Pathogenic and beneficial microorganisms in soilless cultures

  • J. Vallance
  • F. Déniel
  • G. Le Floch
  • L. Guérin-Dubrana
  • D. Blancard
  • P. Rey
Review Article


Soilless cultures were originally developed to control soilborne diseases. Soilless cultures provide several advantages for growers such as greater production of crops, reduced energy consumption, better control of growth and independence of soil quality. However, diseases specific to hydroponics have been reported. For instance, zoospore-producing microorganisms such as Pythium and Phytophthora spp. are particularly well adapted to aquatic environments. Their growth in soilless substrates is favoured by the recirculation of the nutrient solution. These pathogenic microorganisms are usually controlled by disinfection methods but such methods are only effective as a preventive measure. Contrary to biofiltration, active treatments such as UV, heat and ozonisation have the disadvantage of eliminating not only the harmful microorganisms but also the beneficial indigenous microorganisms. Here, we review microbial populations that colonise ecological niches of hydroponic greenhouse systems. Three topics are discussed: (1) the general microflora; (2) the pathogenic microflora that are typical to hydroponic systems; and (3) the non-pathogenic and possibly beneficial microflora, and their use in the control of plant diseases in soilless greenhouse systems. Technical, economic and environmental concerns are forcing the adoption of new sustainable methods such as the use of microbial antagonists. Thus, increased attention is now focused on the role of natural microflora in suppressing certain diseases. Managing disease suppression in hydroponics represents a promising way of controlling pathogens. Three main strategies can be used: (1) increasing the level of suppressiveness by the addition of antagonistic microorganisms; (2) using a mix of microorganisms with complementary ecological traits and antagonistic abilities, combined with disinfection techniques; and (3) amending substrates to favour the development of a suppressive microflora. Increasing our knowledge on beneficial microflora, their ecology and treatments that influence their composition will help to commercialise new, ready-to-use substrates microbiologically optimised to protect plants in sustainable management systems.


antagonistic agents biological control microbial ecology disinfection methods hydroponics recirculating solutions root rots suppressive microflora wilting zoosporic pathogens 


  1. Alabouvette C., Lemanceau P. (1999) Joint action of microbials for disease control, in: Hall F.R., Menn J.J. (Eds.), Methods in biotechnology 5, Biopesticides: use and delivery, Humana Press Inc, pp. 117–135.Google Scholar
  2. Alabouvette C., Olivain C., Steinberg C. (2006) Biological control of plant diseases: the European situation, Eur. J. Plant Pathol. 114, 329–341.Google Scholar
  3. Alabouvette C., Rouxel F., Louvet J. (1979) Characteristics of Fusarium wilt-suppressive soils and prospects for their utilization in biological control, in: Schippers B., Gams W. (Eds.), Soil-borne Plant Pathogens. Academic Press, New-York, pp. 165–182.Google Scholar
  4. Benhamou N., Rey P., Chérif M., Hockenhull J., Tirilly Y. (1997) Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici, Phytopathology 87, 108–122.PubMedGoogle Scholar
  5. Berger F., Li H., White D., Frazer R., Leifert C. (1996) Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis Cot 1 in high-humidity fogging glasshouses, Phytopathology 86, 428–433.Google Scholar
  6. Berkelmann B., Wohanka W., Wolf G.A. (1994) Characterization of the bacterial flora in circulating nutrient solutions of a hydroponic system with rockwool, Acta Hort. 361, 372–381.Google Scholar
