Agronomy for Sustainable Development

, Volume 27, Issue 1, pp 1–12

Environmental costs and benefits of transportation biofuel production from food- and lignocellulose-based energy crops. A review

Review Article


Transportation biofuel production in the United States is currently dominated by ethanol from the grain of maize and, to a much lesser extent, biodiesel from soybeans. Although using these biofuels avoids many of the environmentally detrimental aspects of petroleum-based fossil fuels, biofuel production has its own environmental costs, largely related to fossil fuel use in converting crops to biofuels and crop cultivation itself, including ecological damages caused by nitrogen and phosphorus fertilizers, pesticides, and erosion. A new generation of biofuels derived from lignocellulosic sources offers greatly reduced environmental impacts while potentially avoiding conflicts between food and energy production. In particular, diverse mixtures of native prairie species offer biomass feedstocks that may yield greater net energy gains than monoculture energy crops when converted into biofuels, while also providing wildlife habitat and enriching degraded soils through carbon sequestration and nitrogen fixation. Ultimately, as demand for both food and energy rise in the coming decades, greater consideration will need to be given to how land can best be used for the greater benefit of society.

biodiesel bioenergy biomass carbon ethanol greenhouse gas maize prairie 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aden A., Ruth M., Ibsen K., Jechura J., Neeves K., Sheehan J., et al. (2002) Lignocellulosic biomass to ethanol process design and economics using co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, NREL/TP-510-32438, National Renewable Energy Laboratory, Golden, Colorado, USA.Google Scholar
  2. Alper H., Moxley J., Nevoight E., Fink G.R., Stephanopoulos G. (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production, Science 314, 1565–1568.PubMedGoogle Scholar
  3. Andow D.A. (2003) UK farm-scale evaluations of transgenic herbicidetolerant crops, Nat. Biotechnol. 21, 1453–1454.PubMedGoogle Scholar
  4. Archer C.L., Jacobson M.Z. (2005) Evaluation of global wind power, J. Geophys. Res. 110, D12110, doi:10.1029/2004JD005462.Google Scholar
  5. Atchison J.E., Hettenhaus J.R. (2004) Innovative methods for corn stover collecting, handling, storing and transporting, NREL/SR-510-33893, National Renewable Energy Laboratory, Golden, Colorado, USA.Google Scholar
  6. Berndes G. (2002) Bioenergy and water — The implications of large-scale bioenergy production for water use and supply, Global Environ. Chang. 12, 253–271.Google Scholar
  7. Berndes G., Hoogwijk M., Van Den Broek R. (2003) The contribution of biomass in the future global energy supply: A review of 17 studies, Biomass Bioenerg. 25, 1–28.Google Scholar
  8. Borrero M.A.V., Pereira J.T.V., Miranda E.E. (2003) An environmental management method for sugarcane alcohol production in Brazil, Biomass Bioenerg. 25, 287–299.Google Scholar
  9. Botha T., von Blottnitz H. (2006) A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis, Energ. Policy 34, 2654–2661.Google Scholar
  10. Brye K.R., Norman J.M., Bundy L.G., Gower S.T. (2001) Nitrogen and carbon leaching in agroecosystems and their role in denitrification potential, J. Environ. Qual. 30, 58–70.PubMedGoogle Scholar
  11. Camill P., McKone M.J., Sturges S.T., Severud W.J., Ellis E., Limmer J., et al. (2004) Community- and ecosystem-level changes in a species-rich tallgrass prairie restoration, Ecol. Appl. 14, 1680–1694.Google Scholar
  12. Cardinale B.J., Srivastava D.S., Duffy J.E., Wright J.P., Downing A.L., Sankaran M., et al. (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems, Nature 443, 989–992.PubMedGoogle Scholar
  13. Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley A.N., Smith V.H. (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol. Appl. 8, 559–568.Google Scholar
  14. Cerdeira A.L., Duke S.O. (2006) The current status and environmental impacts of glyphosate-resistant crops: A review, J. Environ. Qual. 35, 1633–1658.PubMedGoogle Scholar
  15. Chambers R.S., Herendeen R.A., Joyce J.J., Penner P.S. (1979) Gasohol: Does it or doesn’t it produce positive net energy? Science 206, 789–795.PubMedGoogle Scholar
