hoekstra F.A., Golovina E.A., Buitink J. (2001) Mechanisms of plant desiccation tolerance, Trends Plant Sci. 6, 431–438.PubMedCrossRefGoogle Scholar
  99. Horváth E., Pál M., Szalai G., Páldi E., Janda T. (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants, Biol. Plant. 51, 480–487.CrossRefGoogle Scholar
  100. Huang B., Liu J.Y (2006) Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum, Biochim. Biophys. Acta 1759, 263–269.PubMedGoogle Scholar
  101. Huang B.R., Fu J. (2000) Photosynthesis, respiration, and carbon allocation of two cool-season perennial grasses in response to surface soil drying, Plant Soil 227, 17–26.CrossRefGoogle Scholar
  102. Hussain M., Malik M.A., Farooq M., Ashraf M.Y., Cheema M.A. (2008) Improving Drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower, J. Agron. Crop Sci. 194, 193–199.CrossRefGoogle Scholar
  103. Ingram J., Bartels D. (1996) The molecular basis of dehydration tolerance in plants, Annu. Rev. Plant Phys. Plant Mol. Biol. 47, 377–403.CrossRefGoogle Scholar
  104. Jaglo K.R., Kleff S., Amundsen K.L., Zhang X., Haake V., Zhang J.Z., Deits T., Thomashow M.F. (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species, Plant Physiol. 127, 910–917.PubMedCrossRefGoogle Scholar
  105. Javot H., Maurel C. (2002) The role of aquaporins in root water uptake, Ann. Bot. 90, 301–313.PubMedCrossRefGoogle Scholar
  106. Javot H., Lauvergeat V., Santoni V., Martin-Laurent F., Guclu J., Vinh J., Heyes J., Franck K.I., Schaffner A.R., Bouchez D., Maurel C. (2003) Role of a single aquaporin isoform in root water uptake, Plant Cell 15, 509–522.PubMedCrossRefGoogle Scholar
  107. Jiménez A., Hernandez J.A., Ros Barcelo A., Sandalio L.M., del Rio L.A., Sevilla F. (1998) Mitochondrial and peroxisomal ascorbate peroxidase of pea leaves, Physiol. Plant. 104, 687–692.CrossRefGoogle Scholar
  108. Johansson I., Karlsson M., Shukla V.K., Chrispeels M.J., Larsson C., Kjellbom P. (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation, Plant Cell 10, 451–459.PubMedCrossRefGoogle Scholar
  109. Jongdee B., Fukai S., Cooper M. (2002) Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice, Field Crop. Res. 76, 153–163.CrossRefGoogle Scholar
  110. Joyce S.M., Cassells A.C., Mohan J.S. (2003) Stress and aberrant pheno-types in vitro culture, Plant Cell Tiss. Orga. 74, 103–121.CrossRefGoogle Scholar
  111. Kaldenhoff R., Grote K., Zhu J.J., Zimmermann U. (1998) Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana, Plant J. 14, 121–128.PubMedCrossRefGoogle Scholar
  112. Kamara A.Y., Menkir A., Badu-Apraku B., Ibikunle O. (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes, J. Agr. Sci. 141, 43–50.CrossRefGoogle Scholar
  113. Karim S., Aronsson H., Ericson H., Pirhonen M., Leyman B., Welin B., Mäntylä E., Palva E.T., Dijck P.V., Holmström K. (2007). Improved drought tolerance without undesired side effects in transgenic plants producing trehalose, Plant Mol. Biol. 64, 371–386.PubMedCrossRefGoogle Scholar
  114. Kasukabe Y., He L., Nada K., Misawa S., Ihara I., Tachibana S. (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana, Plant Cell Physiol. 45, 712–722.PubMedCrossRefGoogle Scholar
  115. Kaur S., Gupta A.K., Kaur N. (2005) Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea, J. Agron. Crop Sci. 191, 81–87.CrossRefGoogle Scholar
  116. Kavar T., Maras M., Kidric M., Sustar-Vozlic J., Meglic V. (2007) Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress, Mol. Breed. 21, 159–172.CrossRefGoogle Scholar
  117. Kawakami J., Iwama K., Jitsuyama Y. (2006) Soil water stress and the growth and yield of potato plants grown from microtubers and conventional seed tubers, Field Crop. Res. 95, 89–96.CrossRefGoogle Scholar
  118. Kawasaki S., Miyake C., Kouchi T., Yokota A. (2000) Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficit, Plant Cell Phys. 41, 864–873.CrossRefGoogle Scholar
  119. Kaya M.D., Okçub G., Ataka M., Çıkılıc Y., Kolsarıcıa Ö. (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.), Eur. J. Agron. 24, 291–295.CrossRefGoogle Scholar
  120. Kim J.Y., Mahé A., Brangeon J., Prioul J.L. (2000) A maize vacuolur invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression, Plant Physiol. 124, 71–84.PubMedCrossRefGoogle Scholar
  121. Kinnersley A.M., Turano F.J. (2000) Gama aminobutyric acid (GABA) and plant responses to stress, Crit. Rev. Plant Sci. 19, 479–509.CrossRefGoogle Scholar
  122. Kirigwi F.M., Van Ginkel M., Brown-Guedira G., Gill B.S., Paulsen G.M., Fritz A.K. (2007) Markers associated with a QTL for grain yield in wheat under drought, Mol. Breed. 20, 401–413.CrossRefGoogle Scholar
