Agronomy for Sustainable Development

, Volume 31, Issue 2, pp 251–274

Modelling soil carbon and nitrogen cycles during land use change. A review

  • J. Batlle-Aguilar
  • A. Brovelli
  • A. Porporato
  • D. A. Barry
Review Article


Forested soils are being increasingly transformed to agricultural fields in response to growing demands for food crop. This modification of the land use is known to result in deterioration of soil properties, in particular its fertility. To reduce the impact of the human activities and mitigate their effects on the soil, it is important to understand the factors responsible for the modification of soil properties. In this paper we reviewed the principal processes affecting soil quality during land use changes, focusing in particular on the effect of soil moisture dynamics on soil carbon (C) and nitrogen (N) cycles. Both physical and biological processes, including degradation of litter and humus, and soil moisture evolution at the diurnal and seasonal time scales were considered, highlighting the impact of hydroclimatic variability on nutrient turnover along with the consequences of land use changes from forest to agricultural soil and vice-versa. In order to identify to what extent different models are suitable for long-term predictions of soil turnover, and to understand whether some simulators are more suited to specific environmental conditions or ecosystems, we enumerated the principal features of the most popular existing models dealing with C and N turnover. Among these models, we considered in detail a mechanistic compartment-based model. To show the capabilities of the model and to demonstrate how it can be used as a predictive tool to forecast the effects of land use changes on C and N dynamics, four different scenarios were studied, intertwining two different climate conditions (with and without seasonality) with two contrasting soils having physical properties that are representative of forest and agricultural soils. The model incorporates synthetic time series of stochastic precipitation, and therefore soil moisture evolution through time. Our main findings in simulating these scenarios are that (1) forest soils have higher concentrations of C and N than agricultural soils as a result of higher litter decomposition; (2) high frequency changes in water saturations under seasonal climate scenarios are commensurate with C and N concentrations in agricultural soils; and (3) due to their different physical properties, forest soils attenuate the seasonal climate-induced frequency changes in water saturation, with accompanying changes in C and N concentrations. The model was shown to be capable of simulating the long term effects of modified physical properties of agricultural soils, being thus a promising tool to predict future consequences of practices affecting sustainable agriculture, such as tillage (leading to erosion), ploughing, harvesting, irrigation and fertilization, leading to C and N turnover changes and in consequence, in terms of agriculture production.


soil organic matter biogeochemical cycles agricultural soil forest soil soil nutrients soil moisture dynamics soil restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agboola A.A. (1981) The effects of different soil tillage and management practices on the physical and chemical properties of soil and maize yields in a rainforest zone of Western Nigeria, Agron. J. 73, 247–251.CrossRefGoogle Scholar
  2. Agren G.I., McMurtrie R.E., Parton W.J., Pastor J., Shugart H.H. (1991) State-of-the-art of models of production-decomposition linkages in conifer and grassland ecosystems, Ecol. Appl. 1, 118–138.CrossRefGoogle Scholar
  3. Arnold J.G., Allen P.M., Bernhardt G. (1993) A comprehensive surfacegroundwater flow model, J. Hydrol. 142, 47–69.CrossRefGoogle Scholar
  4. Austin A.T., Yahdjian L., Stark J.M., Belnap J., Porporato A., Norton U., Ravetta D.A., Schaeffer S.M. (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems, Oecologia 141, 221–235.PubMedCrossRefGoogle Scholar
  5. Barbour M.G., Burk J.H., Pitts W.D., Gilliam F.S., Schwartz M.W. (1999) Terrestrial plant ecology. Pearson Benjamin Cummings, Menlo Park, Canada.Google Scholar
  6. Barry D.A., Prommer H., Miller C.T., Engesgaard P., Brun A., Zheng C. (2002) Modelling the fate of oxidisable organic contaminants in groundwater, Adv. Water Resour. 25, 945–983.CrossRefGoogle Scholar
  7. Bell C., McIntyre N., Cox S., Tissue D., Zak J. (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan desert grassland, Microb. Ecol. 56, 153–167.PubMedCrossRefGoogle Scholar
  8. Berger T.W., Neubauer C., Glatzel G. (2002) Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria, For. Ecol. Manage. 159, 3–14.CrossRefGoogle Scholar
  9. Bolker B.J., Pacala S.W., Parton W.J. (1998) Linear analysis of soil decomposition: insights from the century model, Ecol. Appl. 8, 425–439.CrossRefGoogle Scholar