  7. Bernal-Vicente A., Ros M., Tittarelli F., Intrigliolo F., Pascual J.A. (2008) Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects, Bioresource Technol. 99, 8722–8728.Google Scholar
  8. Blancard D., Rafin C., Chamont S., Tirilly Y., Jailloux F. (1992) Phénomène de perte de racines en culture hors-sol. Rôle des Pythiums spp., P. H. M. Rev. Hort. 329, 35–45.Google Scholar
  9. Borneman J., Becker J.O. (2007) Identifying microorganisms involved in specific pathogen suppression in soil, Annu. Rev. Phytopathol. 45, 153–172.PubMedGoogle Scholar
  10. Borrero C., Ordovás J., Trillas M.I., Avilés M. (2006) Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by Biolog®, Soil Biol. Biochem. 38, 1631–1637.Google Scholar
  11. Brand T. (2000) Beurteilung der bakterienflora von langsamfiltern als biologishe filtrationskomponente in geschlossenen bewässerungssystemen des gartenbaus, Geisenheimer berichte 41, Ph.D. thesis, Technischen Universität München, Geisenheim, 112 p.Google Scholar
  12. Brand T., Wohanka W. (2001) Importance and characterization of the biological component in slow filters, Acta Hort. 554, 313–321.Google Scholar
  13. Burdon J.J., Thrall P.H., Ericson L. (2006) The current and future dynamics of disease in plant communities, Annu. Rev. Phytopathol. 44, 19–39.PubMedGoogle Scholar
  14. Calvo-Bado L.A., Petch G., Parsons N.R., Morgan J.A.W., Pettitt T.R., Whipps J.M. (2006) Microbial community responses associated with the development of oomycete plant pathogens on tomato roots in soilless growing systems, J. Appl. Microbiol. 100, 1194–1207.PubMedGoogle Scholar
  15. Calvo-Bado L.A., Pettit T.R., Parsons N., Petch G.M., Morgan J.A.W., Whipps J.M. (2003) Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water, Appl. Env. Microbiol. 69, 2116–2125.Google Scholar
  16. Carlile W.R., Wilson, D.P. (1991) Microbial activity in growing media — a brief review, Acta Hort. 294, 196–206.Google Scholar
  17. Chave M., Dabert P., Brun R., Godon J.J., Poncet C. (2008) Dynamics of rhizoplane bacterial communities subjected to physicochemical treatments in hydroponic crops, Crop Prot. 27, 418–426.Google Scholar
  18. Chen C., Bélanger R.R., Benhamou N., Paulitz T.C. (1998) Induced systemic resistance (ISR) by Pseudomonas spp. impairs pre- and postinfection development of Pythium aphanidermatum on cucumber roots, Eur. J. Plant Pathol. 104, 877–886.Google Scholar
  19. Chérif M., Tirilly Y., Bélanger R.R. (1997) Effect of oxygen concentration on plant growth, lipidperoxidation, and receptivity of tomato roots to Pythium F under hydroponic conditions, Eur. J. Plant Pathol. 103, 255–264.Google Scholar
  20. Clematis F., Minuto A., Gullino M.L., Garibaldi A. (2008) Suppressiveness to Fusarium oxysporum f. sp. radicis lycopersici in re-used perlite and perlite-peat substrates in soilless tomatoes, Biological Control. 48, 108–114.Google Scholar
  21. Déniel F., Rey P., Chérif M., Guillou A., Tirilly Y. (2004) Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation, Can. J. Microbiol. 50, 499–508.PubMedGoogle Scholar
  22. Déniel F., Renault D., Tirilly Y., Barbier G., Rey P. (2006) Dynamic biofiltration in tomato soilless greenhouse: evolution of microbial communities on filtering media and control of potentially suppressive and pathogenic microorganisms, Agron. Sustain. Dev. 26, 185–193.Google Scholar
  23. Déniel F., Rey P., Tirilly Y. (1999) Cultures hors-sol: désinfection des solutions recyclées, Fruits Leg. 172, 73–75.Google Scholar
  24. Déniel F., Vallance J., Barbier G., Le Quillec S., Benhamou N., Rey P. (2010) Control of Pythium spp. root colonization in tomato soilless culture through chlorination of water storage tank, Acta Hort, in press.Google Scholar
