Advertisement

Agronomy for Sustainable Development

, Volume 27, Issue 4, pp 347–356 | Cite as

Undersowing wheat with different living mulches in a no-till system. I. Yield analysis

  • Matthieu Carof
  • Stéphane de Tourdonnet
  • Patrick Saulas
  • Dominique Le Floch
  • Jean Roger-Estrade
Original Article

Abstract

The classical management of no-till wheat has several environmental and economic drawbacks such as the use and cost of herbicides, and the degradation of soil physical quality. Recent investigations suggest that undersowing crops with a living mulch could be a sustainable alternative. Therefore, we studied during three growing seasons the effect of undersowing wheat with living mulches on wheat grain yield. Treatments were wheat grown on a conventionally-tilled soil, on a no-till soil, and on a no-till soil with various living mulches. The living mulches were red fescue, sheep’s fescue, alfalfa, bird’s-foot-trefoil, black medic and white clover. Our results show that the use of living muches during wheat cropping decreased wheat yield of 19–81% by comparison with wheat cropped alone. This decrease is linked to the biomass of living mulches and weeds at the time of flowering. As a consequence, the control of living mulch and weed biomass is a major issue. Our findings also reveal that the wheat yield decrease is mainly the consequence of a decrease in grain number from 37 to 32 grains per spike on average, and of a decrease in spike number from 0.7 to 0.4 spikes per stem. We thus conclude that stem elongation, flowering and fecundation are the major stages of stress for wheat grown with living mulches. Our findings will help to design innovative crop management systems that take into account the biological interactions in agro-ecosystems better.