  10. Bonde T.A., Christensen B.T., Cerri C.C. (1992) Dynamics of soil organic matter as reflected by natural 13C abundance in particle size fractions of forested and cultivated oxisols, Soil Biol. Biochem. 24, 275–277.CrossRefGoogle Scholar
  11. Borken W., Xu Y.-J., Davidson E.A., Beese F. (2002) Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests, Glob. Change Biol. 8, 1205–1216.CrossRefGoogle Scholar
  12. Borken W., Xu Y.J., Brumme R., Lamersdorf N. (1999) A Climate Change Scenario for Carbon Dioxide and Dissolved Organic Carbon Fluxes from a Temperate Forest Soil: Drought and Rewetting Effects, Soil Sci. Soc. Am. J. 63, 1848–1855.CrossRefGoogle Scholar
  13. Bosatta E., Agren G.I. (1991) Theoretical analysis of carbon and nutrient interactions in soils under energy-limited conditions, Soil Sci. Soc. Am. J. 55, 728–733.CrossRefGoogle Scholar
  14. Bosatta E., Ågren G.I. (1994) Theoretical analysis of microbial biomass dynamics in soils, Soil Biol. Biochem. 26, 143–148.CrossRefGoogle Scholar
  15. Bossel H. (1996) TREEDYN3 forest simulation model, Ecol. Model. 90, 187–227.CrossRefGoogle Scholar
  16. Bradbury N.J., Whitmore A.P., Hart P.B.S., Jenkinson D.S. (1993) Modelling the fate of nitrogen in crop and soil in the years following application of 15N-labelled fertilizer to winter wheat, J. Agric. Sci. 121, 363–379.CrossRefGoogle Scholar
  17. Brady N.C., Weil R.R. (2004) Elements of the nature and properties of soils. Pearson Prentice Hall, Upper Saddle River, New Jersey, USA.Google Scholar
  18. Brams E. (1971) Continuous cultivation of West African soils: Organic matter diminution and effects of applied lime and phosphorus, Plant Soil 35, 401–414.CrossRefGoogle Scholar
  19. Brown S., Lugo A. (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and US Virgin Islands, Plant Soil 124, 53–64.CrossRefGoogle Scholar
  20. Bruce J.P., Frome M., Haites E., Janzen H., Lal R., Paustian K. (1999) Carbon sequestration in soils, J. Soil Water Conserv. 54, 382–389.Google Scholar
  21. Brussaard L. (1998) Soil fauna, guilds, functional groups and ecosystem processes, Appl. Soil Ecol. 9, 123–135.CrossRefGoogle Scholar
  22. Buchmann N. (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands, Soil Biol. Biochem. 32, 1625–1635.CrossRefGoogle Scholar
  23. Carmean W.H. (1957) The structure of forest soils, Ohio J. Sci. 57, 165–168.Google Scholar
  24. Cherif M., Loreau M. (2009) When microbes and consumers determine the limiting nutrient of autotrophs: a theoretical analysis, Proc. R. Soc. B 276, 487–497.PubMedCrossRefGoogle Scholar
  25. Chertov O.G., Komarov A.S. (1997) SOMM: a model of soil organic matter dynamics, Ecol. Model. 94, 177–189.CrossRefGoogle Scholar
  26. Christensen B.T. (1996) Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: revision of model structure, in: Powlson D.S., Smith P., Smith J.U. (Eds.), Evaluation of soil organic matter models, Springer Verlag, Berlin, pp. 143–160.CrossRefGoogle Scholar
  27. Christiansen J.R., Elberling B., Jansson P.E. (2006) Modelling water balance and nitrate leaching in temperate Norway spruce and beech forests located on the same soil type with the CoupModel, For. Ecol. Manage. 237, 545–556.CrossRefGoogle Scholar
  28. Conant R.T., Klopatek J.M., Klopatek C.C. (2000) Environmental factors controlling soil respiration in three semiarid ecosystems, Soil Sci. Soc. Am. J. 64, 383–390.CrossRefGoogle Scholar
  29. Coquet Y., Simunek J., Coutadeur C., van Genuchten M.T., Pot V., Roger-Estrade J. (2005) Water and solute transport in a cultivated silt loam soil. 2. Numerical analysis, Vadose Zone J. 4, 587–601.CrossRefGoogle Scholar
  30. Csonka L.N. (1989) Physiological and genetic responses of bacteria to osmotic stress, Microbiol. Rev. 53, 121–147.PubMedGoogle Scholar
  31. Cui M., Caldwell M.M. (1997) A large ephemeral release of nitrogen upon wetting of dry soil and corresponding root responses in the field, Plant Soil 191, 291–299.CrossRefGoogle Scholar
  32. Curiel Yuste J., Baldocchi D.D., Gershenson A., Goldstein A., Misson L., Wong S. (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture, Glob. Change Biol. 13, 2018–2035.CrossRefGoogle Scholar
  33. D’Odorico P., Laio F., Porporato A., Rodriguez-Iturbe I. (2003) Hydrologic controls on soil carbon and nitrogen cycles. II. A case study, Adv. Water Resour. 26, 59–70.CrossRefGoogle Scholar
  34. D’Odorico P., Porporato A., Laio F., Ridolfi L., Rodriguez-Iturbe I. (2004) Probabilistic modeling of nitrogen and carbon dynamics in water-limited ecosystems, Ecol. Model. 179, 205–219.CrossRefGoogle Scholar
  35. Dalal R.C., Mayeer R.J. (1986) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. I. Overall changes in soil properties and trends in winter cereal yield, Aust. J. Soil Res. 24, 265–279.CrossRefGoogle Scholar
  36. Davidson E.A., Ackerman I.L. (1993) Changes in soil carbon inventories following cultivation of previously untilled soils, Biogeochemistry 20, 161–193.CrossRefGoogle Scholar
  37. Davidson E.A., Belk E., Boone R.D. (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Glob. Change Biol. 4, 217–227.CrossRefGoogle Scholar
