Agronomy for Sustainable Development

, Volume 31, Issue 2, pp 361–372

Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review

  • B. Ludwig
  • D. Geisseler
  • K. Michel
  • R. G. Joergensen
  • E. Schulz
  • I. Merbach
  • J. Raupp
  • R. Rauber
  • K. Hu
  • L. Niu
  • X. Liu
Open Access
Review Article

Abstract

The study of sustainable land use is complex and long-term experiments are required for a better understanding of the processes of carbon stabilization. Objectives were (i) to describe for four long-term experiments the effects of fertilization and soil management on crop yields and the dynamics of soil organic carbon (SOC) and total N, and (ii) to discuss the usefulness of models for a better understanding of the underlying processes. Data of soil organic carbon and total N of four long-term experiments in Germany and China which studied the effect of fertilization (Bad Lauchstädt, Darmstadt) and tillage (Göttingen, Quzhou) were evaluated and soil organic carbon fractionation was carried out. The Rothamsted Carbon Model was used for a description and prediction of soil organic carbon dynamics as affected by fertilization and tillage in Bad Lauchstädt and Quzhou. The type of fertilizer added at common rates — either mineral N or farmyard manure — affected the crop yields only slightly, with slightly lower yields after manure application compared with mineral N fertilization. For both fertilization trials, manure applications at common rates had beneficial effects on soil organic carbon stocks in the labile pool (turnover time estimated as <10 years) and to a greater extent in the intermediate pool (turnover time estimated to be in the range of 10 to 100 years). A comparison of the effects of conventional tillage, reduced tillage and no-tillage carried out in Göttingen and Quzhou indicated only small differences in crop yields. Reduced tillage in Göttingen resulted in an increased C storage in the surface soil and C was mainly located in the mineral-associated organic matter fraction and in water-stable macro-aggregates (>0.25 mm). For Quzhou, no-tillage and conventional tillage had similar effects on total C stocks, with a greater spatial variability in soil organic carbon stocks in the no-tillage plots. Modeling required site-specific calibrations for the stock of inert organic matter for each of the sites, indicating that not all carbon stabilization processes are included in the model and that application of a model to a new site may also need site-specific adjustments before it can be used for predictions. After site-specific calibration, however, model predictions for the remaining treatments were generally accurate for the fertilization and tillage trials, which emphasizes the importance of temperature, moisture, soil cover and clay content on the decomposition dynamics of soil organic carbon and the significance of amounts and quality of carbon inputs in the soil for maintaining or increasing soil organic carbon stocks in arable soils.

Keywords

soil organic matter C dynamics Rothamsted carbon model tillage fertilization soil organic carbon (SOC) 