  16. Chaudhuri S.K., Lovley D.R. (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol. 21, 1229–1232.PubMedGoogle Scholar
  17. Chow J., Kopp R.J., Portney P.R. (2003) Energy resources and global development, Science 302, 1528–1531.PubMedGoogle Scholar
  18. Clergue B., Amiaud B., Pervanchon F., Lasserre-Joulin F., Plantureux S. (2005) Biodiversity: Function and assessment in agricultural areas. A review, Agron. Sustain. Dev. 25, 1–15.Google Scholar
  19. Clifton-Brown J.C., Stampfl P.F., Jones M.B. (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions, Global Change Biol. 10, 509–518.Google Scholar
  20. Cook J.H., Beyea J., Keeler K.H. (1991) Potential impacts of biomass production in the United States on biological diversity, Annu. Rev. Energ. Env. 16, 401–431.Google Scholar
  21. Cook J.R. (2006) Toward cropping systems that enhance productivity and sustainability, Proc. Natl Acad. Sci. (USA) 103, 18389–18394.Google Scholar
  22. Conant R.T., Paustian K., Del Grosso S.J., Parton W.J. (2005) Nitrogen pools and fluxes in grassland soils sequestering carbon, Nutr. Cycl. Agroecosys. 71, 239–248.Google Scholar
  23. Cox T.S., Glover J.D., Van Tassel D.L., Cox C.M., DeHaan L.R. (2006) Prospects for developing perennial grain crops, Bioscience 56, 649–659.Google Scholar
  24. Crews T.E., Peoples M.B. (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review, Nutr. Cycl. Agroecosys. 72, 101–120.Google Scholar
  25. Cvengroŝ J., Cvengroŝová Z. (2004) Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids, Biomass Bioenerg. 27, 173–181.Google Scholar
  26. Daily G.C. (1995) Restoring value to the world’s degraded lands, Science 269, 350–354.PubMedGoogle Scholar
  27. De Broeck H.J., Lemmens C.M.H.M., Gielen B., Bossuyt H., Malchair S., Carnol M., et al. (2006) Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity, Environ. Exp. Bot., doi:10.1016/j.envexpbot.2006.1007.1001.Google Scholar
  28. Deluga G.A., Salge J.R., Schmidt L.D., Verykios X.E. (2004) Renewable hydrogen from ethanol by autothermal reforming, Science 303, 993–997.PubMedGoogle Scholar
  29. Demirbaş A. (2003) Sustainable cofiring of biomass with coal, Energ. Convers. Manage. 44, 1465–1479.Google Scholar
  30. De Oliveira M.E., Vaughan B.E., Rykiel E.J. Jr. (2005) Ethanol as fuel: Energy, carbon dioxide balances, and ecological footprint, Bioscience 55, 593–602.Google Scholar
  31. de Vries B.J.M., van Vuuren D.P., Hoogwijk M.M. (2007) Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach, Energ. Policy 35, 2590–2610.Google Scholar
  32. Dodds W.K. (2006) Nutrients and the “dead zone”: The link between nutrient ratios and dissolved oxygen in the northern Gulf of Mexico, Front. Ecol. 4, 211–217.Google Scholar
  33. Dolan M.S., Clapp C.E., Allmaras R.R., Baker J.M., Molina J.A.E. (2006) Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management, Soil Till. Res. 89, 221–231.Google Scholar
  34. Dorian J.P., Franssen H.T., Simbeck D.R. (2006) Global challenges in energy, Energ. Policy 34, 1984–1991.Google Scholar
  35. Drinkwater L.E., Wagoner P., Sarrantonio M. (1998) Legume-based cropping systems have reduced carbon and nitrogen losses, Nature 396, 262–265.Google Scholar
  36. Energy Information Administration (2006) International energy outlook, DOE/EIA-0484(2006), United States Department of Energy, Washington, DC., USA.Google Scholar
  37. Ezzati M., Bailis R., Kammen D.M., Holloway T., Price L., Cifuentes L.A., et al. (2004) Energy management and global health, Annu. Rev. Environ. Resour. 29, 383–419.Google Scholar
  38. Farrell A.E., Plevin R.J., Turner B.T., Jones A.D., O’Hare M., Kammen D.M. (2006) Ethanol can contribute to energy and environmental goals, Science 311, 506–508.PubMedGoogle Scholar
  39. Fernandez L., Keller A.A. (2000) Cost—benefit analysis of methyl tertbutyl ether and alternative gasoline formulations, Environ. Sci. Policy 3, 173–188.Google Scholar
  40. Fike J.H., Parrish D.J., Wolf D.D., Balasko J.A., Green J.T. Jr., Rasnake M., et al. (2006) Long-term yield potential of switchgrass-forbiofuel systems, Biomass Bioenerg. 30, 198–206.Google Scholar
  41. FAPRI (2006) US and world agricultural outlook, FAPRI Staff Report 06-FSR 1, Food and Agricultural Policy Research Institute, Ames, Iowa, USA.Google Scholar