  38. Davidson E.A., Verchot L.V., Cattanio J.H., Ackerman I.L., Carvalho J.E.M. (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia, Biogeochemistry 48, 53–69.CrossRefGoogle Scholar
  39. de Moraes J.F.L., Volkoff B., Cerri C.C., Bernoux M. (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil, Geoderma 70, 63–81.CrossRefGoogle Scholar
  40. de Willigen P. (1991) Nitrogen turnover in the soil-crop system; comparison of fourteen simulation models, Nutr. Cycl. Agroecosyst. 27, 141–149.Google Scholar
  41. Desjardins T., Andreux F., Volkoff B., Cerri C.C. (1994) Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia, Geoderma 61, 103–118.CrossRefGoogle Scholar
  42. Easter M., Paustian K., Killian K., Williams S., Feng T., Al-Adamat R., Batjes N.H., Bernoux M., Bhattacharyya T., Cerri C.C., Cerri C.E.P., Coleman K., Falloon P., Feller C., Gicheru P., Kamoni P., Milne E., Pal D.K., Powlson D.S., Rawajfih Z., Sessay M., Wokabi S. (2007) The GEFSOC soil carbon modelling system: A tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon, Agric. Ecosyst. Environ. 122, 13–25.CrossRefGoogle Scholar
  43. Eckersten H., Beier C. (1998) Comparison of N and C dynamics in two Norway spruce stands using a process oriented simulation model, Environ. Pollut. 102, 395–401.CrossRefGoogle Scholar
  44. Eckersten H., Blombäck K., Kätterer T., Nyman P. (2001) Modelling C, N, water and heat dynamics in winter wheat under climate change in southern Sweden, Agric. Ecosyst. Environ. 86, 221–235CrossRefGoogle Scholar
  45. Ellert B.H., Gregorich E.G. (1996) Storage of carbon, nitrogen and phosphorus in cultivated and adjacent forested soils of Ontario, Soil Sci. 161, 587–603.CrossRefGoogle Scholar
  46. Elliott E.T., Paustian K., Frey S.D. (1996) Modeling the measurable or measuring the modelable: a hierarchical approach to isolating meaningful soil organic matter fractions, in: Powlson D.S., Smith P., Smith J.U. (Eds.), Evaluation of soil organic matter models. Using existing long-term datasets, Springer, Heidelberg, p. 429.Google Scholar
  47. Epron D., Nouvellon Y., Roupsard O., Mouvondy W., Mabiala A., Saint-André L., Joffre R., Jourdan C., Bonnefond J.-M., Berbigier P., Hamel O. (2004) Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo, For. Ecol. Manage. 202, 149–160.CrossRefGoogle Scholar
  48. Feigl B., Melillo J., Cerri C. (1995) Changes in the origin and quality of soil organic matter after pasture introduction in Rondônia (Brazil), Plant Soil 175, 21–29.CrossRefGoogle Scholar
  49. Feller C., Beare M.H. (1997) Physical control of soil organic matter dynamics in the tropics, Geoderma 79, 69–116.CrossRefGoogle Scholar
  50. Fenchel T., King G.M., Blackburn T.H. (1998) Bacterial biogeochemistry. The ecophysiology of mineral cycling, Academic Press, San Diego, California, USA.Google Scholar
  51. Fernandes E.C.M., Motavalli P.P., Castilla C., Mukurumbira L. (1997) Management control of soil organic matter dynamics in tropical land-use systems, Geoderma 79, 49–67.CrossRefGoogle Scholar
  52. Findeling A., Garnier P., Coppens F., Lafolie F., Recous S. (2007) Modelling water, carbon and nitrogen dynamics in soil covered with decomposing mulch, Eur. J. Soil Sci. 58, 196–206.CrossRefGoogle Scholar
  53. Franko U. (1996) Modelling approaches of soil organic matter within the CANDY system, in: Powlson D.S., Smith P., Smith J.U. (Eds.), Evaluation of soil organic matter models using existing, long-term datasets, NATO ASI, I38, Springer, Berlin, pp. 247–254.CrossRefGoogle Scholar
  54. Franko U., Crocker G.J., Grace P.R., Klír J., Körschens M., Poulton P.R., Richter D.D. (1997) Simulating trends in soil organic carbon in long-term experiments using the CANDY model, Geoderma 81, 109–120.CrossRefGoogle Scholar
  55. Franko U., Oelschlägel B., Schenk S. (1995) Simulation of temperature, water- and nitrogen dynamics using the model CANDY, Ecol. Model. 81, 213–222.CrossRefGoogle Scholar
  56. Frolking S., Roulet N.T., Moore T.R., Richard P.J.H., Lavoie M., Muller S.D. (2001) Modeling northern peatland decomposition and peat accumulation, Ecosyst. 4, 479–498.CrossRefGoogle Scholar
  57. Furniss P.R., Ferrar P., Morris J.W., Bezuidenhout J.J. (1982) A model of savannah litter decomposition, Ecol. Model. 17, 33–51.CrossRefGoogle Scholar
  58. García-Oliva F., Casar I., Morales P., Maass J.M. (1994) Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest, Oecologia 99, 392–396.CrossRefGoogle Scholar
  59. García-Oliva F., Sanford R.L., Kelly E. (1999) Effects of slash-and-burn management on soil aggregate organic C and N in a tropical deciduous forest, Geoderma 88, 1–12.CrossRefGoogle Scholar
  60. Garnier P., Néel C., Aita C., Recous S., Lafolie F., Mary B. (2003) Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation, Eur. J. Soil Sci. 54, 555–568.CrossRefGoogle Scholar
  61. Garnier P., Néel C., Mary B., Lafolie F. (2001) Evaluation of a nitrogen transport and transformation model in a bare soil, Eur. J. Soil Sci. 52, 253–268.CrossRefGoogle Scholar