References

  1. Abele U. (1987) Produktqualität und Düngung — mineralisch, organisch, biologisch-dynamisch, Schriftenreihe des Bundesministers für Ernährung, Landwirtschaft und Forsten, 345. Landwirtschaftsverlag GmbH, Münster-Hiltrup.Google Scholar
  2. Alvarez R. (2005) A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage, Soil Use Manage. 21, 38–52.CrossRefGoogle Scholar
  3. Alvarez R., Steinbach H.S. (2009) A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas, Soil Tillage Res. 104, 1–15.CrossRefGoogle Scholar
  4. Bachinger J. (1996) Der Einfluss unterschiedlicher Düngungsarten (mineralisch, organisch, biologisch-dynamisch) auf die zeitliche Dynamik und räumliche Verteilung von bodenchemischen und -mikrobiologischen Parametern der C-und N-Dynamik sowie auf das Pflanzen- und Wurzelwachstum von Winterroggen, Schriftenreihe 7. Institut für biologisch-dynamische Forschung, Darmstadt, Ph.D. thesis University of Giessen.Google Scholar
  5. Beheydt D., Boeckx P., Sleutel S., Li C.S., Van Cleemput O. (2007) Validation of DNDC for 22 long-term N2O field emission measurements, Atmos. Environ. 41, 6196–6211.CrossRefGoogle Scholar
  6. Berner A., Hildermann I., Fliessbach A., Pfiffner L., Niggli U., Mäder P. (2008) Crop yield and soil fertility response to reduced tillage under organic management, Soil Tillage Res. 101, 89–96.CrossRefGoogle Scholar
  7. Blair N., Faulkner R.D., Till A.R., Körschens M., Schulz E. (2006) Long-term management impacts on soil C, N and physical Fertility Part II: Bad Lauchstädt static and extreme FYM experiments, Soil Tillage Res. 91, 39–47.CrossRefGoogle Scholar
  8. Cannell R.Q., Hawes J.D. (1994) Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates, Soil Tillage Res. 30, 245–282.CrossRefGoogle Scholar
  9. Christensen B.T. (1996) The Askov long-term experiments on animal manure and mineral fertilizers, in: Powlson D.S., Smith P., Smith J.U. (Eds.), Evaluation of Soil Organic Matter Models using existing long-term Datasets, Springer, Berlin, pp. 301–312.CrossRefGoogle Scholar
  10. Coleman K., Jenkinson D.S. (1999) ROTHC-26.3. A Model for the Turnover of Carbon in Soil. Model Description and Windows Users’ Guide, Lawes Agricultural Trust, Harpenden.Google Scholar
  11. Edmeades D.C. (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review, Nutr. Cycl. Agroecosyst. 66, 165–180.CrossRefGoogle Scholar
  12. Ehlers W., Werner D., Mähner T. (2000) Wirkung mechanischer Belastung auf Gefüge und Ertragsleistung einer Löss-Parabraunerde mit zwei Bearbeitungssystemen, J. Plant Nutr. Soil Sci. 163, 321–333.CrossRefGoogle Scholar
  13. Ellmer F., Baumecker M. (2005) Static nutrient depletion experiment Thyrow. Results after 65 experimental years, Arch. Agron. Soil Sci. 51, 151–161.CrossRefGoogle Scholar
  14. Franko U. (1997) Modellierung des Umsatzes der organischen Bodensubstanz, Arch. Agron. Soil Sci. 41, 527–547.CrossRefGoogle Scholar
  15. Franko U., Puhlmann M., Kuka K., Böhme F., Merbach I. (2007) Dynamics of water, carbon and nitrogen in an agricultural used Chernozem soil in Central Germany, in: Kersebaum K.C., Hecker J.-M., Mirschel W., Wegehenkel M. (Eds.), Modelling Water and Nutrient Dynamics in Soil Crop Systems, Springer, Stuttgart, Germany, pp. 245–258.CrossRefGoogle Scholar
  16. Gabrielle B., Mary B., Roche R., Smith P., Gosse., G. (2002) Simulation of carbon and nitrogen dynamics in arable soils: a comparison of approaches, Eur. J. Agron. 18, 107–120.CrossRefGoogle Scholar
  17. Guo L., Falloon P., Coleman K., Zhou B., Li Y., Lin E., Zhang F. (2007) Application of the RothC model to the results of long-term experiments on typical upland soils in northern China, Soil Use Manage. 23, 63–70.CrossRefGoogle Scholar
  18. Heitkamp F., Raupp J., Ludwig B. (2009) Impact of fertilizer type and rate on carbon and nitrogen pools in a sandy Cambisol, Plant Soil 319, 259–275.CrossRefGoogle Scholar
  19. Herdt R.W., Steiner R.A. (1995) Agricultural sustainability: concepts and conundrum, in: Barnett V., Payne R., Steiner R. (Eds.), Agricultural Sustainability: Economic, Environmental and Statistical Considerations, Wiley, Chichester, UK, pp. 3–13.Google Scholar