  25. Ehret D.L., Alsanius B., Wohanka W., Menzies J.G., Utkhede R. (2001) Disinfestation of recirculating nutrient solutions in greenhouse horticulture, Agronomy 21, 323–339.Google Scholar
  26. El-Gindy A. (1991) A new root disease of tomato in Egypt caused by Fusarium tabacinum, Zent. Bl. Mikrobiol. 146, 77–79.Google Scholar
  27. Ellis K.V. (1985) Slow sand filtration, Crit. Rev. Environ. Control. 15, 315–354.Google Scholar
  28. Eparvier A., Lemanceau P., Alabouvette C. (1991) Population dynamics of non-pathogenic Fusarium and fluorescent Pseudomonas strains in rockwool, a substratum for soilless culture, FEMS Microbiol. Ecol. 86, 177–184.Google Scholar
  29. Favrin R.J., Rahe J.E., Mauza B. (1988) Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses, Plant Dis. 72, 683–687.Google Scholar
  30. Foley M.F., Deacon J.W. (1986) Susceptibility of Pythium spp. and other fungi to antagonism by the mycoparasite Pythium oligandrum, Soil Biol. Biochem. 18, 91–95.Google Scholar
  31. Fravel D.R. (2005) Comercialization and implementation of biocontrol, Annu. Rev. Phytopathol. 43, 337–359.PubMedGoogle Scholar
  32. Garbeva P., van Veen J.A., van Elsas J.D. (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppression, Annu. Rev. Pythopathol. 42, 243–270.Google Scholar
  33. Garibaldi A., Guglielmone L., Gullino M.L. (1989) Rhizosphere competence of antagonistic Fusaria isolated from suppressive soils, Symbiosis 9, 401–404.Google Scholar
  34. Garibaldi A., Minuto A., Grasso V., Gullino M.L. (2003) Application of selected antagonistic strains against Phytophthora cryptogea on gerbera in closed soilless systems with disinfection by slow sand filtration, Crop Prot. 22, 1053–1061.Google Scholar
  35. Georgakopoulos D.G., Fiddaman P., Leifert C., Malathrakis N.E. (2002) Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists, J. Appl. Microbiol. 92, 1078–1086.PubMedGoogle Scholar
  36. Gold S.E., Stanghellini M.E. (1985) Effects of temperature on Pythium root rot of spinach grown under hydroponic conditions, Phytopathology 75, 333–337.Google Scholar
  37. Goldberg N.P., Stanghellini M.E., Rasmussen S.L. (1992) Filtration as a method for controlling Pythium root rot of hydroponically grown cucumbers, Plant Dis. 76, 777–779.Google Scholar
  38. Graham N., Collins R. (1996) Advances in slow sand and alternative biological filtration, Wiley, Chischester, UK.Google Scholar
  39. Grasso V., Minuto A., Garibaldi A. (2003) Selected microbial strains suppress Phytophthora cryptogea in gerbera crops produced in open and closed soilless systems, Phytopathol. Mediterr. 42, 55–64.Google Scholar
  40. Gruyter J., Van Kesteren H.A., Noordeloos M.E., Paternotte S.J., Veenbaas-Rijks J.W. (1992) The association of Humicola fuscoatra with corky root symptoms in wilted glasshouse tomatoes, Netherlands J. Plant Pathol. 98, 257–260.Google Scholar
  41. Gullino M.L., Garibaldi A. (2007) Critical aspects in management of fungal diseases of ornamental plants and directions in research, Phytopathol. Mediterr. 46, 135–149.Google Scholar
  42. Hagn A., Engel M., Kleikamp B., Munch J.C., Schloter M., Bruns C. (2008) Microbial community shifts in Pythium ultimum-inoculated suppressive substrates, Biol. Fertil. Soils. 44, 481–490.Google Scholar
  43. Herrero M.L., Hermansen A., Elen O.N. (2003) Occurrence of Pythium spp. and Phytophthora spp. in Norwegian greenhouses and their pathogenicity on cucumber seedlings, J. Phytopathol. 151, 36–41.Google Scholar
  44. Hoitink H.A.J., Boehm M.J. (1999) Biocontrol within the context of soil microbial communities: a substrate dependent phenomenon, Annu. Rev. Phytopathol. 37, 427–446.PubMedGoogle Scholar