  62. Gignoux J., House J., Hall D., Masse D., Nacro H.B., Abbadie L. (2001) Design and test of a generic cohort model of soil organic matter decomposition: the SOMKO model, Glob. Ecol. Biogeogr. 10, 639–660.CrossRefGoogle Scholar
  63. Goulden M.L., Miller S.D., da Rocha H.R., Menton M.C., de Freitas H.C., e Silva Figueira A.M., de Sousa C.A.D. (2004) Diel and seasonal patterns of tropical forest CO2 exchange, Ecol. Appl. 14, 42–54.CrossRefGoogle Scholar
  64. Groffman P.M., Boulware N.J., Zipperer W.C., Pouyat R.V., Band L.E., Colosimo M.F. (2002) Soil nitrogen cycle processes in urban riparian zones, Environ. Sci. Technol. 36, 4547–4552.PubMedCrossRefGoogle Scholar
  65. Hadas A., Kautsky L., Goek M., Erman Kara E. (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover, Soil Biol. Biochem. 36, 255–266.CrossRefGoogle Scholar
  66. Hansen S., Jensen H.E., Nielsen N.E., Svendsen H. (1991) Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY, Fert. Res. 27, 245–259.CrossRefGoogle Scholar
  67. Hattermann F., Krysanova V., Wechsung F., Wattenbach M. (2004) Integrating groundwater dynamics in regional hydrological modelling, Environ. Model. Softw. 19, 1039–1051.CrossRefGoogle Scholar
  68. Henriksen T.M., Breland T.A. (1999) Evaluation of criteria for describing crop residue degradability in a model of carbon and nitrogen turnover in soil, Soil Biol. Biochem. 31, 1135–1149.CrossRefGoogle Scholar
  69. Houghton R.A. (2002) The global effects of tropical deforestation, Environ. Sci. Technol. 24, 414–422.CrossRefGoogle Scholar
  70. Houghton R.A., Lefkowitz D.S., Skole D.L. (1991) Changes in the landscape of Latin America between 1850 and 1985 I. Progressive loss of forests, For. Ecol. Manage. 38, 143–172.CrossRefGoogle Scholar
  71. Howard D.M., Howard P.J.A. (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types, Soil Biol. Biochem. 25, 1537–1546.CrossRefGoogle Scholar
  72. Hunt H.W., Trlica M.J., Redente E.F., Moore J.C., Detling J.K., Kittel T.G.F., Walter D.E., Fowler M.C., Klein D.A., Elliott E.T. (1991) Simulation model for the effects of climate change on temperate grassland ecosystems, Ecol. Model. 53, 205–246.CrossRefGoogle Scholar
  73. IPCC (2003) Good practice guidance for land use, land use change and forestry, in: Penman J., Gytarsky M., Hiraishi T., Krug T., Kruger T., Pipatti R., Buendia L., Miwa K., Ngara T., Tanabe K., Wagner F. (Eds.), Intergovernmental Pannel on Climate Change, Hayama, Kanagawa, Japan, p. 599.Google Scholar
  74. Islam K.R., Kamaluddin M., Bhuiyan M.K., Badruddin A. (1999) Comparative performance of exotic and indigenous forest species for tropical semievergreen degraded forest land reforestation in Chittagong, Bangladesh, Land Degrad. Dev. 10, 241–249.CrossRefGoogle Scholar
  75. Islam K.R., Weil R.R. (2000) Land use effects on soil quality in a tropical forest ecosystem of Bangladesh, Agric. Ecosyst. Environ. 79, 9–16.CrossRefGoogle Scholar
  76. Ito A. (2007) Simulated impacts of climate and land-cover change on soil erosion and implication for the carbon cycle, 1901 to 2100, Geophys. Res. Lett. 34.Google Scholar
  77. Jenkinson D.S. (1990) The turnover of organic carbon and nitrogen in soil, Philos. Trans. R. Soc. Lond. B 329, 361–368.CrossRefGoogle Scholar
  78. Jenkinson D.S., Adams D.E., Wild A. (1991) Model estimates of CO2 emissions from soil in response to global warming, Nature 351, 304–306.CrossRefGoogle Scholar
  79. Jenkinson D.S., Coleman K. (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover, Eur. J. Soil Sci. 59, 400–413.CrossRefGoogle Scholar
  80. Jenkinson D.S., Rayner J.H. (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Sci. 123, 298–305.CrossRefGoogle Scholar
  81. Jensen L.S., Mueller T., Nielsen N.E., Hansen S., Crocker G.J., Grace P.R., Klír J., Körschens M., Poulton P.R. (1997) Simulating trends in soil organic carbon in long-term experiments using the soil-plantatmosphere model DAISY, Geoderma 81, 5–28.CrossRefGoogle Scholar
  82. Johnson D.W. (1992) Effects of forest management on soil carbon storage, Water Air Soil Pollut. 64, 83–120.CrossRefGoogle Scholar
  83. Johnsson H., Bergstrom L., Jansson P.-E., Paustian K. (1987) Simulated nitrogen dynamics and losses in a layered agricultural soil, Agric. Ecosyst. Environ. 18, 333–356.CrossRefGoogle Scholar
  84. Juo A.S., Lal R. (1979) Nutrient profile in a tropical alfisol under conventional and no-till systems, Soil Sci. 127, 168–173.CrossRefGoogle Scholar
  85. Kaonga M.L., Coleman K. (2008) Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model, For. Ecol. Manage. 256, 1160–1166.CrossRefGoogle Scholar
  86. Kelly R.H., Parton W.J., Crocker G.J., Graced P.R., Klír J., Körschens M., Poulton P.R., Richter D.D. (1997) Simulating trends in soil organic carbon in long-term experiments using the century model, Geoderma 81, 75–90.CrossRefGoogle Scholar