  123. Knight H. (2000) Calcium signaling during abiotic stress in plants, Int. Rev. Cytol. 195, 269–325.PubMedCrossRefGoogle Scholar
  124. Koda Y. (1997) Possible involvement of jasmonates in various morphogenic events, Physiol. Plant. 100, 639–646.CrossRefGoogle Scholar
  125. Komor E. (2000) Source physiology and assimilate transport: the interaction of sucrose metabolism, starch storage and phloem export in source leaves and the effects on sugar status in phloem, Aust. J. Plant Physiol. 27, 497–505.Google Scholar
  126. Korkmaz A., Uzunlu M., Demirkiran A.R. (2007) Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress, Acta Physiol. Plant. 29, 503–508.CrossRefGoogle Scholar
  127. Kosmas S.A., Argyrokastritis A., Loukas M.G., Eliopoulos E., Tsakas S., Kaltsikes P.J. (2006) Isolation and characterization of drought related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.), Planta 223, 329–339.PubMedCrossRefGoogle Scholar
  128. Kovtun Y., Chiu W.L., Tena G., Sheen J. (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants, Proc. Natl Acad. Sci. (USA) 97, 2940–2945.CrossRefGoogle Scholar
  129. Kramer P.J., Boyer J.S. (1995) Water relations of Plants and Soils Academic Press, San Diego.Google Scholar
  130. Kubiś J. (2003) Polyamines and “scavenging system”: influence of exogenous spermidine on catalase and guaiacol peroxidase activities, and free polyamine level in barley leaves under water deficit, Acta Physiol. Plant. 25, 337–343.CrossRefGoogle Scholar
  131. Kumar B., Pandey D.M., Goswami C.L., Jain S. (2001) Effect of growth regulators on photosynthesis. transpiration and related parameters in water stressed cotton, Biol. Plant. 44, 475–478.CrossRefGoogle Scholar
  132. Kumar J., Abbo S. (2001) Genetics of flowering time in chickpea and its bearing on productivity in the semi-arid environments, Adv. Agron. 72, 107–138.CrossRefGoogle Scholar
  133. Lafitte H.R., Yongsheng G., Yan S., Li1 Z.K. (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice, J. Exp. Bot. 58, 169–175.PubMedCrossRefGoogle Scholar
  134. Lamb C., Dixon R.A. (1997) The oxidative burst in plant disease resistance, Annu. Rev. Plant Phys. 48, 251–275.CrossRefGoogle Scholar
  135. Lambers H., Atkin O.K., Scheureater I. (1996) Respiratory patterns in roots in relation to their function, in: Waisel Y. (Ed.), Plant Roots, The Hidden Half. Marcel Dekker, New York.Google Scholar
  136. Lawlor D.W., Cornic G. (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants, Plant Cell Environ. 25, 275–294.PubMedCrossRefGoogle Scholar
  137. Lazaridou M., Koutroubas S.D. (2004) Drought effect on water use efficiency of berseem clover at various growth stages. New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress Brisbane, Australia, 26 Sept–1 Oct 2004.Google Scholar
  138. Lazaridou M., Kirilov A., Noitsakis B., Todorov N., Katerov I. (2003) The effect of water deficit on yield and water use efficiency of lucerne. Optimal forage systems for animal production and the environment, Proceedings of the 12th Symposium of the European Grassland Federation, Pleven, Bulgaria, 26–28 May 2003.Google Scholar
  139. Lee S.B., Kwon H.B., Kwon S.J., Park S.C., Jeong M.J., Han S.E., Byun M.O., Daniell H. (2004) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance, Mol. Breed. 11, 1–13.CrossRefGoogle Scholar
  140. Leport L., Turner N.C., French R.J., Barr M.D., Duda R., Davies S.L. (2006) Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment, Eur. J. Agron. 11, 279–291.CrossRefGoogle Scholar
  141. Li L., Van Staden J., Jager A.K. (1998) Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress, Plant Growth Regul. 25, 81–87.CrossRefGoogle Scholar
  142. Liang P., Pardee A.B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science 257, 967–971.PubMedCrossRefGoogle Scholar
  143. Lima A.L.S., DaMatta F.M., Pinheiro H.A., Totola M.R., Loureiro M.E. (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions, Environ. Exp. Bot. 47, 239–247.CrossRefGoogle Scholar
  144. Lindhauer M.G. (2007) Influence of K nutrition and drought on water relations and growth of sunflower (Helianthus annuus L.), Z. Pflanzenernähr. Bodenk. 148, 654–669.CrossRefGoogle Scholar
  145. Liu H.P., Dong B.H., Zhang Y.Y., Liu Z.P., Liu Y.L. (2004) Relationship between osmotic stress and the levels of free, soluble conjugated and insoluble-conjugated polyamines in leaves of wheat seedlings, Plant Sci. 166, 1261–1267.CrossRefGoogle Scholar
  146. Liu H.S., Li F.M. (2005) Root respiration, photosynthesis and grain yield of two spring wheat in response to soil drying, Plant Growth Regul. 46, 233–240.CrossRefGoogle Scholar