  45. Jager G., ten Hope A., Velvis H. (1979) Hyperparasites of Rhizoctonia solani in Dutch potato fields, Netherlands J. Plant Pathol. 14, 86–91.Google Scholar
  46. Jenkins S.F., Averre C.W. (1983) Root diseases of vegetables in hydroponic culture systems in North Carolina greenhouses, Plant Dis. 67, 968–970.Google Scholar
  47. Jones E.E., Deacon W. (1995) Comparative physiology and behaviour of the mycoparasites Pythium acanthophoron, P. oligandrum and P. mycoparasiticum, Biocontrol Sci. Technol. 5, 27–39.Google Scholar
  48. Khalil S., Alsanius B. (2001) Dynamics of the indigenous microflora inhabiting the root zone and the nutrient solution of tomato in a commercial closed greenhouse system, Gartenbauwissenschaft 66, 188–198.Google Scholar
  49. Khalil S., Alsanius B., Hultberg M., Jensén P., Sundin P. (2001a) Assessment of the microbial status in closed hydroponic system using phospholipid fatty acid analysis, Acta Hort. 548, 223–227.Google Scholar
  50. Khalil S., Bååth E., Alsanius B., Englund J.E., Sundin P., Gertsson U.E., Jensén P. (2001b) A comparison of sole carbon source utilization patterns and phospholipid fatty acid profiles to detect changes in the root microflora of hydroponically grown crops, Can. J. Microbiol. 47, 302–308.PubMedGoogle Scholar
  51. Koohakan P., Ikeda H., Jeanaksorn T., Tojo M., Kusakari S.I., Okada K., Sato S. (2004) Evaluation of the indigenous microorganisms in soilless culture: occurrence and quantitative characteristics in the different growing systems, Scientia Hort. 101, 179–188.Google Scholar
  52. Le Floch G., Benhamou N., Mamaca E., Salerno M.I., Tirilly Y., Rey P. (2005) Characterisation of the early events in atypical tomato root colonisation by a biocontrol agent, Pythium oligandrum, Plant Physiol. Biochem. 43, 1–11.PubMedGoogle Scholar
  53. Le Floch G., Rey P., Déniel F., Benhamou N., Picard K., Tirilly Y. (2003) Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum, Agronomie 23, 455–460.Google Scholar
  54. Le Floch G., Tambong J., Vallance J., Tirilly Y., Lévesque C.A., Rey P. (2007) Rhizosphere persistence of three Pythium oligandrum strains in tomato soilless culture assessed by DNA macroarray and real-time PCR, FEMS Microbiol. Ecol. 61, 317–326.PubMedGoogle Scholar
  55. Lemanceau P., Maurhofer M., Défago G. (2006) Contribution of studies on suppressive soils to the identification of bacterial biocontrol agents and to the knowledge of their modes of action, in: Gnanamanickam S.S. (Ed.), Plant-associated bacteria, Springer Netherlands, pp. 231–267.Google Scholar
  56. Lévesque C.A., De Cock A.W.A.M. (2004) Molecular phylogeny and taxonomy of the genus Pythium, Mycol. Res. 108, 1363–1383.PubMedGoogle Scholar
  57. Lifshitz R., Stanghellini M.E., Baker R. (1984) A new species of Pythium isolated from soil in Colorado, Mycotaxon 20, 373–379.Google Scholar
  58. Linde C., Kemp G.H., Wingfield M.J. (1994) Pythium irregulare associated with Pinus seedling death on previously cultivated lands, Plant Dis. 78, 1002–1005.Google Scholar
  59. Matta A. (1978) Fusarium tabacinum (Beyma) W. Gams, pathogen on basil and tomato in nature, Riv. Patol. Veg. 14, 119–125.Google Scholar
  60. McPherson G.M., Harriman M.R., Pattison D. (1995) The potential for spread of root diseases in recirculating hydroponic systems and their control with disinfection, Med. Fac. Landbouww. Univ. Gent. 60/2b, 371–379.Google Scholar
  61. Menzies J.A., Ehret D.L., Koch C., Bogdanoff C. (1998) Humicola fuscoatra infects tomato roots, but is not pathogenic, Eur. J. Plant Pathol. 104, 769–775.Google Scholar
  62. Minuto A., Clematis F., Gullino M.L., Garibaldi A. (2007) Induced suppressiveness to Fusarium oxysporum f. sp. Radicis lycopersici in rockwool substrate used in closed soilless systems, Phytoparasitica 35, 77–85.Google Scholar