  20. Jacobs A., Rauber R., Ludwig B. (2009) Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years, Soil Tillage Res. 102, 158–164.CrossRefGoogle Scholar
  21. Jenkinson D.S., Rayner J.H. (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Sci. 123, 298–305.CrossRefGoogle Scholar
  22. Kennedy A.C., Smith K.L. (1995) Soil microbial diversity and the sustainability of agricultural soils, in: Collins H.P., Robertson G.P., Klug M.J. (Eds.), The Significance and Regulation of Biodiversity, Kluwer Academic, Dordrecht, The Netherlands, pp. 75–86.CrossRefGoogle Scholar
  23. Klimanek E.-M. (1987) Ernte- und Wurzelrückstände landwirtschaftlich genutzter Fruchtarten, Akademie der Landwirtschaftswissenschaften der DDR, Müncheberg.Google Scholar
  24. Klimanek E.-M. (1997) Bedeutung der Ernte- und Wurzelrückstände landwirtschaftlich genutzter Pflanzenarten für die organische Substanz des Bodens, Arch. Agron. Soil Sci. 41, 485–511.CrossRefGoogle Scholar
  25. Koch H.-J., Stockfisch N. (2006) Loss of soil organic matter upon ploughing under a loess soil after several years of conservation tillage, Soil Tillage Res. 86, 73–83.CrossRefGoogle Scholar
  26. Körschens M., Stegemann K., Pfefferkorn A., Weise V., Müller A. (1994a) Der Statische Düngungsversuch Bad Lauchstädt nach 90 Jahren, Einfluß der Düngung auf Boden, Pflanze und Umwelt, B.G. Teubner-Verlagsgesellschaft, Stuttgart.Google Scholar
  27. Körschens M., Schulz E., Knappe S. (1994b) Einfluss von Dauerbrache und Fruchtfolge auf die N-Bilanzen einer Löss-Schwarzerde unter Berücksichtigung extremer Düngungsvarianten, Arch. Agron. Soil Sci. 38, 415–422.CrossRefGoogle Scholar
  28. Lal R. (2009) Challenges and opportunities in soil organic matter research, Eur. J. Soil Sci. 60, 158–169.CrossRefGoogle Scholar
  29. Leifeld J., Zimmermann M., Fuhrer J. (2008) Simulating decomposition of labile soil organic carbon: Effects of pH, Soil Biol. Biochem. 40, 2948–2951.CrossRefGoogle Scholar
  30. Lichtfouse E., Navarrete M., Debaeke P., Souchère V., Alberola C., Ménassieu J. (2009) Agronomy for sustainable agriculture. A review, Agron. Sustain. Dev. 29, 1–6.CrossRefGoogle Scholar
  31. Liu D.L., Cha K.Y., Conyers M.K. (2009) Simulation of soil organic carbon under different tillage and stubble management practices using the Rothamsted carbon model, Soil Tillage Res. 104, 65–73.CrossRefGoogle Scholar
  32. Ludwig B., John B., Ellerbrock R., Kaiser M., Flessa H. (2003) Stabilization of carbon from maize in a sandy soil in a long-term experiment, Eur. J. Soil Sci. 54, 117–126.CrossRefGoogle Scholar
  33. Ludwig B., Helfrich M., Flessa H. (2005) Modelling the long-term stabilization of carbon from maize in a silty soil, Plant Soil 278, 315–325.CrossRefGoogle Scholar
  34. Ludwig B., Hu K., Niu L., Liu X. (2010) Predictive modelling of the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model, Plant Soil, to be published.Google Scholar
  35. Ludwig B., Kuka K., Franko U., von Lützow M. (2008) Comparison of two quantitative soil organic carbon models with a conceptual model using data from an agricultural long-term experiment, J. Plant Nutr. Soil Sci. 171, 83–90.CrossRefGoogle Scholar
  36. Ludwig B., Schulz E., Rethemeyer J., Merbach I., Flessa H. (2007) Predictive modelling of C dynamics in the long-term fertilization experiment at Bad Lauchstädt with the Rothamsted Carbon Model, Eur. J. Soil Sci. 58, 1155–1163.CrossRefGoogle Scholar
  37. Parton W.J., Morgan J.A., Wang G.M., Del Grosso S. (2007) Projected ecosystem impact of the Prairie Heating and CO2 Enrichment experiment, New Phytol. 174, 823–834.PubMedCrossRefGoogle Scholar
  38. Piepho H.P., Büchse A., Emrich K. (2003) A hitchhiker’s guide to mixed models for randomized experiments, J. Agron. Crop Sci. 189, 310–322.CrossRefGoogle Scholar
  39. Powlson D.S., Riche A.B., Coleman K., Glendining N., Whitmore A.P. (2008) Carbon sequestration in European soils through straw incorporation: Limitations and alternatives, WasteManage. 28, 741–746.Google Scholar
  40. Rasmussen P.E., Goulding K.W.T., Brown J.R., Grace P.R., Janzen H.H., Körschens M. (1998) Agricultural sustainability and global change, Science 282, 893–896.PubMedCrossRefGoogle Scholar