  147. Liu H.S., Li F.M., Xu H. (2004) Deficiency of water can enhance root respiration rate of drought-sensitive but not drought-tolerant spring wheat, Agr. Water Manage. 64, 41–48.CrossRefGoogle Scholar
  148. Liu J.H., Kitashiba H., Wang J., Ban Y., Moriguch T. (2007) Polyamines and their ability to provide environmental stress tolerance to plants, Plant Biotechnol. 24, 117–126.CrossRefGoogle Scholar
  149. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis, Plant Cell 10, 1391–1406.PubMedCrossRefGoogle Scholar
  150. Loreto F., Tricoli D., Di Marco G. (1995) On the relationship between electron transport rate and photosynthesis in leaves of the C4 plant Sorghum bicolor exposed to water stress, temperature changes and carbon metabolism inhibition, Aust. J. Plant Physiol. 22, 885–892.CrossRefGoogle Scholar
  151. Luan S., Kudla J., Rodriguez-Concepcion M., Yalovsky S., Gruissem W. (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants, Plant Cell 14, S389-S400.PubMedGoogle Scholar
  152. Ludlow M.M., Muchow R.C. (1990) A critical evaluation of traits for improving crop yields in water-limited environments, Adv. Agron. 43, 107–153.CrossRefGoogle Scholar
  153. Ludwig-Müller J. (2007) Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions, J. Plant Physiol. 164, 47–59.PubMedCrossRefGoogle Scholar
  154. Lux A., Luxová M., Morita S., Abe J., Inanaga S. (1999) Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativa L.), Can. J. Bot. 77, 955–960.Google Scholar
  155. Lux A., Luxová M., Hattori T., Inanaga S., Sugimoto Y. (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance, Physiol. Plant. 115, 87–92.PubMedCrossRefGoogle Scholar
  156. Lux A., Luxová M., Abe J., Tanimoto E., Hattori T., Inanaga S. (2003) The dynamics of silicon deposition in the sorghum root endodermis, New Phytol. 158, 437–441.CrossRefGoogle Scholar
  157. Ma X.L., Wang Y.J., Xie S.L., Wang C., Wang W. (2007) Glycinebetaine application ameliorates negative effects of drought stress in tobacco, Russ. J. Plant Physiol. 54, 472–479.CrossRefGoogle Scholar
  158. Mahajan S., Tuteja N. (2005) Cold, salinity and drought stresses: an overview, Arch. Biochem. Biophys. 444, 139–158.PubMedCrossRefGoogle Scholar
  159. Manikavelu A., Nadarajan N., Ganesh S.K., Gnanamalar R.P., Babu R.C. (2006) Drought tolerance in rice: morphological and molecular genetic consideration, Plant Growth Regul. 50, 121–138.CrossRefGoogle Scholar
  160. Mansfield T.J., Atkinson C.J. (1990) Stomatal behaviour in water stressed plants, in: Alscher R.G., Cumming J.R. (Eds.), Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Wiley-Liss, New York, pp. 241–264.Google Scholar
  161. Maroco J.P., Pereira J.S., Chaves M.M. (1997) Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species, Aust. J. Plant Physiol. 24, 381–387.CrossRefGoogle Scholar
  162. Martínez J.P., Silva H., Ledent J.F., Pinto M. (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.), Eur. J. Agron. 26, 30–38.CrossRefGoogle Scholar
  163. Mathur P.B., Devi M.J., Serraj R., Yamaguchi-Shinozaki K., Vadez V., Sharma K.K. (2004). Evaluation of transgenic groundnut lines under water limited conditions, Int. Archis Newslett. 24, 33–34.Google Scholar
  164. Maurel C., Chrispeels M.J. (2001) Aquaporins: a molecular entry into plant water relations, Plant Physiol. 125, 135–138.PubMedCrossRefGoogle Scholar
  165. Maurel C., Javot H., Lauvergeat V., Gerbeau P., Tournaire C., Santoni V., Heyes J. (2002) Molecular physiology of aquaporins in plants, Int. Rev. Cytol. 215, 105–148.PubMedCrossRefGoogle Scholar
  166. Mazahery-Laghab H., Nouri F., Abianeh H.Z. (2003) Effects of the reduction of drought stress using supplementary irrigation for sunflower (Helianthus annuus) in dry farming conditions, Pajouheshva-Sazandegi. Agron. Hort. 59, 81–86.Google Scholar
  167. McWilliams D. (2003) Drought Strategies for Cotton, Cooperative Extension Service Circular 582, College of Agriculture and Home Economics, New Mexico State University, USA.Google Scholar
  168. Miralles D.L., Slafer G.A., Lynch V. (1997) Rooting patterns in near-isogenic lines of spring wheat for dwarfism, Plant Soil 197, 79–86.CrossRefGoogle Scholar
  169. Mishra N.S., Tuteja R., Tuteja N. (2006) Signaling through MAP kinase networks in plants, Arch. Biochem. Biophys. 452, 55–68.PubMedCrossRefGoogle Scholar
  170. Moinuddin K.H.M., Khannu-Chopra R. (2004) Osmotic adjustment in chickpea in relation to seed yield and yield parameters, Crop Sci. 44, 449–455.Google Scholar