  63. Minuto A., Garibaldi A., Gullino M.L. (1997) Basil an example of an approach to the protection of minor crop, Inf. Fitopatol. 47, 5–17.Google Scholar
  64. Mirza M. S., Aslam M., Ahmed Y. (1995) Sunflower wilt caused by Fusarium tabacinum in Pakistan, Helia 18, 91–94.Google Scholar
  65. Moorman G.W., Kang S., Geiser D.M. (2002) Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania, Plant Dis. 86, 1227–1231.Google Scholar
  66. Moulin F., Lemanceau P., Alabouvette C. (1994) Pathogenicity of Pythium species on cucumber in peat-sand, rockwool and hydroponics, Eur. J. Plant Pathol. 100, 3–7.Google Scholar
  67. Naseby D.C., Pascual J.A., Lynch J.M. (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities, J. Appl. Microbiol. 88, 161–169.PubMedGoogle Scholar
  68. Pagliaccia D., Ferrin D., Stanghellini M.E. (2007) Chemo-biological suppression of root-infecting zoosporic pathogens in recirculating hydroponic systems, Plant Soil 299, 163–179.Google Scholar
  69. Pagliaccia D., Merhaut D., Colao M.C., Ruzzi M., Saccardo F., Stanghellini M.E. (2008) Selective enhancement of the fluorescent pseudomonad population after amending the recirculating nutrient solution of hydroponically grown plants with a nitrogen stabilizer, Microb. Ecol. 56, 538–554.PubMedGoogle Scholar
  70. Pascoe, I.G., Nancarrow R.J., Copes C.J. (1984) Fusarium tabacinum on tomato and other hosts in Australia, Trans. Br. Mycol. Soc. 82, 343–345.Google Scholar
  71. Paulitz T.C., Bélanger R.R. (2001) Biological control in greenhouse systems, Annu. Rev. Phytopathol. 39, 103–133.PubMedGoogle Scholar
  72. Postma J. (2004) Suppressiveness of root pathogens in closed culture systems, Acta Hort. 644, 503–510.Google Scholar
  73. Postma J., Bonants P.J.M., van Os E.A. (2001) Population dynamics of Pythium aphanidermatum in cucumber grown in closed systems, Med. Fac. Landbouwuniv. Gent. 66, 47–59.Google Scholar
  74. Postma J., Geraats B.P.J., Pastoor R., van Elsas J.D. (2005) Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool, Phytopathology 95, 808–818.PubMedGoogle Scholar
  75. Postma J., Stevens L.H., Wiegers G.L., Davelaar E., Nijhuis E.H. (2009) Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan, Biol. Control 48, 301–309.Google Scholar
  76. Postma J., van Os E.A., Kritzman G. (1999) Prevention of root diseases in closed soilless growing systems by microbial optimization, Acta Hort. 532, 97–102.Google Scholar
  77. Postma J., Willemsen-de Klein M.J.E.I.M., van Elsas J.D. (2000) Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rockwool, Phytopathology 90, 125–133.PubMedGoogle Scholar
  78. Price D. (1980) Fungal flora of tomato roots in nutrient film culture, Acta Hort. 98, 269–275.Google Scholar
  79. Rafin C. (1993) Les Pythium spp. à sporanges filamenteux, agents de nécroses racinaires sur tomate (Lycopersicon esculentum) en culture hors-sol, Thèse de doctorat, Université de Bretagne Occidentale, 166 p.Google Scholar
  80. Rafin C., Tirilly Y. (1995) Characteristics and pathogenicity of Pythium spp. associated with root rot of tomatoes in soilless culture in Brittany, France, Plant Pathol. 44, 779–785.Google Scholar
  81. Renault D. (2007) Caractérisation des écosystèmes microbiens colonisant les biofiltres, les solutions nutritives et les racines de Lycopersicon esculentum en culture hors-sol, Thèse de doctorat, Université de Bretagne Occidentale, 195 p.Google Scholar
  82. Renault D., Déniel F., Maurice S., Barbier G., Rey P. (2008) Inoculation by antagonistic bacteria of slow-filtration unit for soilless cultures: consequences on microbial communities colonizing the nutrient solutions, Phytopathology 98, S132.Google Scholar
