Agronomy for Sustainable Development

, Volume 29, Issue 1, pp 31–42 | Cite as

Agro-environmental effects due to altered cultivation practices with genetically modified herbicide-tolerant oilseed rape and implications for monitoring. A review

Review Article

Abstract

Genetically modified herbicide-tolerant oilseed rape or canola (Brassica napus L.) is at the forefront of being introduced into European agriculture. Concerns have been raised about how genetically modified oilseed rape cultivation and the modified cropping practices might impair the agro-environment. The present review compiles and categorises evidenced and potential agro-environmental effects of cultivating genetically modified oilseed rape and assesses the data quality of published references. Cropping practice changes were identified for (a) the introduction of genetically modified oilseed rape cultivation per se, (b) time, mode and rate of herbicide application, and spraying frequencies, (c) soil tillage and cover crops, (d) crop rotations and (e) coexistence measures to avoid mixing of genetically modified and non-genetically modified cultivation systems. Agro-environmental effects identified are directly linked to the herbicide tolerance technology and may impact ecological processes on various scales. The herbicide-tolerant oilseed rape biology, genotype and co-existence constraints with neighbouring agricultural systems also entail various agro-environmental effects. The potential and especially the well-evidenced adverse effects on the agroenvironment, according to European legislation, require a systematic monitoring of genetically modified oilseed rape. The most evidenced adverse effects to be monitored are persistence and/or spread of feral herbicide-tolerant oilseed rape and volunteers, transfer of herbicide tolerance to wild relatives and decline in agrobiodiversity, and development of herbicide tolerance in weeds, as well as adverse effects on field organisms and/or soil bio-geochemical cycles. Other well-evidenced potential adverse effects include reduced crop rotation options, increased late-season herbicide drift and pollution, and implications for microbial and faunal activities due to altered agrochemical profiles, as well as implications of feral herbicide-tolerant oilseed rape on neighbouring habitats.

oilseed rape canola genetically modified herbicide tolerance agricultural practice agro-environmental effects monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agronomy Guide (1999/2000) PennState University Agricultural Sciences. http://AgGuide.agronomy.psu.edu/sect6/tab6-22.htm and /.../... /tab4-24.htm.Google Scholar
  2. Andow D.A., Hilbeck A. (2004) Science-based risk assessment for non-target effects of transgenic crops, Bio-Science 54, 637–649.Google Scholar
  3. Beckie H.J., Harker K.N., Hall S.I., Légère A., Sikkema P.H., Clayton G.W., Thomas A.G., Leeson J.Y., Ségiun-Swartz G., Simard M.J. (2006) A decade of herbicide-resistant crops in Canada, Can. J. Plant Sci. 86, 1243–1264.CrossRefGoogle Scholar
  4. Begg G.S., Young M.W., Hawes C., Squire G.R. (2006) Persistence and potential impact of a GMHT trait in oilseed rape, in: Association of Applied Biologists (Ed.), GM crops — ecological dimensions, Warwick Wellesbourne, pp. 211–217.Google Scholar
  5. Benbrook C.M. (2004) Genetically engineered crops and pesticide use in the United States: The first nine years, BioTech InfoNet Technical Paper 7, Idaho, USA.Google Scholar
  6. Benton T.G., Bryant D.M., Cole L., Crick H.Q.P. (2002) Linking agricultural practice to insect and bird popu-lations: a historical study over three decades, J. Appl. Ecol. 39, 673–687.CrossRefGoogle Scholar