  41. Raupp J. (2001) Manure fertilization for soil organic matter maintenance and its effects upon crops and the environment, evaluated in a long-term trial, in: Rees R.M., Ball B.C., Campbell C.D., Watson C.A. (Eds.), Sustainable Management of Soil Organic Matter, CAB International, Wallingford UK, pp. 301–308.Google Scholar
  42. Raupp J., Oltmanns M. (2006) Soil properties, crop yield and quality with farmyard manure with and without biodynamic preparations and with inorganic fertilizers, in: Raupp J., Pekrun C., Oltmanns M., Köpke U. (Eds.), Long-Term Field Experiments in Organic Farming. ISOFAR Scientific Series 1, Verlag Dr. Köster, Berlin, pp. 135–155.Google Scholar
  43. Reeves D.W. (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems, Soil Tillage Res. 43, 131–167.CrossRefGoogle Scholar
  44. Reiter K., Schmidtke K., Rauber R. (2002) The influence of long-term tillage systems on symbiotic N2 fixation of pea (Pisum sativum L.) and red clover (Trifolium pratense L.), Plant Soil 238, 41–55.CrossRefGoogle Scholar
  45. Richter D.D., Hofmockel M., Callaham M.A., Powlson D.S., Smith P. (2007) Long-term soil experiments: keys to managing earth’s rapidly changing ecosystems, Soil Sci. Soc. Am. J. 71, 266–279.CrossRefGoogle Scholar
  46. Shirato Y., Yokozawa M. (2006) Acid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model, Soil Biol. Biochem. 38, 812–816.CrossRefGoogle Scholar
  47. Skjemstad J.O., Spouncer L.R., Cowie B., Swift R.S. (2004) Calibration of the Rothamsted Organic Carbon TurnoverModel (Rothc, Version 26.3) using measurable soil organic carbon pools, Aust. J. Soil Res. 42, 79–88.CrossRefGoogle Scholar
  48. Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H., Klein-Gunnewiek H., Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thornley J.H.M., Whitmore A.P. (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma 81, 153–225.CrossRefGoogle Scholar
  49. Statistisches Bundesamt Deutschland (2009) GENESIS-online, https://www-genesis.destatis.de, accessed 20 Aug. 2009.
  50. Stockfisch N., Forstreuter T., Ehlers W. (1999) Ploughing effects on soil organic matter after twenty years of conservation tillage in Lower Saxony, Germany, Soil Tillage Res. 52, 91–101.CrossRefGoogle Scholar
  51. Triplett G.B., Dick W.A. (2008) No-tillage crop production: A revolution in agriculture! Agron. J. 100, S153–S165.CrossRefGoogle Scholar
  52. Van Loon G.W., Patil S.G., Hugar L.B. (2005) Agricultural Sustainability: Strategies for Assessment, Sage Publications, New York.Google Scholar
  53. von Lützow M., Kögel-Knabner I., Ludwig B., Matzner E., Flessa H., Ekschmitt K., Guggenberger G., Marschner B., Kalbitz K. (2008) Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model, J. Plant Nutr. Soil Sci. 171, 111–124.CrossRefGoogle Scholar
  54. Weigel A., Klimanek E.-M., Körschens M., Mercik S. (1998) Investigations of carbon and nitrogen dynamics in different long-term experiments by means of biological soil properties, in: Lal R., Kimble J.M., Follett R.F., Stewart. B.A. (Eds.), Soil Processes and the Carbon Cycle, CRC Press, Boca Raton, London, pp. 335–344.Google Scholar
  55. Whitmore A.P., Schröder J.J. (2007) Intercropping reduces nitrate leaching from under field crops without loss of yield: A modelling study, Eur. J. Agron. 27, 81–88.CrossRefGoogle Scholar
  56. WRB (2006) World reference base for soil resources 2006, World Soil Resources Reports No. 103, FAO, Rome.Google Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • B. Ludwig
    • 1
  • D. Geisseler
    • 1
  • K. Michel
    • 1
  • R. G. Joergensen
    • 2
  • E. Schulz
    • 3
  • I. Merbach
    • 3
  • J. Raupp
    • 4
  • R. Rauber
    • 5
  • K. Hu
    • 6
  • L. Niu
    • 6
  • X. Liu
    • 6
  1. 1.Department of Environmental ChemistryUniversity of KasselWitzenhausenGermany
  2. 2.Department of Soil Biology and Plant NutritionUniversity of KasselWitzenhausenGermany
  3. 3.Helmholtz Centre for Environmental Research — UFZHalleGermany
  4. 4.Institute for Biodynamic ResearchDarmstadtGermany
  5. 5.Department of Crop SciencesUniversity of GöttingenGöttingenGermany
  6. 6.College of Resources and Environmental SciencesChina Agricultural UniversityBeijingP.R. China

Personalised recommendations