  83. Rey P., Benhamou N., Le Floch G., Salerno M.I., Thuillier E., Tirilly Y. (2005) Different interactions between the mycoparasite Pythium oligandrum and two sclerotia-forming plant pathogenic fungi: Botrytis cinerea and Sclerotinia minor, Mycol. Res. 109, 779–788.PubMedGoogle Scholar
  84. Rey P., Benhamou N., Tirilly Y. (1998) Ultrastructural and cytochemical investigation of asymptomatic infection by Pythium sp., Phytopathology 88, 234–244.PubMedGoogle Scholar
  85. Rey P., Déniel F., Vasseur V., Benhamou N., Tirilly Y. (2001) Evolution of Pythium spp. populations in soilless cultures and their control by active disinfecting methods, Acta Hort. 554, 341–348.Google Scholar
  86. Rey P., Le Floch G., Benhamou N., Tirilly Y. (2008) Pythium oligandrum biocontrol: its relationships with fungi and plants, in: Ait Barka E., Clément C. (Eds.), Plant-microbe interactions, pp. 43–57.Google Scholar
  87. Rey P., Leucart S., Desilets H., Belanger R., Larue J.P., Tirilly Y. (2001) Production of auxin and tryptophol by Pythium ultimum and minor pathogen, Pythium group F. Possible role in pathogenesis, Eur. J. Plant Pathol. 107, 895–904.Google Scholar
  88. Rey P., Nodet P., Tirilly Y. (1997) Pythium F induces a minor but ubiquitous disease in tomato soiless cultures, J. Plant Pathol. 79, 173–180.Google Scholar
  89. Rey P., Picard K., Déniel F., Benhamou N., Tirilly Y. (1999) Development of an IPM system in soilless culture by using slow sand filtration and a biocontrol agent, Pythium oligandrum, in: van Leuteren J.C. (Ed.), Integrated control in glasshouses, IOBC wprs Bulletin 22, 205–208.Google Scholar
  90. Runia W.T. (1995) A review of possibilities for disinfection of recirculation water from soilless cultures, Acta Hort. 382, 221–229.Google Scholar
  91. Soran H., Ozel M. (1985) Light and electron microscopic investigation on roots of Cucumis melon plants inoculated with Fusarium species, J. Turkish Phytopathol. 14, 69–77.Google Scholar
  92. Spadaro D., Gullino M.L. (2005) Improving the efficacy of biocontrol agents against soilborne pathogens, Crop Prot. 24, 601–613.Google Scholar
  93. Stanghellini M.E., Kronland W. (1986) Yield loss in hydroponically grown lettuce attributed to subclinical infection of feeder rootlets by Pythium dissotocum, Plant Dis. 70, 1053–1056.Google Scholar
  94. Stanghellini M.E., Rasmussen S.L. (1994) Hydroponics — a solution for zoosporic pathogens, Plant Dis. 78, 1129–1138.Google Scholar
  95. Steinberg C., Moulin F., Gaillard P., Gautheron N., Stawiecki K., Bremeersch P., Alabouvette C. (1994) Disinfection of drain water in greenhouses using a wet condensation water, Agronomie 14, 627–635.Google Scholar
  96. Tambong J.T., De Cock A.W.A.M., Tinker N.A., Lévesque C.A. (2006) An oligonucleotide array for identification and detection of Pythium species, Appl. Environ. Microbiol. 72, 2691–2706.PubMedGoogle Scholar
  97. Termorshuizen A.J., van Rijn E., van der Gaag D.J., Alabouvette C., Chen Y., Lagerlöl J., Malandrakis A.A., Paplomatas E.J., Rämert B., Ryckeboer J., Steinberg C., Zmora-Nahum S. (2006) Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response, Soil Biol. Biochem. 38, 2461–2477.Google Scholar
  98. Tirilly Y., Letard L. (1997) Maîtrise sanitaire des solutions nutritives en cultures hors sans sol, Infos-Ctifl. 132, 35–39.Google Scholar
  99. Tu J.C., Papadopoulos A.P., Hao X., Zheng J. (1999) The relationship of Pythium root rot and rhizosphere microorganisms in a closed circulating and an open system in rockwool culture of tomato, Acta Hort. 481, 577–583.Google Scholar