  7. Bohan D.A., Boffey W.H., Brooks D.R., Clark S.J., Dewar A.M., Firbank L., Haughton A.J., Hawes C., Heard M.S., May M.J., Osborne J.L., Perry J.N., Rothery P., Roy D.B., Scott R.J., Squire G.R., Woiwod I.P., Champion G.T. (2005) Effects on weed and invertebrate abundance and diversity of herbicide-tolerant winter-sown oilseed rape, Proc. R. Soc. Lond. B 272 / 1562, 463–474.CrossRefGoogle Scholar
  8. Boutin C., Jobin B. (1998) Intensity of agricultural practices and effects on adjacent habitats, Ecol. Appl. 8, 544–557.CrossRefGoogle Scholar
  9. Brimner T.A., Gallivan G.J., Stephenson G.R. (2005) Influence of herbicide-resistant canola on the environmental impact of weed management, Pest Manag. Sci. 61, 47–52.PubMedCrossRefGoogle Scholar
  10. Canola Council of Canada (2001) An agronomic and economic assessment of transgenic canola, The Growers Manual, 26 p., http://www.canola-council.org/production/gmo2.html.Google Scholar
  11. Cerdeira A.L., Duke S.O. (2006) The current status and environmental impact of glyphosate-resistant crops: a review, J. Environ. Qual. 35, 1633–1658.PubMedCrossRefGoogle Scholar
  12. Champion G.T., May M.J., Bennett S., Brooks D.R., Clark S.J., Daniels R.E., Firbank L.G., Haughton A.J., Hawes C., Heard M.S., Perry J.N., Randle Z., Rossall M.J., Rothery P., Skellern M.P., Scott R.J., Squire G.R., Thomas M.R. (2003) Crop management and agronomic context of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops, Philos. T. Roy Soc. B 358, 1801–1818.CrossRefGoogle Scholar
  13. Colbach N., Molinari N., Meynard J.M., Messean A. (2005) Spatial aspects of gene flow between rapeseed varieties and volunteers, Agron. Sustain. Dev. 25, 355–368.CrossRefGoogle Scholar
  14. Crawley M.J., Brown S.L. (2004) Spatially structured population dynamics in feral oilseed rape, Proc. R. Soc. Lond. B 271, 1909–1919.CrossRefGoogle Scholar
  15. Damgaard C., Kjellsson G. (2005) Gene flow of oilseed rape (Brassica napus) according to isolation distance and buffer zone, Agr. Ecosyst. Environ. 108, 291–301.CrossRefGoogle Scholar
  16. Damgaard C., Lükke H. (2001) A critique of the “concept” of familiarity” as used in ecological risk assessments of genetically modified plants, BioSafety J. [online] 6 (p. 18).Google Scholar
  17. Daniels R., Boffey C., Mogg R., Bond J., Clarke R. (2005) The potential for dispersal of herbicide tolerance genes from genetically-modified, herbicide-tolerant oilseed rape crops to wild relatives, Final report to DEFRA. http://www.defra.gov.uk/environment/gm/research/pdf/epg1-5-151.pdf.Google Scholar
  18. Denys C., Tscharntke T. (2002) Plant-insect communities and predator-prey ratios in field margin strips, adjacent crop fields, and fallows, Oecologia 130, 315–324.Google Scholar
  19. Devos Y., Reheul D., De Schrijver A., Cors F., Moens W. (2004) Management of herbicide-tolerant oilseed rape in Europe: A case study on minimizing vertical gene flow, Environ. Biosafety Res. 3, 135–148.PubMedCrossRefGoogle Scholar
  20. Devos Y., Reheul D., De Schrijver A. (2005) The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization, Environ. Biosafety Res. 4, 71–87.PubMedCrossRefGoogle Scholar
  21. Devos Y., Reheul D., De Waele D., Van Speybroeck L. (2006) The interplay between societal concerns and the regulatory frame on GM crops in the European Union, Environ. Biosafety Res. 5, 127–149.PubMedCrossRefGoogle Scholar