  171. Möller I.M. (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species, Annu. Rev. Plant Phys. 52, 561–591.CrossRefGoogle Scholar
  172. Monakhova O.F., Chernyadèv I.I. (2002) Protective role of kartolin-4 in wheat plants exposed to soil drought, Appl. Biochem. Micro+ 38, 373–380.CrossRefGoogle Scholar
  173. Monclus R., Dreyer E., Villar M., Delmotte F.M., Delay D., Petit J.M., Barbaroux C., Thiec D.L., Bréchet C., Brignolas F. (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoids × Populus nigra, New Phytol. 169, 765–777.PubMedCrossRefGoogle Scholar
  174. Monneveux P., Sánchez C., Beck D., Edmeades G.O. (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress, Crop Sci. 46, 180–191.CrossRefGoogle Scholar
  175. Moore A.L., Siedow J.N. (1991) The regulation and nature of the cyanide-resistant oxidase of plant mitochondria, Biochim. Biophys. Acta 1059, 121–140.PubMedCrossRefGoogle Scholar
  176. Moran J.F., Becana M., Iturbe-Ormaetxe I., Frechilla S., Klucas R.V., Aparicio-Trejo P. (1994) Drought induces oxidative stress in pea plants, Planta 194, 346–352.CrossRefGoogle Scholar
  177. Morgan P.W. (1990) Effects of abiotic stresses on plant hormone systems, in: Stress Responses in plants: adaptation and acclimation mechanisms, Wiley-Liss, Inc., pp. 113–146.Google Scholar
  178. Mori I.C., Murata Y., Yang Y., Munemasa S., Wang Y.F., Andreoli S., Tiriac H., Alonso J.M, Harper J.F., Ecker J.R., Kwak J.M., Schroeder J.I. (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure, PLoS Biol. 4, 1749–1762.CrossRefGoogle Scholar
  179. Munekage Y., Hojo M., Meurer J., Endo T., Tasaka M., Shikanai T. (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis, Cell 110, 361–371.PubMedCrossRefGoogle Scholar
  180. Munné-Bosch S., Penuelas J. (2003) Photo and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants, Planta 217, 758–766.PubMedCrossRefGoogle Scholar
  181. Munné-Bosch S., Shikanai T., Asada K. (2005) Enhanced ferredoxin-dependent cyclic electron flow around photosystem I and α-tocopherol quinone accumulation in water-stressed ndhB-inactivated tobacco mutants, Planta 222, 502–511.PubMedCrossRefGoogle Scholar
  182. Naidu B.P., Cameron D.F., Konduri S.V. (1998) Improving drought tolerance of cotton by glycinebetaine application and selection, in: Proceedings of the 9th Australian agronomy conference, Wagga Wagga.Google Scholar
  183. Nam N.H., Chauhan Y.S., Johansen C. (2001) Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines, J. Agr. Sci. 136, 179–189.CrossRefGoogle Scholar
  184. Nayyar H., Kaur S., Singh S., Upadhyaya H.D. (2006) Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling: effects on accumulation of seed reserves and yield, J. Sci. Food Agr. 86, 2076–2082.CrossRefGoogle Scholar
  185. Németh M., Janda T., Horváth E., Páldi E., Szalai G. (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize, Plant Sci. 162, 569–574.CrossRefGoogle Scholar
  186. Nerd A., Neumann P.M. (2004) Phloem water transport maintains stem growth in a drought-stressed crop cactus (Hylocereus undatus), J. Am. Soc. Hortic. Sci. 129, 486–490.Google Scholar
  187. Nerd A., Nobel P.S. (1991) Effects of drought on water relations and nonstructural carbohydrates in cladodes of Opuntia ficus-indica, Physiol. Plant. 81, 495–500.CrossRefGoogle Scholar
  188. Nguyen H.T., Babu R.C., Blum A. (1997) Breeding for drought resistance in rice: Physilogy and molecular genetics considerations, Crop Sci. 37, 1426–1434.CrossRefGoogle Scholar
  189. Nilsen E.T., Orcutte D.M. (1996) Phytohormones and plant responses to stress, in: Nilsen E.T., Orcutte D.M. (Eds.), Physiology of Plant under Stress: Abiotic Factors, John Wiley and Sons, New York, pp. 183–198.Google Scholar
  190. Niyogi K.K. (1999) Photoprotection revisited: genetic and molecular approaches, Annu. Rev. Plant Phys. 50, 333–359.CrossRefGoogle Scholar
  191. Nonami H. (1998) Plant water relations and control of cell elongation at low water potentials, J. Plant Res. 111, 373–382.CrossRefGoogle Scholar
  192. Ober E.S., Setter T.L., Madison J.T., Thompson J.F., Shapiro P.S. (1991) Influence of water deficit on maize endosperm development: enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division, Plant Physiol. 97, 154–164.PubMedCrossRefGoogle Scholar
  193. Ogbonnaya C.I., Sarr B., Brou C., Diouf O., Diop N.N., Roy-Macauley H. (2003) Selection of cowpea genotypes in hydroponics, pots, and field for drought tolerance, Crop Sci. 43, 1114–1120.CrossRefGoogle Scholar
  194. Okcu G., Kaya M.D., Atak M. (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.), Turk. J. Agr. For. 29, 237–242.Google Scholar