  87. Kersebaum K.C., Richter J. (1991) Modelling nitrogen dynamics in a plant-soil system with a simple model for advisory purposes, Nutr. Cycl. Agroecosyst. 27, 273–281.Google Scholar
  88. Kieft T.L., soroker E., Firestone M.K. (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted, Soil Biol. Biochem. 19, 119–126.CrossRefGoogle Scholar
  89. Kieft T.L., White C.S., Loftin S.R., Aguilar R., Craig J.A., Skaar D.A. (1998) Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone, Ecology 79, 671–683.Google Scholar
  90. Kiese R., Butterbach-Bahl K. (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia, Soil Biol. Biochem. 34, 975–987.CrossRefGoogle Scholar
  91. Killham K., Foster R. (1994) Soil ecology. Cambridge University Press, Cambridge, UK.Google Scholar
  92. Kirschbaum M.U.F., Paul K.I. (2002) Modelling C and N dynamics in forest soils with a modified version of the CENTURY model, Soil Biol. Biochem. 34, 341–354.CrossRefGoogle Scholar
  93. Koch O., Tscherko D., Kandeler E. (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils, Glob. Biogeochem. Cycles 21.Google Scholar
  94. Krysanova V., Meiner A., Roosaare J., Vasilyev A. (1989) Simulation modelling of the coastal waters pollution from agricultural watershed, Ecol. Model. 49, 7–29.CrossRefGoogle Scholar
  95. Krysanova V., Müller-Wohlfeil D.-I., Becker A. (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds, Ecol. Model. 106, 261–289.CrossRefGoogle Scholar
  96. Kuijper L.D.J., Berg M.P., Morriën E., Kooi B.W., Verhoef H.A. (2005) Global change effects on a mechanistic decomposer food web model, Glob. Change Biol. 11, 249–265.CrossRefGoogle Scholar
  97. Lafolie F. (1991) Modelling water flow, nitrogen transport and root uptake including physical non-equilibrium and optimization of the root water potential, Fert. Res. 27, 215–231.CrossRefGoogle Scholar
  98. Laio F., Porporato A., Ridolfi L., Rodriguez-Iturbe I. (2001) Plants in water-controlled ecosystems: active role in hydrological processes and response to water stress. II. Probabilistic soil moisture dynamics, Adv. Water Resour. 24, 707–723.CrossRefGoogle Scholar
  99. Landsberg J.J., Waring R.H. (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning, For. Ecol. Manage. 95, 209–228.CrossRefGoogle Scholar
  100. Li C., Frolking S., Harriss R. (1994) Modeling carbon biogeochemistry in agricultural soils, Glob. Biogeochem. Cycles 8, 237–254.CrossRefGoogle Scholar
  101. Lugo A., Brown S. (1993) Management of tropical soils as sinks or sources of atmospheric carbon, Plant Soil 149, 27–41.CrossRefGoogle Scholar
  102. Lutz H.J., Chandler R.F. (1955) Forest soils. John Willey, New York, US.Google Scholar
  103. Maggi F., Gu C., Riley W.J., Hornberger G.M., Venterea R.T., Xu T., Spycher N., Steefel C., Miller N.L., Oldenburg C.M. (2008) A mechanistic treatment of the dominant soil nitrogen cycling processes: model development, testing, and application, J. Geophys. Res. 113.Google Scholar
  104. Mann L.K. (1986) Changes in soil carbon storage after cultivation, Soil Sci. 142, 279–288.CrossRefGoogle Scholar
  105. Manzoni S., Porporato A. (2007) A theoretical analysis of nonlinearities and feedbacks in soil carbon and nitrogen cycles, Soil Biol. Biochem. 39, 1542–1556.CrossRefGoogle Scholar
  106. Manzoni S., Porporato A. (2009) Soil carbon and nitrogen mineralization: Theory and models across scales, Soil Biol. Biochem. 41, 1355–1379.CrossRefGoogle Scholar
  107. Martins P.F.S., Cerri C.C., Volkoff B., Andreux F., Chauvel A. (1991) Consequences of clearing and tillage on the soil of a natural Amazonian ecosystem, For. Ecol. Manage. 38, 273–282.CrossRefGoogle Scholar
  108. Matus F.J., Rodríguez J. (1994) A simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input, Plant Soil 162, 259–271.CrossRefGoogle Scholar
  109. Melillo J.M. (1996) Carbon and nitrogen interactions in the terrestrial biosphere: Anthropogenic effects, in: Walker B., W. Steffen (Eds.), Gl. Ch. Ter. Ecosyst., Cambridge University Press, Cambridge, UK, pp. 431–450.Google Scholar
  110. Mirschel W., Kretschmer H., Matthäus E., Koitzsch R. (1991) Simulation of the effects of nitrogen supply on yield formation processes in winter wheat with the model TRITSIM, Fert. Res. 27, 293–304.CrossRefGoogle Scholar
  111. Misson L., Tang J., Xu M., McKay M., Goldstein A. (2005) Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation, Agric. For. Meteorol. 130, 207–222.CrossRefGoogle Scholar
  112. Molina J.A.E., Clapp C.E., Shaffer M.J., Chichester F.W., Larson W.E. (1983) NCSOIL, a model of nitrogen and carbon transformations in soil: description, calibration and behavior, Soil Sci. Soc. Am. J. 47, 85–91.CrossRefGoogle Scholar
  113. Moore J.C., Berlow E.L., Coleman D.C., Ruiter P.C., Dong Q., Hastings A., Johnson N.C., McCann K.S., Melville K., Morin P.J., Nadelhoffer K., Rosemond A.D., Post D.M., Sabo J.L., Scow K.M., Vanni M.J., Wall D.H. (2004) Detritus, trophic dynamics and biodiversity, Ecol. Lett. 7, 584–600.CrossRefGoogle Scholar