  22. Devos Y., Reheul D., Thas O., De Clercq E., Cougnon M., Cordemans K. (2007) Implementing isolation perimeters around genetically modified maize fields, Agron. Sustain. Dev. 27, 155–165.CrossRefGoogle Scholar
  23. Duke S.O. (1999) Weed management: Implications of herbicide resistant crops, http.//www.isb.vt.edu/proceedings99/proceed-ings.duke.html.Google Scholar
  24. European Commission (1991) Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market.Google Scholar
  25. European Commission (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora.Google Scholar
  26. European Commission (2001) Directive 2001/18/EC of the European Parliament and of the Council, Off. J. Eur. Communities 2001/18/EC, 1–64.Google Scholar
  27. European Commission (2003a) Directive 1830/2003 concerning the tracebility and labelling of genetically modified organisms.Google Scholar
  28. European Commission (2003b) Guidelines for the development of national strategies and best practices to ensure the co-existence of genetically modified crops with conventional and organic farming.Google Scholar
  29. Faivre R., Leenhardt D., Voltz M., Benoit M., Papy F., Dedieu G., Wallach D. (2004) Spatialising crop models, Agronomie 24, 205–217.CrossRefGoogle Scholar
  30. Firbank L.G., Forcella F. (2000) Genetically Modified Crops and Farmland Biodiversity, Science 289, 1481–1482.PubMedCrossRefGoogle Scholar
  31. Firbank L.G., Heard M.S., Woiwod I.P., Hawes C., Haughton A.J., Champion G.T., Scott R.J., Hill M.O., Dewar A.M., Squire G.R., May M.J., Brooks D.R., Bohan D.A., Daniels R.E., Osborne J.L., Roy D.B., Black H.I.J., Rothery P., Perry J.N. (2003a) An introduction to the Farm-Scale Evaluations of genetically modified herbicide-tolerant crops, J. Appl. Ecol. 40, 2–16.CrossRefGoogle Scholar
  32. Firbank L.G., Perry J.N., Squire G.R., Bohan D.A., Brooks D.R., Champion G.T., Clark S.J., Daniels R.E., Dewar A.M., Haughton A.J., Hawes C., Heard M.S., Hill M.O., May M.J., Osborne J.L., Rothery P., Roy B.A., Scott R.J., Woiwod I.P. (2003b) The implications of spring-sown genetically modified herbicide-tolerant crops for farmland biodiversity: A commentary on the Farm Scale Evaluations of spring sown crops, http://www.defra.gov.uk/environment/gm/fse/results/fse-commentary.pdf.Google Scholar
  33. Firbank L.G., Rothery P., May M.J., Clark S.J., Scott R.J., Stuart R.C., Boffey C.W.H., Brooks D.R., Champion G.T., Haughton A.J., Hawes C., Heard M.S., Dewar A.M., Perry J.N, Squire G.R. (2005) Effects of genetically modified herbicide-tolerant cropping systems on weed seedbanks in two years of following crops, Biol. Lett. [online] 2005, doi: 10.1098/rsbl.2005.0390.Google Scholar
  34. Frick B., Thomas A.G. (1992) Weed surveys in different tillage systems in south-western Ontario field crops, Can. J. Plant Sci. 72, 1337–1347.CrossRefGoogle Scholar
  35. Funk T., Wenzel G., Schwarz G. (2006) Outcrossing frequencies and distribution of oilseed rape (Brassica napus L.) in the nearest neighbourhood, Eur. J. Agron. [online] 24, 26–34.CrossRefGoogle Scholar
  36. Gafsi M. (1999) A management approach to change on farms, Agr. Syst. 61, 179–189.CrossRefGoogle Scholar
  37. Garnier A., Lecomte J. (2006) Using a spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape, Ecol. Model. 194, 141–149.CrossRefGoogle Scholar
  38. Gaskell P.T., Tanner M.F. (1991) Agricultural Change and Environmentally Sensitive Areas, Geoforum 22, 81–90.CrossRefGoogle Scholar
  39. Graef F., Schmidt G., Schröder W., Stachow U. (2005a) Determining ecoregions for environmental and GMO monitoring networks, Environ. Monit. Assess. 108, 189–203.PubMedCrossRefGoogle Scholar
