Agronomy for Sustainable Development

, Volume 31, Issue 2, pp 379–395 | Cite as

Allelopathy, an alternative tool to improve cropping systems. A review

  • Manoel Bandeira de Albuquerque
  • Roseane Cavalcanti dos Santos
  • Liziane Maria Lima
  • Péricles de Albuquerque Melo Filho
  • Rejane Jurema Mansur Custódio Nogueira
  • Claudio Augusto Gomes da Câmara
  • Alessandra de Rezende Ramos
Review Article


Known since ancient times, the phenomenon of allelopathy has recently received greater attention from researchers and farmers worldwide. Crop failures and low yields caused by the reseeding, overseeding, crop rotation and replanting of fruit trees in orchards are believed to be caused by allelopathic activity. Moreover, the expensive and environmentally impacting herbicides for weed control have motivated studies directed at developing cheaper, environmentally-friendly alternatives. Despite the difficulties in separating chemical interference from other mechanisms, more modern approaches have produced consistent and conclusive data on this topic. The release and dynamics of allelochemicals in the soil are discussed herein. Examples of allelopathic crops, the allelochemicals produced and their uses in cropping systems are also presented along with current research trends regarding allelopathy.


allelopathy chemical interference agriculture potential use 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdoul-Wahab A.S., Rice E.L. (1967) Plant inhibition by Johnson grass its possible significance in old-field sucession, Bull. Torrey Bot. Club 94, 486–497.CrossRefGoogle Scholar
  2. An M., Pratley J.E., Haig T. (1997) Phytotoxicity of Vulpia residues: I. Investigation of aqueous extracts, J. Chem. Ecol. 23, 1979–1995.CrossRefGoogle Scholar
  3. Anjum T., Bajwa R. (2007a) Field appraisal of herbicide potential of sun-flower leaf extract against Rumex dentatus, Field Crops Res. 100, 139–142.CrossRefGoogle Scholar
  4. Anjum T., Bajwa R. (2007b) The effect of sunflower leaf extracts on Chenopodium album in wheat fields in Pakistan, Crop Prot. 26, 1390–1394.CrossRefGoogle Scholar
  5. Babu R.C., Kandasamy O.S. (1997) Allelopathic effect of Eucalyptus globulus Labill. on Cyperus rotundus L. and Cynodon dactylon L. Pers, J. Agron. Crop Sci. 179, 123–126.CrossRefGoogle Scholar
  6. Baerson S.R., Sánchez-Moreiras A., Pedrol-Bonjoch N., Schulz M., Kagan I.A., Agarwal A.K., Reigosa M.J., Duke S.O. (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one, J. Biol. Chem. 280, 21867–21881.PubMedCrossRefGoogle Scholar
  7. Baerson S.R., Dayan F.E., Rimando A.M., Nanayakkara N.P.D., Liu C.J., Schöder J., Fishbein M., Pan Z., Kagan I.A., Pratt L.H., Cordonnier-Pratt M.M., Duke S.O. (2008) A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs, J. Biol. Chem. 283, 3231–3247.PubMedCrossRefGoogle Scholar
  8. Bais H.P., Vepachedu R., Gilroy S., Callaway R.M., Vivanco J.M. (2003) Allelopathy and exotic plant invasion: From molecules and genes to species interactions, Science 301, 1377–1380.PubMedCrossRefGoogle Scholar
  9. Bais H.P., Walker, T.S, Stermitz, F.R., Hufbauer, R.A., Vivanco, J.M. (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (−)-catechin. A rhizosecreted racemic mixture from spotted knapweed, Plant Physiol. 128, 1173–1179.PubMedCrossRefGoogle Scholar
  10. Barnes J.P., Putnam A.R. (1983) Rye residues contribute to weed suppression in no-tillage cropping systems, J. Chem. Ecol. 9, 1045–1057.CrossRefGoogle Scholar
  11. Barnes J.P., Putnam A.R. (1987) Role of benzoxazinones in allelopathy by rye (Secale cereale L.), J. Chem. Ecol. 13, 889–906.CrossRefGoogle Scholar
  12. Barney J.N., Hay A.G., Weston L.A. (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris), J. Chem. Ecol. 31, 247–265.PubMedCrossRefGoogle Scholar
  13. Barto E.K., Cipollini D. (2009) Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites, Chemosphere 76, 71–75.PubMedCrossRefGoogle Scholar
  14. Batish D.R., Lavanya K., Singh H.P., Kohli R.K. (2007) Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea, Plant Growth Regul. 51, 119–128.CrossRefGoogle Scholar
  15. Batish D.R., Singh H.P., Kaur S., Kohli R.K. (2006) Phytotoxicity of Ageratum conyzoides residues towards growth and nodulation of Cicer arietinum, Agric. Ecosyst. Environ. 113, 399–401.CrossRefGoogle Scholar
  16. Belz R.G. (2007) Allelopathy in crop/weed interactions — an update, Pest Manag. Sci. 63, 308–326.PubMedCrossRefGoogle Scholar
  17. Ben-Hammouda M., Ghorbal H., Kremer R.J., Oueslati, O. (2001) Allelopathic effects of barley extracts on germination and seedlings growth of bread and durum wheats, Agronomie 21, 65–71.CrossRefGoogle Scholar
  18. Bertholdsson, N.O. (2004) Variation in allelopathic activity over 100 years of barley selection and breeding, Weed Res. 44, 78–86.CrossRefGoogle Scholar