  195. Orvar B.L., Ellis B.E. (1997) Transgenic tobacco plants expressing anti-sense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury, Plant J. 11, 1297–1305.CrossRefGoogle Scholar
  196. Pan Y., Wu L.J., Yu Z.L. (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch), Plant Growth Regul. 49, 157–165.CrossRefGoogle Scholar
  197. Pannu R.K., Singh D.P., Singh P., Chaudhary B.D., Singh V.P. (1993) Evaluation of various plant water indices for screening the genotypes of chickpea under limited water environment, Haryana J. Agron. 9, 16–22.Google Scholar
  198. Parry M.A.J., Andralojc P.J., Khan S., Lea P.J., Keys A.J. (2002) Rubisco activity: effects of drought stress, Ann. Bot. 89, 833–839.PubMedCrossRefGoogle Scholar
  199. Pastori G., Foyer C.H., Mullineaux P. (2000) Low temperature-induced changes in the distribution of H2O2 and antioxidants between the bundle sheath and mesophyll cells of maize leaves, J. Exp. Bot. 51, 107–113.PubMedCrossRefGoogle Scholar
  200. Penna S. (2003) Building stress tolerance through overproducing trehalose in transgenic plants, Trends Plant Sci. 8, 355–357.PubMedCrossRefGoogle Scholar
  201. Pettigrew W.T. (2004) Physiological consequences of moisture deficit stress in cotton, Crop Sci. 44, 1265–1272.CrossRefGoogle Scholar
  202. Peuke A.D., Rennenberg H. (2004) Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought, Trees 18, 639–648.CrossRefGoogle Scholar
  203. Peuke A.D., Hartung W., Schraml C., Rennenberg H. (2002) Identification of drought sensitive beech ecotypes by physiological parameters, New Phytol. 154, 373–388.CrossRefGoogle Scholar
  204. Pfister-Sieber M., Braendle R. (1994) Aspects of plant behavior under anoxia and post-anoxia, Proc. R. Soc. Edinburgh 102B, 313–324.Google Scholar
  205. Philipson J.J. (2003) Optimal conditions for inducing coning of container-grown Picea sitchensis grafts: effects of applying different quantities of GA4/7, timing and duration of heat and drought treatment, and girdling, Forest. Ecol. Manag. 53, 39–52.CrossRefGoogle Scholar
  206. Pierik R., Sasidharan R., Voesenek L.A.C.J. (2007) Growth control by ethylene: adjusting phenotypes to the environment, J. Plant Growth Regul. 26, 188–200.CrossRefGoogle Scholar
  207. Pilon-Smits E.A.H., Terry N., Sears T., Kim H., Zayed A., Hwang S.B., Van Dun K., Voogd E., Verwoerd T.C., Krutwagen R.W.H.H., Goddijn O.J.M. (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress, J. Plant Physiol. 152, 525–532.Google Scholar
  208. Pinheiro H.A., DaMatta F.M., Chaves A.R.M., Fontes E.P.B., Loureiro M.E. (2004) Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought, Plant Sci. 167, 1307–1314.CrossRefGoogle Scholar
  209. Plaut Z. (2003) Plant exposure to water stress during specific growth stages, Encyclopedia of Water Science, Taylor & Francis, pp. 673–675.Google Scholar
  210. Poroyko V., Hejlek L.G., Spollen W.G., Springer G.K., Nguyen H.T., Sharp R.E., Bohnert H.J. (2005) The maize root transcriptome by serial analysis of gene expression, Plant Physiol. 138, 1700–1710.PubMedCrossRefGoogle Scholar
  211. Premachandra G.S., Saneoka H., Kanaya M., Ogata S. (1991) Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize, J. Exp. Bot. 42, 167–171.CrossRefGoogle Scholar
  212. Prochazkova D., Sairam R.K., Srivastava G.C., Singh D.V. (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves, Plant Sci. 161, 765–771.CrossRefGoogle Scholar
  213. Quan R.D., Shang M., Zhang H., Zhang J. (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize, Plant Sci. 166, 141–149.CrossRefGoogle Scholar
  214. Ramon M., Rollan F., Thevelein J., Dijck P., Leyman B. (2007) ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown, Plant Mol. Biol. 63, 195–206.PubMedCrossRefGoogle Scholar
  215. Ratnayaka H.H., Molin W.T., Sterling T.M. (2003) Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought, J. Exp. Bot. 54, 2293–2305.PubMedCrossRefGoogle Scholar
  216. Reddy A.R., Chaitanya K.V., Vivekanandan M. (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants, J. Plant Physiol. 161, 1189–1202.CrossRefGoogle Scholar
  217. Reynolds M.P., Oritz-Monasterio J.I., Mc Nab A. (2001) Application of physiology in wheat breeding, CIMMYT, Mexico.Google Scholar
  218. Riccardi L., Polignano G.B., de Giovanni C. (2001) Genotypic response of faba bean to water stress, Euphytica 118, 39–46.CrossRefGoogle Scholar
  219. Richards R.A., Rawson H.M., Johnson D.A. (1986) Glaucousness in wheat: its development, and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures, Aust. J. Plant Physiol. 13, 465–473.Google Scholar