  42. Florine S.E., Moore K.J., Fales S.L., White T.A., Burras C.L. (2006) Yield and composition of herbaceous biomass harvested from naturalized grassland in southern Iowa, Biomass Bioenerg. 30, 522–528.Google Scholar
  43. Foley J.A., DeFries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., et al. (2005) Global consequences of land use, Science 309, 570–574.PubMedGoogle Scholar
  44. Foyle T., Jennings L., Mulcahy P. (2006) Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw, Bioresource Technol., doi:10.1016/j.biortech.2006.1010.1013.Google Scholar
  45. Frank A.B., Berdahl J.D., Hanson J.D., Liebig M.A., Johnson H.A. (2004) Biomass and carbon partitioning in switchgrass, Crop Sci. 44, 1391–1396.Google Scholar
  46. Gallagher P.W., Dikeman M., Fritz J., Wailes E., Gauthier W., Shapouri H. (2003) Supply and cost estimates for biomass from crop residues in the United States, Environ. Res. Econ. 24, 335–358.Google Scholar
  47. Gebhart D.L., Johnson H.B., Mayeux H.S., Polley H.W. (1994) The CRP increases soil organic carbon, J. Water Soil Conserv. 49, 488–492.Google Scholar
  48. Geyer W.A. (2006) Biomass production in the Central Great Plains USA under various coppice regimes, Biomass Bioenerg. 30, 778–783.Google Scholar
  49. Graboski M.S. (2002) Fossil energy use in the manufacture of corn ethanol, Prepared for the National Corn Growers Association, St Louis, Missouri, USA.Google Scholar
  50. Grandy A.S., Loecke T.D., Parr S., Robertson G.P. (2006) Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and no-till cropping systems, J. Environ. Qual. 35, 1487–1495.PubMedGoogle Scholar
  51. Green R.E., Cornell S.J., Scharlemann J.P.W., Balmford A. (2005) Farming and the fate of wild nature, Science 307, 550–555.PubMedGoogle Scholar
  52. Greenleaf S.S., Kremen C. (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower, Proc. Natl Acad. Sci. (USA) 103, 13890–13895.Google Scholar
  53. Guo Q. (2006) The diversity-biomass-productivity relationships in grassland management and restoration, Basic Appl. Ecol., doi:10.1016/j.baae.2006.1002.1005.Google Scholar
  54. Haas M.J., McAloon A.J., Yee W.C., Foglia T.A. (2006) A process model to estimate biodiesel production costs, Bioresource Technol. 97, 671–678.Google Scholar
  55. Hallam A., Anderson I.C., Buxton D.R. (2001) Comparative economic analysis of perennial, annual, and intercrops for biomass production, Biomass Bioenerg. 21, 407–424.Google Scholar
  56. Hamelinck C.N., Faaij A.P.C. (2006) Outlook for advanced biofuels, Energ. Policy 34, 3268–3283.Google Scholar
  57. Hamelinck C.N., Van Hooijdonk G., Faaij A.P.C. (2005) Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle-, and long-term, Biomass Bioenerg. 28, 384–410.Google Scholar
  58. Hammerschlag R. (2006) Ethanol’s energy return on investment: A survey of the literature 1990—present, Environ. Sci. Technol. 40, 1744–1750.PubMedGoogle Scholar
  59. Hansen A.C., Zhang Q., Lyne P.W.L. (2005) Ethanol-diesel fuel blends — A review, Bioresource Technol. 96, 277–285.Google Scholar
  60. Hansen J., Sato M., Ruedy R., Lo K., Lea D.W., Medina-Elizade M. (2006) Global temperature change, Proc. Natl Acad. Sci. (USA) 103, 14288–14293.Google Scholar
  61. Heal G., Walker B., Levin S., Arrow K., Dasgupta P., Daily G., et al. (2004) Genetic diversity and interdependent crop choices in agriculture, Res. Energy Econ. 26, 175–184.Google Scholar
  62. Heaton E., Voight T., Long S.P. (2004) A quantitative review comparing the yields of two candidate C4 biomass crops in relation to nitrogen, temperature and water, Biomass Bioenerg. 27, 21–30.Google Scholar
  63. Herrera S. (2006) Bonkers about biofuels, Nat. Biotechnol. 24, 755–760.PubMedGoogle Scholar
  64. Hey D.L., Urban L.S., Kostel J.A. (2005) Nutrient farming: The business of environmental management, Ecol. Eng. 24, 279–287.Google Scholar
  65. Hill J., Nelson E., Tilman D., Polasky S., Tiffany D. (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels, Proc. Natl Acad. Sci. (USA) 103, 11206–11210.Google Scholar
  66. Hoffert M.I., Caldeira K., Benford G., Criswell D.R., Green C., Herzog H., et al. (2002) Advanced technology paths to global climate stability: Energy for a greenhouse planet, Science 298, 981–987.PubMedGoogle Scholar