  40. Graef F., Züghart W., Hommel B., Heinrich U., Stachow U., Werner A. (2005b) Methodological scheme for designing the monitoring of genetically modified crops at the regional scale, Environ. Monit. As-assess. 111, 1–26.CrossRefGoogle Scholar
  41. Graef F., Stachow U., Werner A., Schütte G. (2007) Review: Agricultural practice changes with cultivating genetically modified herbicide-tolerant oilseed rape, Agr. Syst. 94, 111–118.CrossRefGoogle Scholar
  42. Gruber S., Claupein W. (2007) Fecundity of volunteer oilseed rape and estimation of potential gene dispersal by a practice-related model, Agr. Ecosyst. Environ. 119, 401–408.CrossRefGoogle Scholar
  43. Gruber S., Pekrun C., Claupein W. (2004) Life cycle and potential gene flow of volunteer oilseed rape in different tillage systems, Weed Res. 45, 83–93.CrossRefGoogle Scholar
  44. Hails R.S. (2002) Assessing the risks associated with new agricultural practices, Nature 418, 685–688.PubMedCrossRefGoogle Scholar
  45. Halfhill M.D., Zhu B., Warwick S., Raymer P.L., Millwood R.J., Weissinger A.K., Stewart J. (2004) Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions, Environ. Biosafety Res. 3, 73–81.PubMedCrossRefGoogle Scholar
  46. Hall L., Topinka K., Huffman J., Davis L., Good A. (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers, Weed Sci. 48, 688–694.CrossRefGoogle Scholar
  47. Hayes K.R., Gregg P.C., Cupta V.V.S.R., Jessop R., Lonsdale W.M., Sindel B., Stanley J., Williams C.K. (2004) Identifying hazards in complex ecological systems. Part 3: Hierarchical holographic model for herbicide tolerant oilseed rape, Environ. Biosafety Res. 3, 109–128.PubMedCrossRefGoogle Scholar
  48. Heard M.S., Hawes C., Champion G.T., Clark S.J., Firbank L.G., Haughton A.J., Parish A.M., Perry J.N., Rothery P., Roy B.A., Scott R.J., Skellern M.P., Squire G.R., Hill M.O. (2003a) Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. II. Effects on individual species, Philos. Roy. Soc. Lond. B358, 1833–1846.Google Scholar
  49. Heard M.S., Hawes C., Champion G.T., Clark S.J., Firbank L.G., Haughton A.J., Parish A.M., Perry J.N., Rothery P., Scott R.J., Skellern M.P., Squire G.R., Hill M.O. (2003b) Weeds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. I. Effects on abundance and diversity, Philos. T. Roy. Soc. B 358, 1819–1832.CrossRefGoogle Scholar
  50. Heinemann J.A., Traavik T. (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants, Nat. Biotechnol. [online] 22, 1105–1109.PubMedCrossRefGoogle Scholar
  51. Heuer H., Kroppenstedt R.M., Lottmann J., Berg G., Smalla K. (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizospere communities are negligible relative to natural factors, Appl. Environ. Microb. 68, 1325–1335.CrossRefGoogle Scholar
  52. Hin C.J.A., Schenkelaars P., Pak G.A. (2001) Agronomic and environmental impacts of the commercial cultivation of glyphosate tolerant soybean in the USA. Centre for Agriculture and Environment, Utrecht, Centrum voor Landbouw en Milieu (CLM), 496–2001. http://www.clm.nl.Google Scholar
  53. Hole D.G., Abdel-Baky N.F., Perkins A.J., Wilson J.D., Alexander I.H., Grice P.V., Evans A.D. (2005) Does organic farming benefit biodiversity? Biol. Conserv. 122, 113–130.CrossRefGoogle Scholar
  54. James C. (2006) Global Status of Commercialized Biotech/GM Crops: 2006, ISAAA Brief No. 35, ISAAA, Ithaca, NY, http://www.isaaa.org/resources/publications/briefs/35.Google Scholar
  55. Johnson B. (2001) A critical analysis of the field scale trials of herbicide tolerant oilseed rape in the UK, in: Miklau M., Gaugitsch H., Heissenberger A. (Eds.), EU-workshop: Monitoring of environmental impacts of genetically modified plants, 9–10 November 2000, Berlin, UBA-Texte, 45/01, Umweltbundesamt, Berlin, pp. 142–148.Google Scholar