  220. Sadiqov S.T., Akbulut M., Ehmedov V. (2002) Role of Ca2+ in drought stress signaling in wheat seedlings, Biochemistry-Moscow+ 67, 491–497.PubMedCrossRefGoogle Scholar
  221. Sairam R.K., Deshmukh P.S., Saxena D.C. (1998) Role of antioxidant systems in wheat genotypes tolerance to water stress, Biol. Plant. 41, 387–394.CrossRefGoogle Scholar
  222. Sairam R.K., Srivastava G.C., Agarwal S., Meena R.C. (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes, Biol. Plant. 49, 85–91.CrossRefGoogle Scholar
  223. Sakamoto A., Murata N. (2002) The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants, Plant Cell Environ. 25, 163–171.PubMedCrossRefGoogle Scholar
  224. Samarah N.H. (2005) Effects of drought stress on growth and yield of barley, Agron. Sustain. Dev. 25, 145–149.CrossRefGoogle Scholar
  225. Samarah N.H., Mullen R.E., Cianzio S.R., Scott P. (2006) Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling, Crop Sci. 46, 2141–2150.CrossRefGoogle Scholar
  226. Sandquist D.R., Ehleringer J.R. (2003) Population- and family-level variation of brittlebush (Encelia farinosa, Asteraceae) pubescence: its relation to drought and implications for selection in variable environments, Am. J. Bot. 90, 1481–1486.PubMedCrossRefGoogle Scholar
  227. Savant N.K., Korndörfer G.H. Datnoff L.E., Snyder G.H., (1999) Silicon nutrition and sugarcane production: a review, J. Plant Nutr. 22, 1853–1903.CrossRefGoogle Scholar
  228. Schuppler U., He P.H., John P.C.L., Munns R. (1998) Effects of water stress on cell division and cell-division-cycle-2-like cell-cycle kinase activity in wheat leaves, Plant Physiol. 117, 667–678.PubMedCrossRefGoogle Scholar
  229. Senaratna T., Touchell D., Bunn E., Dixon K. (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants, Plant Growth Regul. 30, 157–161.CrossRefGoogle Scholar
  230. Serraj R., Sinclair T.R. (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ. 25, 333–341.PubMedCrossRefGoogle Scholar
  231. Serraj R., Barry J.S., Sinclair T.R. (1998) Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress, Physiol. Plant. 102, 79–86.CrossRefGoogle Scholar
  232. Setter T.L., Flannigan B.A., Melkonian J. (2001) Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinins, Crop Sci. 41, 1530–1540.CrossRefGoogle Scholar
  233. Shakirova F.M., Sakhabutdinova A.R., Bezrukova M.V., Fatkhutdinova R.A., Fatkhutdinova D.R. (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity, Plant Sci. 164, 317–322.CrossRefGoogle Scholar
  234. Shang Z. (2000) Effect of 6-BA and KT on photophosphorylation activity in wheat flag leaves under water stress, Acta Agr. Boreali-Sinica 15, 34–38.Google Scholar
  235. Sharkey T.D. (1990) Water stress effects on photosynthesis, Photosynthetica 24, 651–661.Google Scholar
  236. Sharp R.E., Wu Y., Voetberg G.S., Soab I.N., LeNoble M.E. (1994) Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials, J. Exp. Bot. 45, 1743–1751.Google Scholar
  237. Shelp B.L., Bown A.W., McLean M.D. (1999) Metabolism and functions of gammaaminobutyric acid, Trends Plant Sci. 11, 446–452.CrossRefGoogle Scholar
  238. Shen Y.G., Zhang W.K., He S.J., Zhang J.S., Liu Q., Chen S.Y. (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress, Theor. Appl. Genet. 106, 923–930.PubMedGoogle Scholar
  239. Shinozaki K., Yamaguchi-Shinozaki K., Seki M. (2003) Regulatory network of gene expression in the drought and cold stress responses, Curr. Opin. Plant Biol. 6, 410–417.PubMedCrossRefGoogle Scholar
  240. Shugaeva N., Vyskrebentseva E., Orekhova S., Shugaev A. (2007) Effect of water deficit on respiration of conducting bundles in leaf petioles of sugar beet, Russ. J. Plant Physiol. 54, 329–335.CrossRefGoogle Scholar
  241. Siddique K.H.M., Loss S.P., Thomson B.D. (2003) Cool season grain legumes in dryland Mediterranean environments of Western Australia: Significance of early flowering in: Saxena N.P. (Ed.), Management of Agricultural Drought. Science Publishers, Enfield (NH), USA, pp. 151–161.Google Scholar
  242. Siddique M.R.B., Hamid A., Islam M.S. (2001) Drought stress effects on water relations of wheat, Bot. Bull. Acad. Sinica 41, 35–39.Google Scholar
  243. Simon-sarkadi, L., Kocsy G., Várhegyi Á., Galiba G., De Ronde J.A. 2006. Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content, Biol. Plant. 50, 793–796.CrossRefGoogle Scholar
  244. Sinaki J.M., Heravan E.M., Rad A.H.S., Noormohammadi G., Zarei G. (2007) The effects of water deficit during growth stages of canola (Brassica napus L.), Am.-Euras. J. Agri. Environ. Sci. 2, 417–422.Google Scholar
  245. Somerville C., Briscoe J. (2001) Genetic engineering and water, Science 292, 2217.PubMedCrossRefGoogle Scholar