no-tillage undersowing winter wheat (Triticum aestivum L.) leguminous and grass living mulches grain yield yield components 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anken T., Weisskopf P., Zihlmann U., Forrer H., Jansa J., Perhacova K., (2004) Long-term tillage system effects under moist cool conditions in Switzerland, Soil Till. Res. 78, 171–183.CrossRefGoogle Scholar
  2. Bàrberi P., Lo Cascio B. (2001) Long-term tillage and crop rotation effects on weed seedbank size and composition, Weed Res. 41, 325–340.CrossRefGoogle Scholar
  3. Basic F., Kisic I., Mesic M., Nestroy O., Butorac A. (2004) Tillage and crop management effects on soil erosion in central Croatia, Soil Till. Res. 78, 197–206.CrossRefGoogle Scholar
  4. Baumhardt R.L., Jones O.R. (2002) Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas, Soil Till. Res. 68, 71–82.CrossRefGoogle Scholar
  5. Carof M., de Tourdonnet S., Saulas P., Le Floch D., Roger-Estrade J. (2007) Undersowing wheat with different living mulches in a no-till system II. Competition for light and nitrogen, Agron. Sustain. Dev. 27, 357–365.CrossRefGoogle Scholar
  6. Demotes-Mainard S., Doussunault G., Meynard J.-M. (1995) Effects of low radiation and low temperature at meiosis on pollen viability and grain set in wheat, Agronomie 15, 357–365.CrossRefGoogle Scholar
  7. Donaldson E., Schillinger W.F., Dofing S.M. (2001) Straw production and grain yield relationships in winter wheat, Crop Sci. 41, 100–106.CrossRefGoogle Scholar
  8. FAO-UNESCO (1974) Soil map of the world, 1:5 000 000, FAO, Roma (Italy).Google Scholar
  9. Ferreras L.A., Costa J.L., Garcia F.O., Pecorari C. (2000) Effects of no-tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern “Pampa” of Argentina, Soil Till. Res. 54, 31–39.CrossRefGoogle Scholar
  10. Ferron P., Deguine J.-P. (2005) Crop protection, biological control, habitat management and integrated farming. A review, Agron. Sustain. Dev. 25, 17–24.CrossRefGoogle Scholar
  11. Gooding M.J., Dimmock J.P.R.E., France J., Jones S.A. (2000) Green leaf area decline of wheat flag leaves: the influence of fungicides and relationships with mean grain weight and grain yield, Ann. Appl. Biol. 136, 77–84.CrossRefGoogle Scholar
  12. Hartwig N.L., Ammon H.U. (2002) Cover crops and living mulches, Weed Sci. 50, 688–699.CrossRefGoogle Scholar
  13. Hatfield J.L., Karlen D.L. (1994) Sustainable agricultural systems, Lewis Publishers, CRC Press, Boca Raton, USA.Google Scholar
  14. Hemmat A., Eskandari I. (2004) Tillage system effects upon productivity of a dryland winter wheat-chickpea rotation in the northwest region of Iran, Soil Till. Res. 78, 69–81.CrossRefGoogle Scholar
  15. Holland J.M. (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence, Agr. Ecosyst. Environ. 103, 1–25.CrossRefGoogle Scholar
  16. Humphries A.W., Latta R.A., Auricht G.C., Bellotti WD. (2004) Overcropping lucerne with wheat: effect of lucerne winter activity on total plant production and water use of the mixture, and wheat yield and quality, Aust. J. Agr. Res. 55, 839–848.CrossRefGoogle Scholar
  17. Jeuffroy M.-H., Bouchard C. (1999) Intensity and duration of nitrogen deficiency on wheat grain number, Crop Sci. 39, 1385–1393.CrossRefGoogle Scholar
  18. Kinsella J. (1995) The effects of various tillage systems on soil compaction, in: Soil and Water Conservation Society (Ed.), Farming for a better environment, ankeny, USA, pp. 15–17.Google Scholar
  19. Lacas J.-G., Voltz M., Gouy V., Carluer N., Gril J.-J. (2005) Using grassed stips to limit pesticide transfer to surface water: a review, Agron. Sustain. Dev. 25, 253–266.CrossRefGoogle Scholar
  20. Lampurlanès J., Cantero-Martínez C. (2003) Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth, Agron. J. 95, 526–536.CrossRefGoogle Scholar
  21. Leterme P., Manichon H., Roger-Estrade J. (1994) Yield analysis of wheat grown in an on-farm field network in Thymerais (France), Agronomie 14, 341–361.CrossRefGoogle Scholar
  22. Masle J. (1981a) Élaboration du nombre d’épis d’un peuplement de blé d’hiver en situation de compétition pour l’azote. I. Mise en évidence d’un stade critique pour la montée d’une talle, Agronomie 1, 623–632.CrossRefGoogle Scholar
  23. Masle J. (1981b) Relations entre croissance et développement pendant la montaison d’un peuplement de blé d’hiver. Influence des conditions de nutrition, Agronomie 1, 365–374.CrossRefGoogle Scholar
  24. McMaster G.S., Wilhelm W.W., Bartling P.N.S. (1994) Irrigation and culm contribution to yield and yield components of winter wheat, Agron. J. 86, 1123–1127.CrossRefGoogle Scholar
  25. Meynard J.-M., David G. (1992) Diagnosis of crop yield elaboration, Cah. Agr. 1, 9–19.Google Scholar
  26. Nakamoto T., Tsukamoto M. (2006) Abundance and activity of soil organisms in fields of maize grown with a white clover living mulch, Agr. Ecosyst. Environ. 115, 34–42.CrossRefGoogle Scholar
  27. Norwood C.A. (2000) Dryland winter wheat as affected by previous crops, Agron. J. 92, 121–127.Google Scholar
  28. Rémy J.C., Hébert J. (1977), Le devenir des engrais azotés dans le sol, Comptes-rendus de l’Académie d’Agriculture Française 63, 700–710.Google Scholar
  29. Samarajeewa K.B.D.P., Horiuchi T., Oba S. (2005) Weed population dynamics in wheat as affected by Astragalus sinicus L. (Chinese milk vetch) under reduced tillage, Crop Prot. 24, 864–869.CrossRefGoogle Scholar
  30. Sánchez-Gíron V., Serrano A., Hernánz J.L., Navarrete L. (2004) Economic assessment of three long-term tillage systems for rain-fed cereal and legume production in semiarid central Spain, Soil Till. Res. 78, 35–44.CrossRefGoogle Scholar
  31. SAS Istitute Inc. (1999) SAS OnlineDoc®Version 8, SAS Institute Cary, NC.Google Scholar
  32. Scopel E., Findeling A., Chavez Guerra E., Corbeels M. (2005) Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield, Agron. Sustain. Dev. 25, 425–432.CrossRefGoogle Scholar
  33. Teasdale J.R. (1996) Contribution of cover crops to weed management in sustainable agricultural systems, J. Prod. Agr. 9, 475–479.Google Scholar
  34. Tebrügge F., Düring R.A. (1999) Reducing tillage — a review of results from a long-term study in Germany, Soil Till. Res. 53, 15–28.CrossRefGoogle Scholar
  35. Thorsted M.D., Olesen J., Weiner J. (2006) Mechanical control of clover improves nitrogen supply and growth of wheat in winter wheat/white clover intercropping, Eur. J. Agron. 24, 149–155.CrossRefGoogle Scholar
  36. White J.G., Scott T.W. (1991) Effects of perennial forage-legume living mulches on no-till winter wheat and rye, Field Crop. Res. 28, 135–148.CrossRefGoogle Scholar
  37. Wright A.L., Hons F.M. (2005) Tillage impacts on soil aggregation and carbon and nitrogen sequestration under wheat cropping sequences, Soil Till. Res. 84, 67–75.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • Matthieu Carof
    • 1
  • Stéphane de Tourdonnet
    • 1
  • Patrick Saulas
    • 2
  • Dominique Le Floch
    • 1
  • Jean Roger-Estrade
    • 1
  1. 1.AgroParisTech, UMR211INRA/AgroParisTechThiverval-GrignonFrance
  2. 2.INRA, UMR211INRA/AgroParisTechThiverval-GrignonFrance

Personalised recommendations