  67. Hoogwijk M., Faaij A., Van Den Broek R., Berndes G., Gielen D., Turkenburg W. (2003) Exploration of the ranges of the global potential for biomass for energy, Biomass Bioenerg. 25, 119–133.Google Scholar
  68. Hoogwijk M., De Vries B., Turkenburg W. (2004) Assessment of the global and regional geographical, technical and economic potential of onshore wind energy, Energy Econ. 26, 889–919.Google Scholar
  69. Hooker B.A., Morris T.F., Peters R., Cardon Z.G. (2005) Long-term effects of tillage and corn stalk return on soil carbon dynamics, Soil Sci. Soc. Am. J. 69, 188–196.Google Scholar
  70. Hooper D.U., Chapin F.S., Ewel J.J., Hector A., Inchausti P., Lavorel S., et al. (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge, Ecol. Monogr. 75, 3–35.Google Scholar
  71. Hoskinson R.L., Karlen D.L., Birrell S.J., Radtke C.W, Wilhelm W.W. (2006) Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios, Biomass Bioenerg., doi:10.1016/j.biombioe.2006.07.006.Google Scholar
  72. Hu J., Du Z., Li C., Min E. (2005) Study on the lubrication properties of biodiesel as fuel lubricity enhancers, Fuel 84, 1601–1606.Google Scholar
  73. Huber G.W., Iborra S., Corma A. (2006) Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chem. Rev. 106, 4044–4098.PubMedGoogle Scholar
  74. Huggins D.R., Buyanovsky G.A., Wagner G.H., Brown J.R., Darmody R.G., Peck T.R., et al. (1998) Soil organic C in the tallgrass prairie-derived region of the corn belt: Effects of long-term crop management, Soil Till. Res. 47, 219–234.Google Scholar
  75. Huggins D.R., Randall G.W., Russelle M.P. (2001) Subsurface drain losses of water and nitrate following conversion of perennials to row crops, Agron. J. 93, 477–486.Google Scholar
  76. Husain S.A., Rose D.W., Archibald S.O. (1998) Identifying agricultural sites for biomass energy production in Minnesota, Biomass Bioenerg. 15, 423–435.Google Scholar
  77. Jackson R.B., Schlesinger W.H. (2004) Curbing the U.S. carbon deficit, Proc. Natl Acad. Sci. (USA) 101, 15827–15829.Google Scholar
  78. Jackson R.B., Banner J.L., Jobbágy E.G., Pockman W.T., Wall D.H. (2002) Ecosystem carbon loss with woody plant invasion of grasslands, Nature 418, 623–626.PubMedGoogle Scholar
  79. Jacobson M.Z., Colella W.G., Golden D.M. (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science 308, 1901–1905.PubMedGoogle Scholar
  80. Johnson J.M.E., Reicosky D.C., Allmaras R.R., Sauer T.J., Venterea R.T., Dell C.J. (2005) Greenhouse gas contributions and mitigation potential of agriculture in the central USA, Soil Till. Res. 83, 73–94.Google Scholar
  81. Johnson J.M.-F., Allmaras R.R., Reicosky D.C. (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database, Agron. J. 98, 622–636.Google Scholar
  82. Karlen D.L., Hurley E.G., Andrews S.S., Cambardella C.A., Meek D.W., Duffy M.D., et al. (2006) Crop rotation effect on soil quality at three northern corn/soybean belt locations, Agron. J. 98, 484–495.Google Scholar
  83. Keith D.W., Decarolis J.F., Denkenberger D.C., Lenschow D.H., Malyshev S.L., Pacala S., et al. (2004) The influence of large-scale wind power on global climate, Proc. Natl Acad. Sci. (USA) 101, 16115–16120.Google Scholar
  84. Keoleian G.A., Volk T.A. (2005) Renewable energy from willow biomass crops: Life cycle energy, environmental, and economic performance, Crit. Rev. Plant Sci. 24, 385–406.Google Scholar
  85. Kim S., Dale B.E. (2004) Global potential bioethanol production from wasted crops and crop residues, Biomass Bioenerg. 26, 361–375.Google Scholar
  86. Kim S., Dale B.E. (2005a) Environmental aspects of ethanol derived from no-tilled corn grain: Nonrenewable energy consumption and greenhouse gas emissions, Biomass Bioenerg. 28, 475–489.Google Scholar
  87. Kim S., Dale B.E. (2005b) Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel, Biomass Bioenerg. 29, 426–439.Google Scholar
  88. Kim S., Dale B.E. (2006) Ethanol fuels: E10 or E85-Life Cycle Perspectives, Int. J. LCA 11, 117–121.Google Scholar
  89. Knothe G., Steidley K.R. (2005) Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity, Energ. Fuels 19, 1192–1200.Google Scholar
  90. Kramer S.B., Reganold J.P., Glover J.D., Bohannan B.J.M., Mooney H.A. (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils, Proc. Natl Acad. Sci. (USA) 103, 4522–4527.Google Scholar