  19. Bertholdsson N.O. (2005) Early vigour and allelopathy — two useful traits for enhanced barley and wheat competitiveness against weeds, Weed Res. 45, 94–102.CrossRefGoogle Scholar
  20. Bertin C., Weston L.A., Kaur H. (2008) Allelopathic crop development: Molecular and traditional plant breeding approaches, in: Janick J. (Ed.), Plant Breeding Reviews, John Wiley & Sons, Inc., Hoboken, New Jersey, Vol. 30, pp. 231–258.Google Scholar
  21. Bertin C., Yang X., Weston L.A. (2003) The role of root exudates and allelochemicals in the rhizosphere, Plant Soil 256, 67–83.CrossRefGoogle Scholar
  22. Bhinu V.S., Narasimhan K., Swarup S. (2006) Plant natural products in the rhizosphere, in: Cseke L.J., Kirakosyan A., Kaufman P.B., Warber S., Duke J.A., Brielmann H. (Eds.), Natural products from plants. CRC Press, Boca Raton, FL, pp. 143–164.CrossRefGoogle Scholar
  23. Bhowmik P.C., Inderjit. (2003) Challenges and opportunities in implementing allelopathy for natural weed management, Crop Prot. 22, 661–671.CrossRefGoogle Scholar
  24. Blum U., Shafer S.R., Lehman M.E. (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model, Crit. Rev. Plant Sci. 18, 673–693.CrossRefGoogle Scholar
  25. Bogatek R., Gniazdowska A., Zakrzewska W., Orac K., Gawronski, S.W. (2006) Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth, Biol. Plant. 50, 156–158.CrossRefGoogle Scholar
  26. Burgos N.R., Talbert R.E., Kim K.S., Kuk Y.I. (2004) Growth inhibition and root ultrastruture of Cucumber seedlings exposed to allelochemicals from rye (Secale cereale), J. Chem. Ecol. 30, 671–689.PubMedCrossRefGoogle Scholar
  27. Callaway R.M., Ridenour W.M. (2004) Novel weapons: invasive success and the evolution of increased competitive ability, Front. Ecol. Environ. 2, 436–443.CrossRefGoogle Scholar
  28. Cambier V., Hance T., Hoffmann E. (2000) Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize, Phytochemistry 53, 223–229.PubMedCrossRefGoogle Scholar
  29. Chase W.R., Nair M.G., Putnam A.R., Mishra S.K. (1991) 2,2′-oxo-1,1′-azobenzene: microbial transformation of rye (Secale cereale L.) allelochemical in field soils by Acinetobacter calcoaceticus: III, J. Chem. Ecol. 17, 1575–1584.CrossRefGoogle Scholar
  30. Cheema Z.A. (1988) Weed control in wheat through sorghum allelochemicals, Ph.D. thesis, Agronomy Department, University of Agriculture, Faisalabad, Pakistan.Google Scholar
  31. Cheema Z.A., Khaliq A. (2000) Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi arid region of Punjab, Agric. Ecosyst. Environ. 79, 105–112.CrossRefGoogle Scholar
  32. Chon S.U., Jennings J.A., Nelson C.J. (2006) Alfalfa (Medicago sativa L.) autotoxicity: Current status, Allelopathy J. 18, 57–80.Google Scholar
  33. Crist C.R., Sherf A.F. (1973) Walnut wilt. Cornell University, Horticulture Extension Bulletin, Ithaca, NY.Google Scholar
  34. Cseke L.J., Kaufman P.B. (2006) Regulation of metabolite synthesis in plants, in: Cseke L.J., Kirakosyan A., Kaufman P.B., Warber S., Duke J.A., Brielmann H. (Eds.), Natural products from plants, CRC Press, Boca Raton, FL, pp. 101–141.Google Scholar
  35. Czarnota M.A., Paul R.N., Dayan F.E., Nimbal C.I., Weston L.A. (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: A potent PSII inhibitor in Sorghum spp. root exudates, Weed Tech. 15, 813–825.CrossRefGoogle Scholar
  36. Czarnota M.A., Paul R.N., Weston L.A., Duke S.O. (2003a) Anatomy of sorgoleone-secreting root hairs of Sorghum species, Int. J. Plant Sci. 164, 861–866.CrossRefGoogle Scholar
  37. Czarnota M.A., Rimando A.M., Weston L.A. (2003b) Evaluation of seven sorghum (Sorghum sp.) accessions, J. Chem. Ecol. 29, 2073–2083.PubMedCrossRefGoogle Scholar
  38. D’Abrosca B., DellaGreca M., Fiorentino A., Monaco P., Previtera L., Simonet A.M., Zarrelli A. (2001) Potential allelochemicals from Sambucus nigra, Phytochemistry 58, 1073–1081.PubMedCrossRefGoogle Scholar
  39. Dayan F.E. (2006) Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor, Planta 224, 339–346.PubMedCrossRefGoogle Scholar
  40. Dayan F.E., Kagan I.A., Rimando A.M. (2003) Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis, J. Biol. Chem. 278, 28607–28611.PubMedCrossRefGoogle Scholar
  41. Dayan F.E., Watson S.B., Nanayakkara N.P.D. (2007) Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs, J. Exp. Bot. 58, 3263–3272.PubMedCrossRefGoogle Scholar
  42. Dhima K., Vasilakoglou I., Lithourgidi A., Mecolari E., Keco R., Agolli X.H., Eleftherohorinos I. (2008) Phytotoxicity of 10 winter barley varieties and their competitive ability against common poppy and ivy-leaved speedwell, Exp. Agric. 4, 385–397.Google Scholar