  56. Johnson B. (2004) Changing cropping systems is an important issue for GM crops, Naturschutz und Biologische Vielfalt 1, 229–239.Google Scholar
  57. Jordan D., Miles R.J., Hubbard V.C., Lorenz T. (2004) Effect of management practices and cropping systems on earthworm abundance and microbial activity in Sanborn Field: a 115-year-old agricultural field, Pedobiologia 48, 99–110.CrossRefGoogle Scholar
  58. Kleter G.A., Bhula R., Bodnaruk K., Carazo E., Felsot A.S., Harris C.A., Katayama A., Kuiper H.A., Racke K.D., Rubin B., Shevah Y., Stephenson G.R., Tanaka K., Unsworth J., Wauchope R.D., Wong S. (2007) Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective, Pest Manag. Sci. 63, 1107–1115.PubMedCrossRefGoogle Scholar
  59. Krayer von Krauss M.P.K., Casman E.A., Small M.J. (2004) Elicitation of expert judgements of uncertainty in the risk assessment of herbicide-tolerant oilseed crops, Risk Analysis 24/6, 1515–1527.PubMedCrossRefGoogle Scholar
  60. Krebs J.R., Wilson J.D., Bradbury R.B., Siriwardena G.M. (1999) The second silent spring? Nature 400, 611–612.CrossRefGoogle Scholar
  61. Kropff M.J., Bouma J., Jones J.W. (2001) Systems approaches for the design of sustainable agro-ecosystems, Agr. Syst. 70, 369–393.CrossRefGoogle Scholar
  62. Landais E. (1998) Modelling farm diversity new approaches to typology building in France, Agr. Syst. 5, 505–527.CrossRefGoogle Scholar
  63. Lang A. (2004) Monitoring the impact of Bt maize on butterflies in the field: estimation of required sample sizes, Environ. Biosafety Res. 3, 55–66.PubMedCrossRefGoogle Scholar
  64. Légère A. (2005) Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L) as a case study, Pest Manag. Sci. 61, 292–300.PubMedCrossRefGoogle Scholar
  65. Lheureux K., Menrad K. (2004) A decade of European field trials with genetically modified plants, Environ. Biosafety Res. 3, 99–107.PubMedCrossRefGoogle Scholar
  66. Lutman P.J.W., Berry K.J., Payne R.W., Simpson E.C., Sweet J., Champion G.T., May M.J., Wightman P.S., Walker K., Lainsbury M. (2005) Persistence of seeds from crops of conventional and herbicide tolerant oil-seed rape (Brassica napus), Proc. R. Soc. Lond. B 272, 1909–1915.CrossRefGoogle Scholar
  67. Madsen K.H., Blacklow W.M., Jensen J.E., Streibig J.C. (1999) Simulation of herbicide use in a crop rotation with transgenic herbicide-tolerant oilseed rape, Weed Res. 39, 95–106.CrossRefGoogle Scholar
  68. McDonald T.L. (2003) Review of environmental monitoring methods: Survey designs, Environ. Monit. Assess. 85, 277–292.PubMedCrossRefGoogle Scholar
  69. McLaughlin A., Mineau P. (1995) The impact of agricultural practices on biodiversity, Agr. Ecosyst. Environ. 55, 201–212.CrossRefGoogle Scholar
  70. Mellon M., Rissler J. (1995) Transgenic crops: USDA data on small-scale tests contribute little to commercial risk assessment, Bio/Technology 13, (96 p.).Google Scholar
  71. Messéan A., Sausse C., Gasquez J., Darmency H. (2007) Occurrence of genetically modified oilseed rape seeds in the harvests of subsequent conventional oilseed rape over time, Eur. J. Agron. 27, 115–122.CrossRefGoogle Scholar
  72. Nielsen K.M., Townsend J.P. (2004) Monitoring and modelling horizontal gene transfer, Nat. Biotechnol. 22, 1110–1114.PubMedCrossRefGoogle Scholar
  73. Orians G.H., Lack P. (1992) Arable Lands, Agr. Ecosyst. Environ. 42, 101–124.CrossRefGoogle Scholar