  91. Kumabe K., Hanaoka T., Fujimoto S., Minowa T., Sakanishi K. (2007) Co-gasification of woody biomass and coal with air and steam, Fuel 86, 684–689.Google Scholar
  92. Kumar A., Sokhansanj S. (2006) Switchgrass (Panicum virgatum, L.) delivery to a biorefinery using integrated biomass supply analysis and logistics (IBSAL) model, Bioresource Technol. 98, 1033–1044.Google Scholar
  93. Kurkalova L., Kling C.L., Zhao J. (2004) Multiple benefits of carbon-friendly agricultural practices: Empirical assessment of conservation tillage, Environ. Manage. 33, 519–527.PubMedGoogle Scholar
  94. Lal R. (2004) Soil carbon sequestration impacts on global climate change and food security, Science 304, 1623–1627.PubMedGoogle Scholar
  95. Larson E.D. (2000) Modernizing biomass energy, in: Gómez-Echeverri L. (Ed.), Climate Change and Development, pp. 271–291.Google Scholar
  96. Leemans R., Van Amstel A., Battjes C., Kreileman E., Toet S. (1996) The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source, Global Environ. Chang. 6, 335–357.Google Scholar
  97. Lenzen M., Munksgaard J. (2002) Energy and CO2 life-cycle analyses of wind turbines — Review and applications, Renew. Energ. 26, 339–362.Google Scholar
  98. Lewandowski I., Scurlock J.M.O., Lindvall E., Christou M. (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe, Biomass Bioenerg. 25, 335–361.Google Scholar
  99. Liebig M.A., Johnson H.A., Hanson J.D., Frank A.B. (2005) Soil carbon under switchgrass stands and cultivated cropland, Biomass Bioenerg. 28, 347–354.Google Scholar
  100. Linden D.R., Clapp C.E., Dowdy R.H. (2000) Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota, Soil Till. Res. 56, 167–174.Google Scholar
  101. Lumpkins B.S., Batal A.B., Dale N.M. (2004) Evaluation of a distillers dried grains with solubles as a feed ingredient for broilers, Poultry Sci. 83, 1891–1896.Google Scholar
  102. Lynd L.R., Cushman J.H., Nichols R.J., Wyman C.E. (1991) Fuel ethanol from cellulosic biomass, Science 251, 1318–1323.PubMedGoogle Scholar
  103. Lynd L.R., Weimer P.J., Van Zyl W.H., Pretorius I.S. (2002) Microbial cellulose utilization: Fundamentals and biotechnology, Microbiol. Mol. Biol. R. 66, 506–577.Google Scholar
  104. Mani S., Tabil L.G., Sokhansanj S. (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses, Biomass Bioenerg. 30, 648–654.Google Scholar
  105. Mann M.K., Spath P.L. (2001) A life cycle assessment of biomass cofiring in a coal-fired power plant, Clean Prod. Processes 3, 81–91.Google Scholar
  106. Matson P.A., Naylor R., Ortiz-Monasterio I. (1998) Integration of environmental, agronomic, and economic aspects of fertilizer management, Science 280, 112–115.PubMedGoogle Scholar
  107. McIsaac G.F., David M.B., Gertner G.Z., Goolsby D.A. (2002) Relating net nitrogen input in the Mississippi River basin to nitrate flux in the lower Mississippi River: A comparison of approaches, J. Environ. Qual. 31, 1610–1622.PubMedGoogle Scholar
  108. McKendry P. (2002) Energy production from biomass (part 1): Overview of biomass, Bioresource Technol. 83, 37–46.Google Scholar
  109. McLaughlin S.B., De La Torre Ugarte D.G., Garten C.T. Jr., Lynd L.R., Sanderson M.A., Tolbert V.R., et al. (2002) High-value renewable energy from prairie grasses, Environ. Sci. Technol. 36, 2122–2129.PubMedGoogle Scholar
  110. McLaughlin S.B., Kszos L.A. (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States, Biomass Bioenerg. 28, 515–535.Google Scholar
  111. McLaughlin S.B., Walsh M.E. (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy, Biomass Bioenerg. 14, 317–324.Google Scholar
  112. McLauchlan K., Hobbie S.E., Post W.M. (2006) Conversion from agriculture to grassland builds soil organic matter on decadal timescales, Ecol. Appl. 16, 143–153.PubMedGoogle Scholar
  113. McMichael A.J., Woodruff R.E., Hales S. (2006) Climate change and human health: Present and future risks, Lancet 367, 859–869.PubMedGoogle Scholar
  114. Meher L.C., Vidya Sagar D., Naik S.N. (2006) Technical aspects of biodiesel production by transesterification — A review, Renew. Sust. Energ. Rev. 10, 248–268.Google Scholar
  115. Milbrandt A. (2005) A geographic perspective on the current biomass resource availability in the United States, NREL/TP-560-39181, National Renewable Energy Laboratory, Golden, Colorado, USA.Google Scholar