  43. Dilday R.H., Lin J., Yan W. (1994) Identification of allelopathy in the USDA-ARS rice germplasm collection, Aust. J. Exp. Agr. 34, 907–910.CrossRefGoogle Scholar
  44. Ding J., Sun Y., Xiao C.L., Shi K., Zhou Y.H., Yu J.Q. (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid, J. Exp. Bot. 58, 3765–3773.PubMedCrossRefGoogle Scholar
  45. Dornbos D.L. Jr., Spencer G.F., Miller R.W. (1990) Medicarpin delays alfalfa seed germination and seedling growth, Crop Sci. 30, 162–166.CrossRefGoogle Scholar
  46. Dudai N., Poljakoff-Mayber A., Mayer A.M., Putievsky E., Lerner H.R. (1999) Essential oils as allelochemicals and their potential use as bioherbicides, J. Chem. Ecol. 25, 1079–1089.CrossRefGoogle Scholar
  47. Duke S.O. (2003) Weeding with transgenes, Trends Biotechnol. 21, 192–195.PubMedCrossRefGoogle Scholar
  48. Duke S.O., Baerson S.R., Rimando A.M., Pan Z., Dayan F.E., Belz R.G. (2007) Biocontrol of weeds with allelopathy: Conventional and transgenic approaches, in: Vurro M., Gressel J. (Eds.), Novel biotechnologies for biocontrol agent enhancement and management, Springer, The Netherlands, pp. 75–85.CrossRefGoogle Scholar
  49. Duke S.O., Dayan F.E., Bajsa J., Meepagala K.M., Hufbauer R.A., Blair A.C. (2009) The case against (−)-catechin involvement in allelopathy of Centaurea stoebe (spotted knapweed), Plant Signaling & Behavior 4, 422–424.CrossRefGoogle Scholar
  50. Duke S.O., Romagni J.G., Dayan F.E. (2000) Natural products as sources for new mechanisms of herbicidal action, Crop Prot. 19, 583–589.CrossRefGoogle Scholar
  51. Duke S.O., Scheffler B.E., Dayan F.E., Weston L.A., Ota E. (2001) Strategies for using transgenes to produce allelopathic crops, Weed Technol. 15, 826–834.CrossRefGoogle Scholar
  52. Einhellig F.A. (1996) Interactions involving allelopathy in cropping systems, Agron. J. 88, 886–893.CrossRefGoogle Scholar
  53. Einhellig F.A., Souza I.F. (1992) Phytotoxicity of sorgoleone found in grain sorghum root exudates, J. Chem. Ecol. 18, 1–11.CrossRefGoogle Scholar
  54. El-Rokiek K.G., Eid R.A. (2009) Allelopathic effects of Eucalyptus citriodora on amaryllis and associated grassy weed, Planta Daninha 27, 887–899.CrossRefGoogle Scholar
  55. Frey M., Chomet P., Glawischnig E., Stettner C., Grün S., Winklmair A., Wolfgang E., Bacher A., Meeley R.B., Briggs S.P., Simcox K., Gierl A. (1997) Analysis of a chemical plant defense mechanism in grasses, Science 277, 696–699.PubMedCrossRefGoogle Scholar
  56. Fujii Y. (1994) Screening of allelopathic candidates by new specific discrimination, and assessment methods for allelopathy, and the inhibition of L-DOPA as the allelopathic substance from the most promising velvetbean (Mucuna pruriens), Bull. Natl. Inst. Agro-Environ. Sci. 10, 115–218 (in Japanese).Google Scholar
  57. Fujii Y., Parvez S.S., Parvez M.M., Ohmae Y., Iida O. (2003) Screening of 239 medicinal plant species for allelopathic activity using the sandwich method, Weed Biol. Manag. 3, 233–241.CrossRefGoogle Scholar
  58. Furness N.H., Adomas B., Dai Q., Li S., Upadhyaya M.K. (2008) Allelopathic influence of Houndstongue (Cynoglossum officinale) and its modification by UV-B radiation, Weed Technol. 22, 101–107.CrossRefGoogle Scholar
  59. Gatti A.B., Perez S.C.J.G. A., Lima M. I. S. (2004) Atividade alelopática de extratos aquosos de Aristolochia esperanzae O. Kuntze na germinação e no crescimento de Lactuca sativa L. e Raphanus sativus L., Acta Bot. Bras. 18, 459–472.CrossRefGoogle Scholar
  60. Gimsing A.L., Blæum J., Dayan F.E., Locke M.A., Sejerø L.H., Jacobsen C.S. (2009) Mineralization of the allelochemical sorgoleone in soil, Chemosphere 76, 1041–1047.PubMedCrossRefGoogle Scholar
  61. Golisz A., Sugano M., Fujii Y. (2008) Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat, J. Exp. Bot. 59, 3099–3109.PubMedCrossRefGoogle Scholar
  62. Gorz H.J., Haag W.L., Speacht J.E., Haskins F.A. (1977) Assay of phidroxybenzaldehyde as a measure of hydrocyanic acid potential in sorghums, Crop Sci. 17, 578–582.CrossRefGoogle Scholar
  63. Gu Y., Wang P., Kong C.H. (2008) Effects of rice allelochemicals on the microbial community of flooded paddy soil, Allelopathy J. 22, 299–309.Google Scholar
  64. Hall A.B., Blum U., Fites R.C. (1982) Stress modification of allelopathy of Helianthus annuus L. debris on seed germination, Am. J. Bot. 69, 776–783.CrossRefGoogle Scholar
  65. Hall M.H., Henderlong P.R. (1989) Alfalfa autotoxic fraction characterization and initial separation, Crop Sci. 29, 425–428.CrossRefGoogle Scholar
  66. Hallak A.M.G., Davide L.C., Gavilanes M.L., Souza I.F. (1999) Efeito de exsudatos de raiz de sorgo (Sorghum bicolor L.) sobre características anatômicas do caule do feijoeiro (Phaseolus vulgaris L.), Ciênc. Agrotec. 23, 317–322.Google Scholar