  114. Moore J.C., McCann K., de Ruiter P.C. (2005) Modeling trophic pathways, nutrient cycling, and dynamic stability in soils, Pedobiologia 49, 499–510.CrossRefGoogle Scholar
  115. Moore T.R., Trofymow J.A., Siltanen M., Kozak L.M. (2008) Litter decomposition and nitrogen and phosphorous dynamics in peatlands and uplands over 12 years in central Canada, Oecologia 157, 317–325.PubMedCrossRefGoogle Scholar
  116. Moorhead D.L., Currie W.S., Rastetter E.B., Parton W.J., Harmon M.E. (1999) Climate and litter quality controls on decomposition: an analysis of modeling approaches, Glob. Biogeochem. Cycles 13, 575–589.CrossRefGoogle Scholar
  117. Moorhead D.L., Reynolds J.F. (1991) A general model of litter decomposition in the northern Chihuahuan Desert, Ecol. Model. 56, 197–219.CrossRefGoogle Scholar
  118. Motavalli P.P., Discekici H., Kuhn J. (2000) The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer, Agric. Ecosyst. Environ. 79, 17–27.CrossRefGoogle Scholar
  119. Murty D., M.Kirschbaum U.F., McMurtrie R.E., McGilvray H. (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature, Glob. Change Biol. 8, 105–123.CrossRefGoogle Scholar
  120. Ndiaye B., Molénat J., Hallaire V., Gascuel C., Hamon Y. (2007) Effects of agricultural practices on hydraulic properties and water movement in soils in Brittany (France), Soil Till. Res. 93, 251–263.CrossRefGoogle Scholar
  121. Neel C. (1996) Modélisation couplée du transfert et des transformations de l’azote: Paramétrisation et évaluation d’un modèle en sol nu, Université Pierre et Marie Curie, Paris, p. 276Google Scholar
  122. Nicolardot B., Recous S., Mary B. (2001) Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues, Plant Soil 228, 83–103.CrossRefGoogle Scholar
  123. Nye P.H., Greenland D.J. (1964) Changes in the soil after clearing tropical forest, Plant Soil 21, 101–112.CrossRefGoogle Scholar
  124. O’Brien B.J. (1984) Soil organic carbon fluxes and turnover rates estimated from radiocarbon enrichments, Soil Biol. Biochem. 16, 115–120.CrossRefGoogle Scholar
  125. Pansu M., Bottner P., Sarmiento L., Metselaar K. (2004) Comparison of five soil organic matter decomposition models using data from a 14C and 15N labeling field experiment, Glob. Biogeochem. Cycles 18, GB4022.CrossRefGoogle Scholar
  126. Pansu M., Sallih Z., Bottner P. (1998) Modelling of soil nitrogen forms after organic amendments under controlled conditions, Soil Biol. Biochem. 30, 19–29.CrossRefGoogle Scholar
  127. Pansu M., Sarmiento L., Metselaar K., Hervé D., Bottner P. (2007) Modelling the transformations and sequestration of soil organic matter in two contrasting ecosystems of the Andes, Eur. J. Soil Sci. 58, 775–785.CrossRefGoogle Scholar
  128. Parton W.J., Rassmussen P.E. (1994) Long-term effects of crop management in wheat-fallow: II. CENTURY model simulations, Soil Sci. Soc. Am. J. 58, 530–536.CrossRefGoogle Scholar
  129. Parton W.J., Schimmel D.S., Cole C.V., Ojima D.S. (1987) Analysis of factors controlling soil organic matter levels in great plains grasslands, Soil Sci. Soc. Am. J. 51, 1173–1179.CrossRefGoogle Scholar
  130. Parton W.J., Scurlock J.M.O., Ojima D.S., Gilmanov T.G., Scholes R.J., Schimel D.S., Kirchner T., Menaut J.C., Seastedt T., E. Garcia Moya, A. Kamnalrut, Kinyamario J.I. (1993) Observations and modeling of biomass and soil organic matter dynamics for the frassland biome worldwide, Glob. Biogeochem. Cycles 7, 785–809.CrossRefGoogle Scholar
  131. Pastor J., Post W. (1986) Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles, Biogeochemistry 2, 3–27.CrossRefGoogle Scholar
  132. Paul E.A. (1976) Carbon, nitrogen, phosphorous, sulfur and selenium cycles, Proc. 2nd Int. Symp. Environ. Biogechem.Google Scholar
  133. Paul K.I., Polglase P.J. (2004) Prediction of decomposition of litter under eucalypts and pines using the FullCAM model, For. Ecol. Manage. 191, 73–92.CrossRefGoogle Scholar
  134. Paustian K., Andren O., Clarholm M., Hansson A.C., Johansson G., J. Lagerlof, Lindberg T., Pettersson R., Sohlenius B. (1990) Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial crops, with and without N fertilization, J. Appl. Ecol. 27, 60–84.CrossRefGoogle Scholar
  135. Peng C., Apps M.J., Price D.T., Nalder I.A., Halliwell D.H. (1998) Simulating Carbon Dynamics Along the Boreal Forest Transect Case Study (BFTCS) in Central Canada 1. Model Testing, Glob. Biogeochem. Cycles 12, 381–402.CrossRefGoogle Scholar
  136. Peng C., Liu J., Dang Q., Apps M.J., Jiang H. (2002) TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics, Ecol. Model. 153, 109–130.CrossRefGoogle Scholar
  137. Persson T. (1983) Influence of soil animals on nitrogen mineralisation in a northern Scots pine forest, in: Lebrun P., Andre H.M., A. de Medts, C. Gregoire-Wibo, G. Wauthy (Eds.), Proc. of the VIII Int. Colloquium of soil Zoology, Louvain-la-Neuve, Belgium.Google Scholar
  138. Pietikåinen J., Pettersson M., Bååth E. (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates, FEMS Microbiol. Ecol. 52, 49–58PubMedCrossRefGoogle Scholar