  116. Montgomery R. (2004) Development of biobased products, Bioresource Technol. 91, 1–29.Google Scholar
  117. Morrow W.R., Griffin W.M., Matthews H.S. (2006) Modeling switchgrass derived cellulosic ethanol distribution in the United States, Environ. Sci. Technol. 40, 2877–2886.PubMedGoogle Scholar
  118. Mosier N., Tyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., et al. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technol. 96, 673–686.Google Scholar
  119. Murray L.D., Best L.B., Jabobsen T.J., Braster M.L. (2003) Potential effects on grassland birds of converting marginal cropland to switchgrass biomass production, Biomass Bioenerg. 25, 167–175.Google Scholar
  120. Meyers N., Kent J. (2003) New consumers: The influence of affluence on the environment, Proc. Natl Acad. Sci. (USA) 100, 4963–4968.Google Scholar
  121. Nabi N., Akhter S., Shahadat Z. (2006) Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends, Bioresource Technol. 97, 372–378.Google Scholar
  122. Nelson G.C., Bullock D.S. (2003) Simulating a relative environmental effect of glyphosate-resistant soybeans, Ecol. Econ. 45, 189–202.Google Scholar
  123. Oki T., Kanae S. (2006) Global hydrological cycles and world water resources, Science 313, 1068–1072.PubMedGoogle Scholar
  124. Pacala S., Socolow R. (2004) Stabilization wedges: Solving the climate problem for the next 50 years with current technologies, Science 305, 968–972.PubMedGoogle Scholar
  125. Parikka M. (2004) Global biomass fuel resources, Biomass Bioenerg. 27, 613–620.Google Scholar
  126. Parrish D.J., Fike J.H. (2005) The biology and agronomy of switchgrass for biofuels, Crit. Rev. Plant Sci. 23, 423–459.Google Scholar
  127. Patzek T.W. (2004) Thermodynamics of the corn-ethanol biofuel cycle, Crit. Rev. Plant Sci. 23, 519–567.Google Scholar
  128. Perlack R.D., Wright L.L., Turhollow A.F., Graham R.L., Stokes B.J., Erbach D.C. (2005) Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply, ODE/GO-102995-2135, ORNL/TM-2005/66, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.Google Scholar
  129. Pimentel D. (2003) Ethanol fuels: Energy balance, economics, and environmental impacts are negative, Nat. Resour. Res. 12, 127–134.Google Scholar
  130. Powers S.E. (2005) Quantifying cradle-to-farm gate life-cycle impacts associated with fertilizer used for corn, soybean, and stover production, NREL/TP-510-37500, National Renewable Energy Laboratory, Golden, Colorado, USA.Google Scholar
  131. Ptasinski K.J., Prins M.J., Pierik A. (2007) Exergetic evaluation of biomass gasification, Energy 32, 568–574.Google Scholar
  132. Qin X., Mohan T., El-Halwagi M., Cornforth G., McCarl B.A. (2006) Switchgrass as an alternate feedstock for power generation: An integrated environmental, energy and economic life-cycle assessment, Clean Techn. Environ. Policy 8, 233–249.Google Scholar
  133. Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., et al. (2006) The path forward for biofuels and biomaterials, Science 311, 484–489.PubMedGoogle Scholar
  134. Raghu S., Anderson R.C., Daehler C.C., Davis A.S., Wiedenmann R.N., Simberloff D., et al. (2006) Adding biofuels to the invasive species fire? Science 313, 1742.PubMedGoogle Scholar
  135. Reijinders L. (2006) Conditions for the sustainability of biomass based fuel use, Energ. Policy 34, 863–876.Google Scholar
  136. Robertson G.P., Swinton S.M. (2005) Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture, Front. Ecol. Environ. 3, 38–46.Google Scholar
  137. Robertson G.P., Paul E.A., Harwood R.R. (2000) Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere, Science 289, 1922–1925.PubMedGoogle Scholar
  138. Robertson G.P., Broome J.C., Chornesky E.A., Frankenberger J.R., Johnson P., Lipson M., et al. (2004) Rethinking the vision for environmental research in US agriculture, Bioscience 54, 61–65.Google Scholar
  139. Robinson A.L., Rhodes J.S., Keith D.W. (2003) Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the United States, Environ. Sci. Technol. 37, 5081–5089.PubMedGoogle Scholar
  140. Roth A.M., Sample D.W., Ribic C.A., Paine L., Undersander D.J., Bartelt G.A. (2005) Grassland bird response to harvesting switchgrass as a biomass energy crop, Biomass Bioenerg. 28, 490–498.Google Scholar