  74. Orson J. (2002) Gene stacking in herbicide tolerant oilseed rape: lessons from the North American experience, English Nature Research Reports, No. 443, English Nature, Norfolk, UK.Google Scholar
  75. Osinski E., Meier U., Büchs W., Weickel J., Matzdorf B. (2003) Application of biotic indicators for evaluation of sustainable land use-current procedures and future developments, Agr. Ecosyst. Environ. 98, 407–421.CrossRefGoogle Scholar
  76. Owen M. (1999) Weed management update for the next millennium, http://www.weeds.iastate.edu/mgmt/qtr99-1/weedupdate.htm.Google Scholar
  77. Owen M.D.K., Zelaya I.A. (2005) Herbicide-resistant crops and weed resistance to herbicides, Pest Manag. Sci. 61, 301–311.PubMedCrossRefGoogle Scholar
  78. Pacini C., Wossink A., Giesen G., Vazzana C., Huirne R. (2003) Evaluation of sustainability of organic, integrated and conventional farming systems: a farm and field-scale analysis, Agr. Ecosyst. Environment 95, 273–288.CrossRefGoogle Scholar
  79. Pallutt B., Hommel B. (1998) Konzept und erste Ergebnisse zur Bewertung von Glufosinat-tolerantem Raps und Mais im Rahmen einer 4-feldrigen Fruchtfolge, Z. Pflanzenk. Pflanzen, Sonderheft 16, 427–433.Google Scholar
  80. Pekrun C., Lane P.W., Lutman P.J.W. (2005) Modelling seedbank dynamics of volunteer oilseed rape (Brassica napus), Agr. Syst. 84, 1–20.CrossRefGoogle Scholar
  81. Perry J.N., Rothery P., Clark S.J., Heard M.S., Hawes C. (2003) Design, analysis and statistical power of the Farm-Scale Evaluations of genetically modified herbicide-tolerant, J. Appl. Ecol. 40, 17–31.CrossRefGoogle Scholar
  82. Pessel D., Lecomte J., Emeriau V., Krouti M., Messéan A., Gouyon H. (2001) Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields, Theor. Appl. Genet. 102, 841–846.CrossRefGoogle Scholar
  83. Prasifka J.R., Hellmich R.L., Dively G.P., Lewis L.C. (2005) Assessing the effects of pest management on nontarget arthropods: The influence of plot size and isolation, Environ. Entomol. 34, 1181–1192.CrossRefGoogle Scholar
  84. Regal P.J. (1994) Scientific principles for ecologically based risk assessment of transgenic organisms, Mol. Ecol. 3, 5–13.CrossRefGoogle Scholar
  85. Relyea R.A. (2005) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities, Ecol. Appl. 15, 618–627.CrossRefGoogle Scholar
  86. Rensing C., Newby D.T., Pepper I.L. (2002) The role of selective pressure and selfish DNA in horizontal gene transfer and soil microbial community adaptation, Soil Biol. Biochem. 34, 285–296.CrossRefGoogle Scholar
  87. Richard S., Moslemi S., Sipahutar H., Benachour N., Gseralini G.-E. (2005) Differential effects of glyphosate and Roundup on human placental cells and aromatase, Environ. Health Persp. 113, 716–720.CrossRefGoogle Scholar
  88. Rieger M.A., Lamond M., Preston C., Powles S.B., Roush R.T. (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields, Science 296, 2386–2388PubMedCrossRefGoogle Scholar
  89. Robinson R.A., Sutherland W.J. (2002) Post-war changes in arable farming and biodiversity in Great Britain, J. Appl. Ecol. 39, 157–176.CrossRefGoogle Scholar
  90. Schiemann J. (2003) Co-existence of genetically modified crops with conventional and organic farming, Environ. Biosafety Res. 2, 213–217.PubMedCrossRefGoogle Scholar
  91. Schuler T.H. (2004) GM crops: Good or bad for natural enemies? in: Association of Applied Biologists (Ed.), GM crops — ecological dimensions 74, Wellesbourne, Warwick, pp. 81–90.Google Scholar
  92. Schütte G., Stachow U., Werner A. (2004) Agronomic and environmental aspects of the cultivation of transgenic herbicide resistant plants, UBA-Texte 11/04, Umweltbundesamt, Berlin.Google Scholar