  100. Vallance J., Le Floch G., Déniel F., Barbier G., Lévesque C.A., Rey P. (2009) Pythium oligandrum biocontrol in the rhizosphere: influence on fungal and oomycete population dynamics, Appl. Env. Microbiol. 75, 4790–4800.Google Scholar
  101. van der Gaag D.J., Wever G. (2005) Conduciveness of different soilless growing media to Pythium root and crown rot of cucumber under near-commercial conditions, Eur. J. Plant Pathol. 112, 31–41.Google Scholar
  102. van Os E.A., Amsing J.J., van Kuik A.J., Willers H. (1999) Slow sand filtration: a potential method for the elimination of pathogens and nematodes in recirculating nutrient solutions from glasshouse-grown crops, Acta Hort. 481, 519–526.Google Scholar
  103. van Os E.A., Bruins M., Postma J., Willemsen-de Klein M.J.E.I.M. (2004) Investigations on crop developments and microbial suppressiveness of Pythium aphanidermatum after disinfection treatments of the circulating nutrient solution, Acta Hort. 644, 563–570.Google Scholar
  104. van der Plaats-Niterink J. A. (1981) Monograph of the genus Pythium, Studies in Mycology 21, 1–242.Google Scholar
  105. Vasseur V., Rey P., Bellanger E., Brygoo Y., Tirilly Y. (2005) Molecular characterization of Pythium group F isolates by ribosomal- and intermicrosatellite-DNA regions analysis, Eur. J. Plant Pathol. 112, 301–310.Google Scholar
  106. Waechter-Kristensen B., Gertsson U.E., Sundin P. (1994) Prospects for microbial stabilization in the hydroponic culture of tomato using circulating nutrient solution, Acta Hort. 361, 382–387.Google Scholar
  107. Waechter-Kristensen B., Khalil S., Sundin P., Englund J.E., Gertsson U.E., Jensén P. (1996) Study of the microbial dynamics in the root environment of closed, hydroponic cultivation systems for tomato using phospholipid fatty acid profiles, Acta Hort. 440, 193–198.Google Scholar
  108. Waechter-Kristensen B., Sundin P., Gertsson U.E., Hultberg M., Khalil S., Jensén P., Berkelmann-Loehnertz B., Wohanka W. (1997) Management of microbial factors in the rhizosphere and nutrient solution of hydroponically grown tomato, Acta Hort. 450, 335–339.Google Scholar
  109. Weber-Shirk M.L., Dirk R.I. (1997) Physical-chemical mechanisms in slow sand filters, Am. Water Works Assoc. J. 89, 87–100.Google Scholar
  110. Weller D.M., Raaijmakers J.M., MsSpadden Gardener B.B., Thomashow L.S. (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens, Annu. Rev. Phytopathol. 40, 309–348.PubMedGoogle Scholar
  111. Whipps J.M., Lumsden R.D. (1991) Biological control of Pythium species, Biocontrol Sci. Technol. 1, 75–90.Google Scholar
  112. Wohanka W., Luedtke H., Ahlers H., Luebke M. (1999) Optimization of slow filtration as a mean for disinfecting nutrient solutions, Acta Hort. 481, 539–544.Google Scholar
  113. Wulff E.G., Pham A.T.H., Chérif M., Rey P., Tirilly Y., Hockenhull J. (1998). Inoculation of cucumber roots with zoospores of mycoparasitic and plant pathogenic Pythium species: differential zoospore accumulation, colonization ability and plant growth response, Eur. J. Plant Pathol. 104, 69–76.Google Scholar
  114. Zhang W., Tu J.C. (2000) Effect of ultraviolet disinfection of hydroponic solutions on Pythium root rot and non-target bacteria, Eur. J. Plant Pathol. 106, 415–421.Google Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • J. Vallance
    • 1
    • 2
    • 3
  • F. Déniel
    • 1
    • 2
  • G. Le Floch
    • 1
    • 2
  • L. Guérin-Dubrana
    • 3
  • D. Blancard
    • 3
  • P. Rey
    • 3
  1. 1.Université Européenne de BretagneBretagneFrance
  2. 2.EA3882 Laboratoire Universitaire de Biodiversité et Écologie Microbienne, IFR148 ScInBioS, ESMISAB, Technopôle Brest-IroiseUniversité de BrestPlouzanéFrance
  3. 3.UMR Santé Végétale 1065, INRA, ENITA de BordeauxUniversité de BordeauxGradignanFrance

Personalised recommendations