  141. Salge J.R., Dreyer B.J., Dauenhauer P.J., Schmidt L.D. (2006) Renewable hydrogen from nonvolative fuels by reactive flash volatilization, Science 314, 801–805.PubMedGoogle Scholar
  142. Samson R., Mani S., Boddey R., Sokhansanj S., Quesada D., Urquiaga S., et al. (2005) The potential of C4 perennial grasses for developing a global BIOHEAT industry, Crit. Rev. Plant Sci. 24, 461–495.Google Scholar
  143. Schneider U.A., McCarl B.A. (2003) Economic potential of biomass based fuels for greenhouse gas emission mitigation, Environ. Res. Econ. 24, 291–312.Google Scholar
  144. Schröter D., Cramer W., Leemans R., Prentice I.C., Araujo M.B., Arnell N.W., et al. (2005) Ecosystem service supply and vulnerability to global change in Europe, Science 310, 1333–1337.PubMedGoogle Scholar
  145. Shapouri H., Duffield J., McAloon A., Wang M. (2004) The 2001 net energy balance of corn-ethanol, US Department of Agriculture, Washington, DC., USA.Google Scholar
  146. Sheehan J., Aden A., Paustian K., Killian K., Brenner J., Walsh M., et al. (2004) Energy and environmental aspects of using corn stover for fuel ethanol, J. Ind. Ecol. 7, 117–146.Google Scholar
  147. Sheehan J., Camobreco V., Duffield J., Graboski M., Shapouri H. (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus, NREL/SR-580-24089, National Renewable Energy Laboratory, Golden, Colorado, USA.Google Scholar
  148. Schubert C. (2006) Can biofuels finally take center stage? Nat. Biotechnol. 24, 777–784.PubMedGoogle Scholar
  149. Semelsberger T.A., Borup R.L., Greene H.L. (2006) Dimethyl ether (DME) as an alternative fuel, J. Power Sources 156, 497–511.Google Scholar
  150. Semere T., Slater F.M. (2007) Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus × giganteus) and reed canary-grass (Phalaris arundinaced) fields, Biomass Bioenerg. 31, 20–29.Google Scholar
  151. Seo J.-S., Chong H., Park H.S., Yoon K.-O., Jung C., Kim J.J., et al. (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4, Nat. Biotechnol. 23, 63–68.PubMedGoogle Scholar
  152. Shinnar R., Citro F. (2006) A road map to U.S. decarbonization, Science 313, 1243–1244.PubMedGoogle Scholar
  153. Sims R.E.H., Hastings A., Schlamadinger B., Taylor G., Smith P. (2006) Energy crops: Current status and future prospects, Global Change Biol. 12, 2054–2076.Google Scholar
  154. Six J., Frey S.D., Thiet R.K., Batten K.M. (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems, Soil Sci. Soc. Am. J. 70, 555–569.Google Scholar
  155. Smith V.H., Tilman G.D., Nekola J.C. (1999) Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems, Environ. Pollut. 100, 179–196.PubMedGoogle Scholar
  156. Socolow R.H. (1999) Nitrogen management and the future of food: Lessons from the management of energy and carbon, Proc. Natl Acad. Sci. (USA) 96, 6001–6008.Google Scholar
  157. Spath P.L., Dayton D.C. (2003) Preliminary screening — Technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, NREL/TP-510-34929, National Renewable Energy Laboratory, Golden, Colorado, USA.Google Scholar
  158. Spiehs M.J., Whitney M.H., Shurson G.C. (2002) Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota, J. Anim. Sci. 80, 2639–2645.PubMedGoogle Scholar
  159. Stern R. (2006a) Oil market power and United States national security, Proc. Natl Acad. Sci. (USA) 103, 1650–1655.Google Scholar
  160. Stern R. (2006b) The Iranian petroleum crisis and United States national security, Proc. Natl Acad. Sci. (USA) 104, 377–382.Google Scholar
  161. Suding K.N., Collins S.L., Gough L., Clark C., Cleland E.E., Gross K.L., et al. (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization, Proc. Natl Acad. Sci. (USA) 102, 4387–4392.Google Scholar
  162. Sullivan P., Hellerstein D., Hansen L., Johansson R., et al. (2004) The Conservation Reserve Program: Economic implications for rural America, AER-834, United States Department of Agriculture — Economic Research Service, Washington, DC, USA.Google Scholar
  163. Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S. (2002) Agricultural sustainability and intensive production practices, Nature 318, 671–677.Google Scholar
  164. Tilman D., Fargione J., Wolff B., D’Antonio C., Dobson A., Howarth R., et al. (2001) Forecasting agriculturally driven global environmental change, Science 292, 281–284.PubMedGoogle Scholar