  67. Hao Z.P., Christie Q.W.P., Li X.L. (2007) Allelopathic potential of watermelon tissues and root exudates, Sci. Hort. 112, 315–320.CrossRefGoogle Scholar
  68. Hauck C., Muller S., Schildknecht H.A. (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant, J. Plant Physiol. 139, 474–478.Google Scholar
  69. Hess D.E., Ejeta G., Buttler L.G. (1992) Selection of sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga, Phytochemistry 31, 493–497.CrossRefGoogle Scholar
  70. Inderjit (2001) Soil:environmental effects on allelochemical activity, Agron. J. 93, 79–84.Google Scholar
  71. Inderjit, Kaur M., Foy C.L. (2001) On the significance of field studies in allelopathy, Weed Technol. 15, 792–797.CrossRefGoogle Scholar
  72. Jennings J.A., Nelson C.J. (1998) Influence of soil texture on Alfalfa autotoxicity, Agron. J. 90, 54–58.CrossRefGoogle Scholar
  73. Jennings J.A., Nelson C.J. (2002) Zone of autotoxic influence around established alfalfa plants, Agron. J. 94, 1104–1111.CrossRefGoogle Scholar
  74. Jensen E.H., Hartman B.J., Lundin F., Knapp S., Brookerd B. (1981) Autotoxicity of alfalfa. Max C. Fleischmann College of Agriculture, University of Nevada, Agricultural Experiment Station Bulletin Rep. 44.Google Scholar
  75. Jensen L.B., Courtois B., Shen L., Li Z., Olofsdotter M., Mauleon R.P. (2001) Locating genes controlling allelopathic effects against barnyardgrass in upland rice, Agron. J. 93, 21–26.CrossRefGoogle Scholar
  76. Jose S., Gillespie A.R. (1998) Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth and physiology, Plant Soil 203, 199–206.CrossRefGoogle Scholar
  77. Kagan I.A., Rimando A.M., Dayan F.E. (2003) Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor, J. Agric. Food Chem. 51, 7589–7595.PubMedCrossRefGoogle Scholar
  78. Kato-Noguchi H., Ino T. (2005) Possible involvement of momilactone B in rice allelopathy, J. Plant Physiol. 162, 718–721.PubMedCrossRefGoogle Scholar
  79. Kato-Noguchi H., Ino T., Ota K. (2008) Secretion of momilactone A from rice roots to the rhizosphere, J. Plant Physiol. 165, 691–696.PubMedCrossRefGoogle Scholar
  80. Kato-Noguchi H., Salam M.A., Kobayashi T. (2009) A quick seeding test for allelopathic potential of Bangladesh rice cultivars, Plant Prod. Sci. 12, 47–49.CrossRefGoogle Scholar
  81. Khanh T.D., Xuan T.D., Chung I.M. (2007) Rice allelopathy and the possibility for weed management, Ann. Appl. Biol. 151, 325–339.CrossRefGoogle Scholar
  82. Khanh T.D., Xuan T.D., Chung I.M., Tawata S. (2008) Allelochemicals of barnyardgrass-infested soil and their activities on crops and weeds, Weed Biol. Manag. 8, 267–275.CrossRefGoogle Scholar
  83. Kim S.Y., Madrid A.V., Park S.T., Yang S.J., Olofsdotter M. (2005) Evaluation of rice allelopathy in hydroponics, Weed Res. 45, 74–79.CrossRefGoogle Scholar
  84. Kobaisy M., Tellez M.R., Webber C.L., Dayan F.E., Schrader K.K., Wedge D.E. (2001) Phytotoxic and fungitoxic activities of the essential oil of Kenaf (Hibiscus cannabinus L.) leaves and its composition, J. Agric. Food Chem. 49, 3768–3771.PubMedCrossRefGoogle Scholar
  85. Kong C., Hu F., Xu X. (2002) Allelopathic potential and chemical constituints of volatiles from Ageratum conyzoides under stress, J. Chem. Ecol. 28, 1173–1182.PubMedCrossRefGoogle Scholar
  86. Kong C., Liang W., Xu X., Hu F., Wang P., Jiang Y. (2004) Release and activity of allelochemicals from allelopathic rice seedlings, J. Agric. Food Chem. 52, 2861–2865.PubMedCrossRefGoogle Scholar
  87. Kong C.H., Li H.B., Hu F., Xu X.H., Wang P. (2006) Allelochemicals released by rice roots and residues in soil, Plant Soil 288, 47–56.CrossRefGoogle Scholar
  88. Krogh S.S., Mensz S.J.M., Nielsen S.T., Mortensen A.G., Christophersen C., Fomsgaard I.S. (2006) Fate of Benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts, J. Agric. Food Chem. 54, 1064–1074.PubMedCrossRefGoogle Scholar
  89. Kruse M., Strandberg M., Strandberg B. (2000) Ecological effects of allelopathic plants. A review, Department of Terrestrial Ecology, Silkeborg, Denmark, Rep. No. 315.Google Scholar
  90. Kulmatiski A., Beard K.H. (2006) Activated carbon as a restoration tool: Potential for control of invasive plants in abandoned agricultural fields, Restor. Ecol. 14, 251–257.CrossRefGoogle Scholar
  91. Lau J.A., Puliafico K.P., Kopshever J.A., Steltzer H., Jarvis E.P., Schwarzländer M., Strauss S.Y., Hufbauer R.A. (2008) Inference of allelopathy is complicated by effects of activated carbon on plant growth, New Phytol. 178, 412–423.PubMedCrossRefGoogle Scholar
  92. Lin W., He H., Shen L., Chen X., Ke Y., Guo Y., He H. (2004) A proteomic approach to analysing rice allelopathy on barnyard grass (Echinochloa crus-galli L.), in: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia ( — access in October 01, 2008).