  246. Stevens R.G., Creissen G.P., Mullineaux P.M. (2000) Characterization of pea cytosolic glutathione reductase expressed in transgenic tobacco, Planta 211, 537–545.PubMedCrossRefGoogle Scholar
  247. Subbarao G.V., Johansen C., Slinkard A.E., Rao R.C.N., Saxena N.P., Chauhan Y.S. (1995) Strategies and scope for improving drought resistance in grain legumes, Crit. Rev. Plant Sci. 14, 469–523.Google Scholar
  248. Subbarao G.V., Nam N.H., Chauhan Y.S., Johansen C. (2000) Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits, J. Plant Physiol. 157, 651–659.Google Scholar
  249. Svensson J., Ismail A.M., Palva E.T., Close T.J. (2002) Dehydrins, in: Storey K.B., Storey J.M. (Eds.), Cell and Molecular Responses to stress, Vol. 3, Sensing, Signalling and Cell Adaptation, Elsevier Science, Amsterdam, pp. 155–171.CrossRefGoogle Scholar
  250. Taiz L., Zeiger E. (2006) Plant Physiology, 4th Ed., Sinauer Associates Inc. Publishers, Massachusetts.Google Scholar
  251. Taylor I.B. (1991) Genetics of ABA synthesis, in: Davies W.J., H.G. Jones (Eds.), Abscisic acid: Physiology and Biochemistry, Bios Scientific Publishers Ltd. UK, pp. 23–38.Google Scholar
  252. Tezara W., Mitchell V.J., Driscoll S.D., Lawlor D.W. (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP, Nature 401, 914–917.CrossRefGoogle Scholar
  253. Todd E.Y., Robert B.M., Daniel R.G. (2004) ACC synthase expression regulates leaf performance and drought tolerance in maize, Plant J. 40, 813–825.CrossRefGoogle Scholar
  254. Tournaire-Roux C., Sutka M., Javot H., Gout E., Gerbeau P., Luu D.-T., Bligny R., Maurel C. (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins, Nature 425, 393–397.PubMedCrossRefGoogle Scholar
  255. Tripathy J.N., Zhang J., Robin S., Nguyen T.T., Nguyen H.T. (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress, Theor. Appl. Genet. 100, 1197–1202.CrossRefGoogle Scholar
  256. Turner N.C., Wright G.C., Siddique K.H.M. (2001) Adaptation of grain legumes (pulses) to water-limited environments, Adv. Agron. 71, 123–231.Google Scholar
  257. Tyerman S.D., Niemietz C.M., Brameley H. (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles, Plant Cell Environ. 25, 173–194.PubMedCrossRefGoogle Scholar
  258. Umezawa T., Yoshida R., Maruyama K., Yamaguchi-Shinozaki K., Shinozaki K. (2005) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stressresponsive gene expression in Arabidopsis thaliana, Proc. Natl. Acad. Sci. (USA) 101, 17306–17311.CrossRefGoogle Scholar
  259. Upreti K.K., Murti G.S.R., Bhatt R.M. (2000) Response of pea cultivars to water stress: changes in morpho-physiological characters, endogenous hormones and yield, Veg. Sci. 27, 57–61.Google Scholar
  260. Vartanian N., Marcotte L., Ciraudat J. (1994) Drought Rhizogenesis in Arabidopsis thaliana: differential responses of hormonal mutants, Plant Physiol. 104, 761–767.PubMedGoogle Scholar
  261. Venuprasad R., Lafitte H.R., Atlin G.N. (2007) Response to direct selection for grain yield under drought stress in rice, Crop Sci. 47, 285–293.CrossRefGoogle Scholar
  262. Villar-Salvador P., Planelles R., Oliet J., Peñuelas-Rubira J.L., Jacobs D.F., González M. (2004) Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery, Tree Physiol. 24, 1147–1155.PubMedGoogle Scholar
  263. Vu J.C.V., Gesch R.W., Allen L.H., Boote K.J., Bowes G. (1999) CO2 enrichment delays a rapid, drought-induced decrease in Rubisco small subunit transcript abundance, J. Plant Physiol. 155, 139–142.Google Scholar
  264. Wagner A.B., Moore A.L. (1997) Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism, Bioscience Rep. 17, 319–333.CrossRefGoogle Scholar
  265. Wahid A. (2007) Physiological implications of metabolites biosynthesis in net assimilation and heat stress tolerance of sugarcane (Saccharum officinarum) sprouts, J. Plant Res. 120, 219–228.PubMedCrossRefGoogle Scholar
  266. Wahid A., Close T.J. (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves, Biol. Plantarum 51, 104–109.CrossRefGoogle Scholar
  267. Wahid A., Rasul E. (2005) Photosynthesis in leaf, stem, flower and fruit, in: Pessarakli M. (Ed.), Handbook of Photosynthesis, 2nd ed., CRC Press, Florida, pp. 479–497.Google Scholar
  268. Wahid A., Gelani S., Ashraf M., Foolad M.R. (2007) Heat tolerance in plants: an overview, Environ. Exp. Bot. 61, 199–223.CrossRefGoogle Scholar
  269. Wan B., Lin Y., Mou T. (2007) Expression of rice Ca(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses, FEBS Lett. 581, 1179–1189.PubMedCrossRefGoogle Scholar