  139. Porporato A., D’Odorico P., Laio F., Rodriguez-Iturbe I. (2003) Hydrologic controls on soil carbon and nitrogen cycles. I. Modelling scheme, Adv. Water Resour. 26, 45–58.CrossRefGoogle Scholar
  140. Post J., Krysanova V., Suckow F., Mirschel W., Rogasik J., Merbach I. (2007) Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins, Ecol. Model. 206, 93–109.CrossRefGoogle Scholar
  141. Post W.M., Emanuel W.R., Zinke P.J., Stangenberger A.G. (1982) Soil carbon pools and world life zones, Nature 298, 156–159.CrossRefGoogle Scholar
  142. Prasad P., Basu S., Behera N. (1995) A comparative account of the microbiological characteristics of soils under natural forest, grassland and cropfield from Eastern India, Plant Soil 175, 85–91.CrossRefGoogle Scholar
  143. Prober S.M., Thiele K.R., Koen L.T.B. (2005) Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns, J. Appl. Ecol. 42, 1073–1085.CrossRefGoogle Scholar
  144. Pruess K., Oldenburg C.M., Moridis G.J. (1999) TOUGH2 user’s guide version 2, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, US, p. 192.CrossRefGoogle Scholar
  145. Reichstein M., Rey A., Freibauer A., Tenhunen J., Valentini R., Banza J., Casals P., Cheng Y., Grünzweig J.M., Irvine J., Joffre R., Law B.E., Loustau D., Miglietta F., Oechel W., Ourcival J.-M., Pereira J.S., Peressotti A., Ponti F., Qi Y., Rambal S., Rayment M., Romanya J., Rossi F., Tedeschi V., Tirone G., Xu M., Yakir D. (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices, Glob. Biogeochem. Cycles 17, 1104.CrossRefGoogle Scholar
  146. Reicosky D.C., Dugas W.A., Torbert H.A. (1997) Tillage-induced soil carbon dioxide loss from different cropping systems, Soil Till. Res. 41, 105–118.CrossRefGoogle Scholar
  147. Reiners W.A., Bouwman A.F., Parsons W.F.J., Keller M. (1994) Tropical rain forest conversion to pasture: changes in vegetation and soil properties, Ecol. Appl. 4, 363–377.CrossRefGoogle Scholar
  148. Rey A., Pegoraro E., Tedeschi V., I. De Parri, Jarvis P., Valentini R. (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy, Glob. Change Biol. 8, 851–866.CrossRefGoogle Scholar
  149. Richards G.P. (2001) The FullCAM carbon accounting model: development, calibration and implementation for the national carbon accounting system, Australian Greenhouse Office, Canberra, Australia, pp. 6–27.Google Scholar
  150. Richards G.P., Evans D. (2000) Carbon accounting model for forests (CAMFor). User manual version 3.5, Australian Greenhouse Office, Canberra, Australia, p. 64.Google Scholar
  151. Rodrigo A., Recous S., Neel C., Mary B. (1997) Modelling temperature and moisture effects on C-N transformations in soils: comparison of nine models, Ecol. Model. 102, 325–339.CrossRefGoogle Scholar
  152. Rodriguez-Iturbe I., Porporato A. (2004) Ecohydrology of watercontrolled ecosystems. Soil moisture and plant dynamics, Cambridge University Press, Cambridge, UK.Google Scholar
  153. Rodriguez-Iturbe I., Porporato A., Laio F., Ridolfi L. (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: I. Scope and general outline, Adv. Water Resour. 24, 695–705.CrossRefGoogle Scholar
  154. Roger-Estrade J., Richard G., Caneill J., Boizard H., Coquet Y., Defossez P., Manichon H. (2004) Morphological characterisation of soil structure in tilled fields: from a diagnosis method to the modelling of structural changes over time, Soil Till. Res. 79, 33–49.CrossRefGoogle Scholar
  155. Rustad L.E., Huntington T.G., Boone R.D. (2000) Controls on soil respiration: Implications for climate change, Biogeochemistry 48, 1–6.CrossRefGoogle Scholar
  156. Ryel R.J., Leffler A.J., Peek M.S., Ivans C.Y., Caldwell M.M. (2004) Water conservation in Artemisia tridentata through redistribution of precipitation, Oecologia 141, 335–345.PubMedCrossRefGoogle Scholar
  157. Sallih Z., Pansu M. (1993) Modelling of soil carbon forms after organic amendment under controlled conditions, Soil Biol. Biochem. 25, 1755–1762.CrossRefGoogle Scholar
  158. Savage K.E., Davidson E.A. (2001) Interannual variation of soil respiration in two New England forests, Glob. Biogeochem. Cycles 15, 337–350.CrossRefGoogle Scholar
  159. Schimel D.S., Braswell B.H., Holland E.A., McKeown R., Ojima D.S., T.H. Painter, Parton W.J., Townsend A.R. (1994) Climatic, Edaphic, and Biotic Controls Over Storage and Turnover of Carbon in Soils, Glob. Biogeochem. Cycles 8, 279–293.CrossRefGoogle Scholar
  160. Schinner F., Kandeler E., Öhlinger R., Margesin R. (1995) Methods in soil biology, Springer-Verlag, Berlin, New York.Google Scholar
  161. Schlesinger W.H., Andrews J.A. (2000) Soil Respiration and the Global Carbon Cycle, Biogeochemistry 48, 7–20.CrossRefGoogle Scholar
  162. Scholes M.C., Powlson D., Tian G. (1997) Input control of organic matter dynamics, Geoderma 79, 25–47.CrossRefGoogle Scholar
  163. Schwinning S., Sala O.E. (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems, Oecologia 141, 211–220.PubMedGoogle Scholar