  93. Liu D.L., Lovett J.V. (1993) Biologically active secondary metabolites of barley. I. Developing techniques and assessing allelopathy in barley, J. Chem. Ecol. 19, 2217–2230.CrossRefGoogle Scholar
  94. Macek T., Kotrba P., Svatos A., Novakova M., Demnerova K., Mackova M. (2008) Novel roles for genetically modified plants in environmental protection, Trends Biotechnol. 262, 146–152.CrossRefGoogle Scholar
  95. Macías F.A., Oliva R.M., Varela R.M., Torres A., Molinillo J.M.G. (1999a) Allelochemicals from sunflower leaves cv. Peredovick, Phytochemistry 52, 613–621.CrossRefGoogle Scholar
  96. Macías F.A., Varela, R.M. Torres, A. Molinillo, J.M.G. (1999b) New bioactive plant Heliannuols from cultivar sunflower leaves, J. Nat. Prod. 62, 1636–1639.CrossRefGoogle Scholar
  97. Macías F.A., Oliveros-Bastidas A., Marín D., Castellano D., Simonet A.M., Molinillo J.M.G. (2004a) Degradation studies on Benzoxazinoids. Soil degradation dynamics of 2,4-Dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from Gramineae, J. Agric. Food Chem. 52, 6402–6413.PubMedCrossRefGoogle Scholar
  98. Macías F.A., Molinillo J.M.G., Chinchilla D., Galindo J.C.G. (2004b) Heliannanes — A structure-activity relationship (SAR) study, in: Macías F.A., Galindo J.C.G., Molinillo J.M.G., Cuttler H.G. (Eds.), Allelopathy: Chemistry and mode of action of allelochemicals, CRC Press, Boca Raton, Florida, pp. 103–124.Google Scholar
  99. Mandal S. (2001) Allelopathic activity of root exudates from Leonurus sibiricus L. (Raktodrone), Weed Biol. Manag. 1, 170–175.CrossRefGoogle Scholar
  100. Maraschin-Silva F., Aqüila M.E.A. (2006) Contribuição ao estudo do potencial alelopático de espécies nativas, Rev. Árvore 30, 547–555.CrossRefGoogle Scholar
  101. Mattner S.W. (2006) The impact of pathogens on plant interference and allelopathy, in: Inderjit, Mukerji K.G. (Eds.), Allelochemicals: Biological control of plant pathogens and diseases. Springer, The Netherlands, pp. 79–101.CrossRefGoogle Scholar
  102. Mattner S.W., Parbery D.G. (2001) Rust-enhanced allelopathy of perennial Ryegrass against White clover, Agron. J. 93, 54–59.CrossRefGoogle Scholar
  103. May F.E., Ash J.E. (1990) An assessment of the allelopathic potential of Eucalyptus, Aust. J. Bot. 38, 245–254.CrossRefGoogle Scholar
  104. Miller D.A. (1996) Allelopathy in forage crop systems, Agron. J. 88, 854–859.CrossRefGoogle Scholar
  105. Mwaja V.N., Masiunas J.B., Weston L.A. (1995) Effect of fertility on biomass, phytotoxicity, and allelochemical content of cereal rye, J. Chem. Ecol. 21, 81–96.CrossRefGoogle Scholar
  106. Nair M.G., Whiteneck C.J., Putnam A.R. (1990) 2,2′-oxo-1,1′-azobenzene, a microbially transformed allelochemical from 2,3-benzoxazolinone, J. Chem. Ecol. 16, 353–364.CrossRefGoogle Scholar
  107. Netzly D.H., Butler L.G. (1986) Roots of sorghum exude hydrophobic droplets containing biologically active components, Crop Sci. 26, 775–777.CrossRefGoogle Scholar
  108. Netzly D.H., Riopel J.L., Ejeta G., Butler L.G. (1988) Germination stimulants of witched (Striga asiatica) from hydrophobic root exudates of sorghum (Sorghum bicolor), Weed Sci. 36, 441–446.Google Scholar
  109. Nicolieur G.F., Pope D.F., Thompson A.C. (1983) Biological activity of dhurrin and other compounds from Johnson grass (Sorghum halapense), J. Agric. Food Chem. 31, 744–748.CrossRefGoogle Scholar
  110. Nimbal C.I., Pedersen J.F., Yerkes C.N., Weston L.A., Weller S.C. (1996) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm, J. Agric. Food Chem. 44, 1343–1347.CrossRefGoogle Scholar
  111. Nishihara E., Parvez M.M., Araya H., Kawashima S., Fujii Y. (2005) L-3-(3,4-dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots, Plant Growth Regul. 45, 113–120.CrossRefGoogle Scholar
  112. Ohno S., Tomita-Yokotani K., Kosemura S., Node M., Suzuki T., Amano M., Yasui K., Goto T., Yamamura S., Hasegawa K. (2001) A species-selective allelopathic substance from germinating sun-flower (Helianthus annuus L.) seeds, Phytochemistry 56, 577–581.PubMedCrossRefGoogle Scholar