  93. Senior I.J., Dale P.J. (2002) Herbicide-tolerant crops in agriculture: oilseed rape as a case study, Plant Breeding 121, 97–107.CrossRefGoogle Scholar
  94. Service R.F. (2007) A growing threat down on the farm, Science 316, 1114–1117.PubMedCrossRefGoogle Scholar
  95. Simard M.-J., Légère A., Séguin-Schwartz G., Nair H., Warwick S. (2005) Fitness of double vs. single herbicide-resistant canola, Weed Sci. 53, 489–498.CrossRefGoogle Scholar
  96. Snow A.A. (2003) Consequences of gene flow, Environ. Biosafety Res. 2, 43–46.PubMedGoogle Scholar
  97. Squire G.R., Brooks D.R., Bohan D.A., Champion G.T., Daniels R.E., Haughton A.J., Hawes C., Heard M.S., Hill M.O., May M.J., Osborne J.L., Perry J.N., Roy D.B., Woiwod I.P., Firbank L.G. (2003) On the rationale and interpretation of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops, Philos. T. Roy. Soc. B 358, 1779–1799.CrossRefGoogle Scholar
  98. Stein A., Ettema C. (2003) An overview of spatial sampling procedures and experimental design of spatial studies for ecosystem comparisons, Agr. Ecosyst. Environ. 94, 31–47.CrossRefGoogle Scholar
  99. Strandberg B., Bruus Pedersen M., Elmegaard N. (2005) Weed and arthropod populations in conventional and genetically modified herbicide tolerant fodder beet fields, Agr. Ecosyst. Environ. 105, 243–253.CrossRefGoogle Scholar
  100. Sweet J., Simpson E.C., Law J.R., Horstman A., Lutman P.J.W., Berry K.J., Payne R.W., May M.J., Champion G.T., Walker J.H., Wightman P.S., Lainsbury M.A. (2004) Bright: Botanical and rotational implications of genetically modified herbicide tolerance, in: GM crops — ecological dimensions, Association of Applied Biologists 74, Wellesbourne, Warwick, pp. 207–210.Google Scholar
  101. Thorbek P., Bilde T. (2004) Reduced numbers of generalist arthropod predators after crop management, J. Appl. Ecol. 41, 526–538.CrossRefGoogle Scholar
  102. Van Acker R.C., Brûlé-Babel A.L., Friesen L.F. (2003) An environmental safety assessment of Roundup Ready wheat: Risks for direct seeding systems in Western Canada, http://www.cwb.ca/en/topics/biotechnology/report/pdf/070803.pdf.Google Scholar
  103. Watkinson A.R., Freckleton R.P., Robinson R.A., Sutherland W.J. (2000) Predictions of biodiversity response to genetically modified herbicide-tolerant crops, Science 289, 1554–1557.PubMedCrossRefGoogle Scholar
  104. Werner A., Berger G., Stachow U., Glemnitz M. (2000) Abschätzung der Auswirkungen transgener Sorten auf Umweltqualitätsziele, TA project report, BATS, Basel.Google Scholar
  105. Wilkinson M.J., Davenport I.J., Charters Y.M., Jones A.E., Allainguillaume J., Butler H.T., Mason D.C., Raybould A.F. (2000) A direct regional scale estimate of transgene movement from genetically modified oil-seed rape to its wild progenitors, Mol. Ecol. 9, 983–991.PubMedCrossRefGoogle Scholar
  106. Wolfenbarger L.L., Phifer P.R. (2000) The ecological risks and benefits of genetically engineered plants, Science 290, 2088–2093.PubMedCrossRefGoogle Scholar
  107. Yoshimura Y., Beckie H.J., Matsuo K. (2006) Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada, Environ. Biosafety Res. 5, 67–75.PubMedCrossRefGoogle Scholar
  108. Züghart W., Breckling B. (2003) Konzeptionelle Entwicklung eines Monitoring von Umweltwirkungen transgener Kulturpflanzen, UBA-Texte 50/03, Umweltbundesamt, Berlin.Google Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  1. 1.Dept. for Land Use Systems and Landscape EcologyLeibniz-Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  2. 2.Federal Agency for Nature Conservation (BfN)BonnGermany

Personalised recommendations