  270. Wang Z., Huang B. (2004) Physiological Recovery of Kentucky bluegrass from simultaneous drought and heat stress, Crop Sci. 44, 1729–1736.CrossRefGoogle Scholar
  271. Wardlaw I.F., Willenbrink J. (2000) Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling, New Phytol. 148, 413–422.CrossRefGoogle Scholar
  272. Wen X.P., Pang X.M, Matsuda N., Kita M., Inoue H., Hao Y.J., Honda C., Moriguchi T. (2007) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers, Transgenic Res, 17, 251–263.PubMedCrossRefGoogle Scholar
  273. Wery J., Silim S.N., Knights E.J., Malhotra R.S., Cousin R. (1994) Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes, Euphytica 73, 73–83.CrossRefGoogle Scholar
  274. Wilkinson S., Davies W.J. (2002) ABA-based chemical signalling: the coordination of responses to stress in plants, Plant Cell Environ. 25, 195–210.PubMedCrossRefGoogle Scholar
  275. Wingler A. (2002) The function of trehalose biosynthesis in plants, Phytochemistry 60, 437–440.PubMedCrossRefGoogle Scholar
  276. Wrzaczek M., Hirt H. (2001) Plant MAP kinase pathways: how many and what for? Biol. Cell 93, 81–87.PubMedCrossRefGoogle Scholar
  277. Xiong L., Wang R., Mao G., Koczan J.M. (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid, Plant Physiol. 142, 1065–1074.PubMedCrossRefGoogle Scholar
  278. Yadav R.S., Hash C.T., Bidinger F.R., Devos K.M., Howarth C.J. (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across environments and tester background, Euphytica 136, 265–277.CrossRefGoogle Scholar
  279. Yamada M., Morishita H., Urano K., Shiozaki N., Yamaguchi-Shinozaki K., Shinozaki K., Yoshiba Y. (2005) Effects of free proline accumulation in petunias under drought stress, J. Exp. Bot. 56, 1975–1981.PubMedCrossRefGoogle Scholar
  280. Yamaguchi-Shinozaki K., Shinozaki K. (2004) Improving drought and cold stress tolerance in transgenic rice, Proceedings of World Rice Research Conference, Tsukuba, Japan, 5–7 November 2004.Google Scholar
  281. Yang J., Zhang J., Wang Z., Zhu Q., Wang W. (2001) Remobilization of carbon reserves in response to water deficit during grain filling of rice, Field Crop. Res. 71, 47–55.CrossRefGoogle Scholar
  282. Yang J., Zhang J., Liu K., Wang Z., Liu L. (2007) Involvement of polyamines in the drought resistance of rice, J. Exp. Bot. 58, 1545–1555.PubMedCrossRefGoogle Scholar
  283. Yokota A., Kawasaki S., Iwano M., Nakamura C., Miyake C., Akashi K. (2002) Citrulline and DRIP-1 Protein (ArgE Homologue) in Drought Tolerance of Wild Watermelon, Ann. Bot. 89, 825–832.PubMedCrossRefGoogle Scholar
  284. Young T.E., Meeley R.B., Gallie D.R. (2004) ACC synthase expression regulates leaf performance and drought tolerance in maize, Plant J. 40, 813–825.PubMedCrossRefGoogle Scholar
  285. Zeid I.M., Shedeed Z.A. (2006) Response of alfalfa to putrescine treatment under drought stress, Biol. Plant. 50, 635–640.CrossRefGoogle Scholar
  286. Zhang M., Duan L., Zhai Z., Li J., Tian X., Wang B., He Z., Li Z. (2004) Effects of plant growth regulators on water deficit-induced yield loss in soybean, Proceedings of the 4th International Crop Science Congress Brisbane, Australia.Google Scholar
  287. Zhang X., Zhang Z., Chen J., Chen Q., Wang X., Huang R. (2005) Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development, Planta 222, 494–501.PubMedCrossRefGoogle Scholar
  288. Zhao J., Ren W., Zhi D., Wang L., Xia G. (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress, Plant Cell Rep. 26, 1521–1528.PubMedCrossRefGoogle Scholar
  289. Zhao T.J., Sun S., Liu Y., Liu J.M., Liu Q., Yan Y.B., Zhou H.M. (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus, J. Biol. Chem. 281, 10752–10759.PubMedCrossRefGoogle Scholar
  290. Zhou Y., Lam H.M., Zhang J. (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice, J. Exp. Bot. 58, 1207–1217.PubMedCrossRefGoogle Scholar
  291. Zhu J.K. (2002) Salt and drought stress signal transduction in plants, Annu. Rev. Plant Biol. 53, 247–273.PubMedCrossRefGoogle Scholar
  292. Zinselmeier C., Jeong B-R., Boyer J.S. (1999) Starch and the control of kernel number in Maize at low water potentials, Plant Physiol. 121, 25–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • M. Farooq
    • 1
    • 3
  • A. Wahid
    • 2
  • N. Kobayashi
    • 3
  • D. Fujita
    • 3
  • S. M. A. Basra
    • 4
  1. 1.Department of AgronomyUniversity of AgricultureFaisalabadPakistan
  2. 2.Department of BotanyUniversity of AgricultureFaisalabadPakistan
  3. 3.International Rice Research Institute (IRRI)Metro ManilaPhilippines
  4. 4.Department of Crop PhysiologyUniversity of AgricultureFaisalabadPakistan

Personalised recommendations