  113. Olofsdotter M., Navarez D., Moody K. (1995) Allelopathic potential in rice (Oryza sativa L.) germplasm, Ann. Appl. Biol. 127, 543–560.CrossRefGoogle Scholar
  114. Olofsdotter M., Jensen L.B., Courtois B. (2002) Improving crop competitive ability using allelopathy — An example from rice, Plant Breed. 121, 1–9.CrossRefGoogle Scholar
  115. Om H., Dhiman S.D., Kumar S., Kumar H. (2002) Allelopathic response of Phalaris minor to crop and weed plants in rice-wheat system, Crop Prot. 21, 699–705.CrossRefGoogle Scholar
  116. Oueslati O. (2003) Allelopathy in two durum wheat (Triticum durum L.) varieties, Agric. Ecosyst. Environ. 96, 161–163.CrossRefGoogle Scholar
  117. Oueslati O., Ben-Hammouda M., Ghorbal M.H., Guezzah M., Kremer R.J. (2005) Barley autotoxicity as influenced by varietal and seasonal variation, J. Agron. Crop Sci. 191, 249–254.CrossRefGoogle Scholar
  118. Overland L. (1966) The role of allelopathic substances in the “smother crop” barley, Am. J. Bot. 53, 423–432.CrossRefGoogle Scholar
  119. Parvez S.S., Parvez M.M., Fujii Y., Gemma H. (2003) Allelopathic competence of Tamarindus indica L. root involved in plant growth regulation, Plant Growth Regul. 41, 139–148.CrossRefGoogle Scholar
  120. Pérez F.J., Ormeno-Nunez J. (1993) Weed growth interference from temperate cereals: the effect of a hydroxamic-acids-exuding rye (Secale cereale L.) cultivar, Weed Res. 33, 115–119.CrossRefGoogle Scholar
  121. Pérez-Leal R., García-Mateos M.R., Vásquez-Rojas T.R., Colinas-Léon M.T. (2005) Allelopathic potential of Petiveria alliacea L., Agron. Sustain. Dev. 25, 177–182.CrossRefGoogle Scholar
  122. Perry L.G., Thelen G.C., Ridenour W.M., Callaway R.M., Paschke M.W., Vivanco J.M. (2007) Concentrations of the allelochemical (±)-Catechin in Centaurea maculosa soils, J. Chem. Ecol. 33, 2337–2344.PubMedCrossRefGoogle Scholar
  123. Perry L.G., Thelen G.C., Ridenour W.M., Weir T.L., Callaway R.M., Paschke M.W., Vivanco J.M. (2005) Dual role for an allelochemical: (+/−)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment, J. Ecol. 93, 1126–1135.CrossRefGoogle Scholar
  124. Pires N.M., Prates H.T., Pereira Filho I.A., Oliveira R.S. Jr., Faria T.C.L. (2001) Atividade alelopática da leucena sobre espécies de plantas daninhas, Sci. Agr. 58, 61–65.CrossRefGoogle Scholar
  125. Qasem J.R. (2001) Allelopathic potential of White top and Syrian sage on vegetable crops, Agron. J. 93, 64–71.CrossRefGoogle Scholar
  126. Rabotnov T.A. (1982) Importance of the evolutionary approach to the study of allelopathy, ékologia 3, 5–8.Google Scholar
  127. Radosevich S.R., Holt J., Ghersa C. (1997) Weed ecology: Implications for management, 2nd ed., John Wiley & Sons, New York.Google Scholar
  128. Reberg-Horton S.C., Burton J.D., Daneower D.A., Ma G., Monks D.W., Murphy J.P., Ranells N.N., Williamson J.D., Creamer N.G. (2005) Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.), J. Chem. Ecol. 31, 179–193.PubMedCrossRefGoogle Scholar
  129. Resende M.L.V., Salgado S.M.L., Chaves Z.M. (2003) Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos, Fitopatol. Bras. 28, 123–130.CrossRefGoogle Scholar
  130. Rice E.L. (1984) Allelopathy, 2nd ed., Academic Press, Orlando.Google Scholar
  131. Ridenour W.M., Callaway R.M. (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass, Oecologia 126, 444–450.CrossRefGoogle Scholar
  132. Rudrappa T., Bonsall J., Gallagher J.L., Seliskar D.M., Bais H.P. (2007) Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity, J. Chem. Ecol. 33, 1898–1918.PubMedCrossRefGoogle Scholar
  133. Russo V.M., Webber III C.L., Myers D.L. (1997) Kenaf extract affects germination and post-germination development of weed, grass and vegetable seeds, Ind. Crop. Prod. 6, 59–69.CrossRefGoogle Scholar
  134. Santos O.G. (1996) Alelopatia de genótipos de sorgo (Sorghum bicolor) em sistemas de cultivo de hortaliças. (M.Sc. Dissertation), Universidade de Brasília, Brasília, 27 p.Google Scholar