  165. Tilman D., Hill J., Lehman C. (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass, Science 314, 1598–1600.PubMedGoogle Scholar
  166. Tuskan G.A., Difazio S., Jansson S., Bohlmann J., Grigoriev I., Hellsten U., et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray), Science 313, 1596–1604.PubMedGoogle Scholar
  167. Tyson K.S. (2005) DOE analysis of fuels and coproducts from lipids, Fuel Process. Technol. 86, 1127–1136.Google Scholar
  168. United States Census Bureau (2006a) Fats and oils: Oilseed crushings: 2005, Current Industrial Report M311J(05)-13.Google Scholar
  169. United States Census Bureau (2006b) Fats and oils: Production, consumption, and stocks: 2005, Current Industrial Report M311K(05)-13.Google Scholar
  170. United States Department of Agriculture (2003) Agricultural chemical usage: 2002 field crops summary, National Agricultural Statistics Service, Washington, DC, USA.Google Scholar
  171. United States Department of Agriculture (2005) Agricultural chemical usage: 2004 field crops summary, National Agricultural Statistics Service, Washington, DC, USA.Google Scholar
  172. United States Department of Agriculture — Economic Research Service (2006) Feed grains database, Scholar
  173. Van Gerpen J. (2005) Biodiesel processing and production, Fuel Process. Technol. 86, 1097–1107.Google Scholar
  174. Volk T.A., Verwijst T., Tharakan P.J., Abrahamson L.P., White E.H. (2004) Growing fuel: A sustainability assessment of willow biomass crops, Front. Ecol. Environ. 2, 411–418.Google Scholar
  175. Volk T.A., Abrahamson L.P., Nowak C.A., Smart L.B., Tharakan P.J., White E.H. (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation, Biomass Bioenerg. 30, 715–727.Google Scholar
  176. Walsh M.E., De La Torre Ugarte D.G., Shapouri H., Slinsky S.P. (2003) Bioenergy crop production in the United States, Environ. Res. Econ. 24, 313–333.Google Scholar
  177. Wang M., Saricks C., Wu M. (1997) Fuel-cycle fossil energy use and greenhouse gas emissions of fuel ethanol produced from US Midwest corn, Argonne National Laboratory, Argonne, Illinois, USA.Google Scholar
  178. Wang T., Chang J., Lv P. (2005) Synthesis gas production via biomass catalytic gasification with addition of biogas, Energ. Fuels 19, 637–644.Google Scholar
  179. Wang W.G., Lyons D.W., Clark N.N., Gautam M., Norton P.M. (2000) Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification, Environ. Sci. Technol. 34, 933–939.Google Scholar
  180. Weimer P.J., Springer T.L. (2006) Fermentability of eastern gamagrass, big bluestem and sand bluestem grown across a wide variety of environments, Bioresource Technol., doi:10.1016/j.biortech.2006.1006.1003.Google Scholar
  181. West T.O., Marland G. (2002) Net carbon flux from agricultural ecosystems: Methodology for full carbon cycle analyses, Environ. Pollut. 116, 439–444.PubMedGoogle Scholar
  182. West T.O., Post W.M. (2002) Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis, Soil Sci. Soc. Am. J. 66, 1930–1946.Google Scholar
  183. Wilhelm W.W., Johnson J.M.F., Hatfield J.L., Voorhees W.B., Linden D.R. (2004) Crop and soil productivity response to corn residue removal: A literature review, Agron. J. 96, 1–17.Google Scholar
  184. Wyman C.E. (1999) Biomass ethanol: Technical progress, opportunities, and commercial challenges, Annu. Rev. Energ. Env. 24, 189–226.Google Scholar
  185. Wyman C.E. (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power, Biotechnol. Progr. 19, 254–262.Google Scholar
  186. Zhang R., Brown R.C., Suby A. (2004) Thermochemical generation of hydrogen from switchgrass, Energ. Fuels 18, 251–256.Google Scholar
  187. Zhang Y., Dubé M.A., McLean D.D., Kates M. (2003) Biodiesel production from waste cooking oil: 1. Process design and technological assessment, Bioresource Technol. 89, 1–16.Google Scholar
  188. Zwart R.W.R., Boerrigter H. (2005) High efficiency co-production of synthetic natural gas (SNG) and Fischer-Tropsch (FT) transportation fuels from biomass, Energ. Fuels 19, 591–597.Google Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  1. 1.Dept. of Applied EconomicsUniversity of MinnesotaSt. PaulUSA
  2. 2.Dept. of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA

Personalised recommendations