  164. Schwinning S., Starr B.I., Ehleringer J.R. (2003) Dominant cold desert plants do not partition warm season precipitation by event size, Oecologia 136, 252–260.PubMedCrossRefGoogle Scholar
  165. Scott-Denton L.E., Rosenstiel T.N., Monson R.K. (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration, Glob. Change Biol. 12, 205–206.CrossRefGoogle Scholar
  166. Shaffer M.J., Halvorson A.D., Pierce F.J. (1991) Nitrate leaching and economic analysis package (NLEAP): model description and application, in: Follet R.F. (Ed.), Managing nitrogen for groundwater quality and farm profitability, ASA, Madison, Wisconsin, US, pp. 285–232.Google Scholar
  167. Smil V. (1999) Crop residues: agriculture’s largest Harvest, Bioscience 49, 299–308.CrossRefGoogle Scholar
  168. Smith P., Andrén O., Brussaard L., Dangerfield M., Ekschmitt K., Lavelle P., Tate K. (1998) Soil biota and global change at the ecosystem level: describing soil biota in mathematical models, Glob. Change Biol. 4, 773–784.CrossRefGoogle Scholar
  169. Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H., Klein-Gunnewiek H., Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thornley J.H.M., Whitmore A.P. (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma 81, 153–225.CrossRefGoogle Scholar
  170. Stark J.M., Firestone M.K. (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria, Appl. Environ. Microbiol. 61, 218–221.PubMedGoogle Scholar
  171. Stevenson F.J., Cole M.A. (1999) Cycles of soil. Carbon, nitrogen, phosphorous, sulfur, micronutrients, John Wiley & Sons, New York, USA.Google Scholar
  172. Thornley J.H.M. (1991) A transport-resistance model of forest growth and partitioning, Ann. Bot. 68, 211–226.Google Scholar
  173. Thornley J.H.M., Bergelson J., Parsons A.J. (1995) Complex dynamics in a carbon-nitrogen model of a grass-legume pasture, Ann. Bot. 75, 79–94.PubMedCrossRefGoogle Scholar
  174. Van Gestel M., Merckx R., Vlassak K. (1993) Microbial biomass responses to soil drying and rewetting: the fate of fast- and slow-growing microorganisms in soils from different climates, Soil Biol. Biochem. 25, 109–123.CrossRefGoogle Scholar
  175. Veldkamp E. (1994) Organic carbontTurnover in three tropical soils under pasture after deforestation, Soil Sci. Soc. Am. J. 58, 175–180.CrossRefGoogle Scholar
  176. Verberne E.L., Hassink J., De Willigen P., Groot J.J.R., Van Veen J. (1990) Modelling organic matter dynamics in different soils, Neth. J. Agric. Sci. 38, 221–238.Google Scholar
  177. Verhoef H., Brussaard L. (1990) Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals, Biogeochemistry 11, 175–211.CrossRefGoogle Scholar
  178. Vitousek P.M. (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests, Ecology 65, 285–298.CrossRefGoogle Scholar
  179. Vitousek P.M., Sanford R.L. (1986) Nutrient cycling in moist tropical forest, Annu. Rev. Ecol. Syst. 17, 137.CrossRefGoogle Scholar
  180. Wattenbach M., Hattermann F., Weng R., Wechsung F., Krysanova V., Badeck F. (2005) A simplified approach to implement forest ecohydrological properties in regional hydrological modelling, Ecol. Model. 187, 40–59.Google Scholar
  181. White R.E. (1997) Principles and practice of soil science, Blackwell Science, Oxford, UK.Google Scholar
  182. Wolf J., De Wit C., Van Keulen H. (1989) Modeling long-term crop response to fertilizer and soil nitrogen. I. Model description and application, Plant Soil 120, 11–22.CrossRefGoogle Scholar
  183. Wolf J., Van Keulen H. (1989) Modeling long-term crop response to fertilizer and soil nitrogen. II. Comparison with field results, Plant Soil 120, 23–38.CrossRefGoogle Scholar
  184. Xu L., Baldocchi D.D., Tang J. (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature, Glob. Biogeochem. Cycles 18.Google Scholar
  185. Xu T., Sonnenthal E., Spycher N., Pruess K. (2006) TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration, Comput. Geosci. 32, 145–165.CrossRefGoogle Scholar
  186. Young A., Young R. (2001) Soils in the Australian landscape, Oxford University Press, Victoria, Australia.Google Scholar
  187. Young T.P., Petersen D.A., Clary J.J. (2005) The ecology of restoration: historical links, emerging issues and unexplored realms, Ecol. Lett. 8, 662–673.CrossRefGoogle Scholar
  188. Zelenev V.V., A.H.C. vanBruggen, Leffelaar P.A., Bloem J., Semenov A.M. (2006) Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: the simulation model “BACWAVE-WEB”, Soil Biol. Biochem. 38, 1690–1711.Google Scholar
  189. Zheng D.W., Agren G.I., Bengtsson J. (1999) How do soil organisms affect total organic nitrogen storage and substrate nitrogen to carbon ratio in soils? A theoretical analysis, Oikos 86, 430–442.CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • J. Batlle-Aguilar
    • 1
  • A. Brovelli
    • 1
  • A. Porporato
    • 1
  • D. A. Barry
    • 1
  1. 1.Institute for Environmental EngineeringÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Civil and Environmental Engineering DepartmentDuke UniversityDurhamUSA

Personalised recommendations