  135. Seguin P., Sheaffer C.C., Schmitt M.A., Russelle M.P., Randall G.W., Peterson P.R., Hoverstad T.R., Quiring S.R., Swanson D.R. (2002) Alfalfa autotoxicity: Effects of reseeding delay, original stand age, and cultivar, Agron. J. 94, 775–781.CrossRefGoogle Scholar
  136. Seigler D.S. (1996) Chemistry and mechanisms of allelopathic interactions, Agron. J. 88, 876–885.CrossRefGoogle Scholar
  137. Shao H., Peng S., Wei X., Zhang D., Zhang C. (2005) Potential allelochemicals from an invasive weed Mikania micrantha H.B.K., J. Chem. Ecol. 31, 1657–1668.PubMedCrossRefGoogle Scholar
  138. Shaukat S.S., Munir N., Siddiqui I.A. (2003) Allelopathic responses of Conyza canadensis (L.) Cronquist: A cosmopolitan weed, Asian J. Plant Sci. 2, 1034–1039.CrossRefGoogle Scholar
  139. Shiraishi S., Watanabe I., Kuno K., Fujii Y. (2002) Allelopathic activity of leaching from dry leaves and exudate from roots of ground cover plants assayed on agar, Weed Biol. Manag. 2, 133–142.CrossRefGoogle Scholar
  140. Silva G.B., Martim L., Silva C.L., Young M.C.M., Ladeira A.M. (2006) Potencial alelopático de espécies arbóreas nativas do Cerrado, Hoehnea 33, 331–338.Google Scholar
  141. Singh H.P., Batish D.R., Kohli R.K. (2003) Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management, Crit. Rev. Plant Sci. 22, 239–311.CrossRefGoogle Scholar
  142. Singh H.P., Batish D.R., Pandher J.K., Kohli R.K. (2005) Phytotoxic effects of Parthenium hysterophorus residues on three Brassica species, Weed Biol. Manag. 5, 105–109.CrossRefGoogle Scholar
  143. Song B., Xiong J., Fang C., Qiu L., Lin R., Liang Y., Lin W. (2008) Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment, J. Chem. Ecol. 34, 688–695.PubMedCrossRefGoogle Scholar
  144. Streibig J.D., Dayan F.E., Rimando A.M., Duke S.O. (1999) Joint action of natural and synthetic photosystem II inhibitors, Pestic. Sci. 55, 137–146.CrossRefGoogle Scholar
  145. Tabaglio V., Gavazzi C., Schulz M., Marocco A. (2008) Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch, Agron. Sustain. Dev. 28, 397–401.CrossRefGoogle Scholar
  146. Taiz L., Zeiger E. (2006) Plant Physiology, 4th ed., Sinauer Associates, Inc., Massachusetts.Google Scholar
  147. Tang C.-S., Young C.-C. (1982) Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta Limpograss (Hemarthria altissima), Plant Physiol. 69, 155–160.PubMedCrossRefGoogle Scholar
  148. Thapar R., Singh N. B. (2006) Effects of leaf-residues of Croton bonplandianum on growth and metabolism of Parthenium hysterophorus L., Allelopathy J. 18, 255–266.Google Scholar
  149. Tharayil N., Bhowmik P. C., Xing B. (2008) Bioavailability of allelochemicals as affected by companion compounds in soil matrices, J. Agric. Food Chem. 56, 3706–3713.PubMedCrossRefGoogle Scholar
  150. Tongma S., Kobayashi K., Usui K. (2001) Allelopathic activity of Mexican sunflower [Tithonia diversifolia (Hemsl.) A. Gray] in soil under natural field conditions and different moisture conditions, Weed Biol. Manag. 1, 115–119.CrossRefGoogle Scholar
  151. Trezzi M.M., Vidal R.A., Peralba M.C.R., Dick D.P., Kruse N.D. (2005) Purificação e identificação de sorgoleone e sua quantificação em genótipos de sorgo (Sorghum bicolor L. Moench) Pesticidas, Rev. Ecotoxicol. Meio Amb. 15, 105–112.Google Scholar
  152. Tsanuo M.K., Hassanali A., Hooper A.M., Khan Z., Kaberia F., Pickett J.A., Wadhams L.J. (2003) Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum, Phytochemistry 64, 265–273.PubMedCrossRefGoogle Scholar
  153. Tseng M.-H., Kuo Y.-H., Chen Y.-M., Chou C.-H. (2003) Allelopathic potential of Macaranga tanarius (L.) Muell.-Arg., J. Chem. Ecol. 29, 1269–1286.PubMedCrossRefGoogle Scholar
  154. Vaughn S.F., Berhow M.A. (1999) Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata), J. Chem. Ecol. 25, 2495–2504.CrossRefGoogle Scholar
  155. Veronese P., Ruiz M.T., Coca M.A., Hernandez-Lopez A., Lee H., Ibeas J.I., Damsz B., Pardo J.M., Hasegawa P.M., Bressan R.A., Narasimhan M.L. (2003) In defense against pathogens: Both plant sentinels and foot soldiers need to know the enemy, Plant Physiol. 131, 1580–1590.PubMedCrossRefGoogle Scholar
  156. Vidal R.A., Bauman T.T. (1997) Fate of allelochemicals in the soil, Ciência Rural 27, 351–357.CrossRefGoogle Scholar
  157. Vivanco J.M., Bais H.P., Stermitz F.R., Thelen G.C., Callaway R.M. (2004) Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion, Ecol. Lett. 7, 285–292.CrossRefGoogle Scholar
  158. von Kiparski G.R., Lee, L.S., Gillespie A.R. (2007) Occurrence and fate of the phytotoxin Juglone in Alley soils under Black Walnut trees, J. Environ. Qual. 36, 709–717.CrossRefGoogle Scholar
  159. Webber III C.L., Bledsoe V.K. (2002) Kenaf yield components and plant composition, in: Janick J., Whipkey A. Trends in new crops and new uses, ASHS Press, pp. 348–357.Google Scholar
  160. Weidenhamer J.D. (1996) Distinguishing resource competition and chemical interference: Overcoming the methodological impasse, Agron. J. 8, 866–875.CrossRefGoogle Scholar
  161. Weir T.L., Park S.-W., Vivanco J.M. (2004) Biochemical and physiological mechanisms mediated by allelochemicals, Curr. Opin. Plant Biol. 7, 472–479.PubMedCrossRefGoogle Scholar
  162. Weston L.A. (1996) Utilization of allelopathy for weed management in agroecosystems, Agron. J. 88, 860–866.CrossRefGoogle Scholar
  163. Weston L.A., Czarnota M.A. (2001) Activity and persistence of sorgoleone, a long-chain hydroquinone produced by sorghum bicolor, J. Crop Prod. 4, 363–377.CrossRefGoogle Scholar
  164. Willis R.J. (1985) The historical bases of the concept of allelopathy, J. Hist. Biol. 18, 71–102.CrossRefGoogle Scholar
  165. Willis R.J. (2000) Juglans spp., juglone and allelopathy, Allelopathy J. 17, 1–55.Google Scholar
  166. Wilson R.E., Rice E.L. (1968) Allelopathy as expressed by Helianthus annuus and its role in old-field succession, Bull. Torrey Bot. Club 95, 432–448.CrossRefGoogle Scholar
  167. Wójcik-Wojtkowiak D., Politycka B., Schneider M., Perkowski J. (1990) Phenolic substances as allelopathic agents arising during the degradation of rye (Secale cereale) tissues, Plant Soil 124, 143–147.CrossRefGoogle Scholar
  168. Wu H., Haig T., Pratley J., Lemerle D., An M. (2000) Allelochemicals in wheat (Triticum aestivum L.): Variation of phenolic acids in root tissues, J. Agric. Food Chem. 48, 5321–5325.PubMedCrossRefGoogle Scholar
  169. Wu H., Pratley J., Lemerle D., Haig T. (2001) Allelopathy in wheat (Triticum aestivum), Ann. Appl. Biol. 139, 1–9.CrossRefGoogle Scholar
  170. Xuan T.D., Elzaawely A.A., Deba F., Fukuta M., Tawata S. (2006) Mimosine in Leucaena as a potent bio-herbicide, Agron. Sustain. Dev. 26, 89–97.CrossRefGoogle Scholar
  171. Yongjun Z., Liuqing Y., Jianping Z., Yongliang L. (2008) Molecular approaches in improving the rice allelopathy, Allelopathy J. 22, 275–281.Google Scholar
  172. Yoshida H., Tsumuki H., Kanehisa K., Corucuera L.J. (1993) Release of gramine from the surface of barley leaves, Phytochemistry 34, 1011–1013.CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Manoel Bandeira de Albuquerque
    • 1
  • Roseane Cavalcanti dos Santos
    • 2
  • Liziane Maria Lima
    • 2
  • Péricles de Albuquerque Melo Filho
    • 3
  • Rejane Jurema Mansur Custódio Nogueira
    • 4
  • Claudio Augusto Gomes da Câmara
    • 5
  • Alessandra de Rezende Ramos
    • 6
  1. 1.Department of Crop and Environmental SciencesUniversidade Federal da ParaíbaAreia, Paraíba StateBrazil
  2. 2.EMBRAPA AlgodãoCampina Grande, Paraíba StateBrazil
  3. 3.Agronomy DepartmentUniversidade Federal Rural de Pernambuco, RecifePernambuco StateBrazil
  4. 4.Department of BiologyUniversidade Federal Rural de PernambucoRecife, Pernambuco StateBrazil
  5. 5.Department of ChemistryUniversidade Federal Rural de PernambucoRecife, Pernambuco StateBrazil
  6. 6.Faculty of Exact and Natural Sciences - Marabá CampusUniversidade Federal do ParáMarabá, Pará StateBrazil

Personalised recommendations