Agronomy for Sustainable Development

, Volume 30, Issue 4, pp 711–719 | Cite as

Lower mycotoxin levels in Bt maize grain

  • L. Folcher
  • M. Delos
  • E. Marengue
  • M. Jarry
  • A. Weissenberger
  • N. Eychenne
  • C. Regnault-Roger
Open Access
Research Article

Abstract

Mycotoxins produced by Fusarium spp. during plant cultivation induce severe diseases in animal and humans. In 2007 a European Union regulation set maximum concentrations of mycotoxins in maize and derivatives of 4000 ppb for fumonisins B1 and B2, 1750 ppb for deoxynivalenol, and 350 ppb for zearalenone. To assess the safety of French maize food, investigations are currently being carried out by the national Biological Risk Monitoring network. Here, 84 plots were cropped with the Bt maize MON 810 and its isogenic non-Bt counterpart in 2005 and 2006 in Southwestern France. Mycotoxin levels were measured in grain at harvest. Fumonisins B1 and B2, deoxynivalenol, and zearalenone were analysed by liquid chromatography-mass spectrometry. The data were analysed statistically using non-parametric tests for mycotoxins and analysis of variance for weather variables. As the climate was homogenous inside the experimental area, the transgenic event introduced into the maize was the only key parameter which differed between Bt and non-Bt maize plots. Our results show that Bt maize decreased concentrations of fumonisins by 90% and zearalenone by 50%, whereas the concentration of deoxynivalenol was slightly increased. Those findings suggest a competition among Fusarium species that produce fumonisins or trichothecenes. According to the European regulation, 93% of the Bt maize crops can be sold, compared with only 45% for non-Bt maize plots. Our results thus show that Bt maize improved food safety by greatly reducing mycotoxin levels in field crops in Southwestern France.

Bt MON810 maize fumonisins B1 and B2 deoxynivalenol zearalenone Regulation 1126/2007 

References

  1. Abbas H.K., Shier W.T., Cartwright, R.D. (2007) Effect of temperature, rainfall and planting date on aflatoxin and fumonisin contamination in commercial Bt and non-Bt corn hybrids in Arkansas, Phytoprotection 88, 41–50.Google Scholar
  2. Avantaggiato G., Quaranta F., Desiderio E., Visconti A. (2002) Fumonisin contamination of maize hybrids visibly damaged by sesamia, J. Sci. Food Agric. 83, 13–18.CrossRefGoogle Scholar
  3. Bakan B., Melcion D., Richard-Molard D., Cahagnier B. (2002) Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain, J. Agric. Food Chem. 50, 728–731.PubMedCrossRefGoogle Scholar
  4. Brennan J.M., Egan D., Cooke B.M., Doohan F.M. (2005) Effect of temperature on head blight of wheat caused by Fusarium culmorum and F. graminearum, Plant Pathol. 54, 156–160.CrossRefGoogle Scholar
  5. Cardwell K.F., Kling J.G., Maziya-Dixon B. (2000) Interactions between Fusarium verticillioides, Aspergillus flavus, and insect infestation in four maize genotypes in lowland Africa, Phytopathology 90, 276–284.PubMedCrossRefGoogle Scholar
  6. Clements M.J., Campbell K.W., Maragos C.M., Pilcher C., Headrick J.M., Pataky J.K., White D.G. (2003) Influence of Cry1Ab protein and hybrid genotype on fumonisin contamination and Fusarium ear rot of corn, Crop Sci. 43, 1283–1293.CrossRefGoogle Scholar
  7. Crickmore N., Zeigler D.R., Schnepf E., Van Rie J., Lereclus D., Baum J., Bravo A., Dean D.H. (2010) Bacillus thuringienis toxin nomenclature, http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt.Google Scholar
  8. De la Campa R., Hooker D.C., Miller J.D., Schaafsma A.W., Hammond B.G. (2005) Modelling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines, Mycopathologia 159, 539–552.PubMedCrossRefGoogle Scholar
  9. Delos M., Weissenberger A., Ioos R., Folcher L., Rose S., Gérault F., Eychenne N., Regnault-Roger C. (2007) Adaptation à la France des outils de prévention de la contamination par les fusariotoxines sur maïs, Phytoma 600, 28–31.Google Scholar
  10. Dowd P.F. (2000) Indirect reduction of ear molds and associated mycotoxins in Bacillus thuringiensis corn under controlled and open field conditions: utility and limitation, J. Econ. Entomol. 93, 1669–1679.PubMedCrossRefGoogle Scholar
  11. Fargues J., Bourguet D. (2005) La lutte microbiologique contre les insectes ravageurs des cultures: contraintes, bilan et perspectives, in: Regnault-Roger C. (Ed.), Enjeux phytosanitaires pour l’agriculture et l’environnement, Lavoisier Tec & Doc, Paris, pp. 549–570.Google Scholar
  12. Folcher L., Eychenne N., Weissenberger A., Jarry M., Regnault-Roger C. Delos M. (2006) Study of effects of Bt maize (Zea mays L.) events on Lepidoptera Ostrinia nubilalis, Sesamia nonagrioides in southwestern France, Commun. Agric. Appl. Biol. Sci. 71, 227–232.PubMedGoogle Scholar
  13. Folcher L., Jarry M., Weissenberger A., Gérault F., Eychenne N., Delos M., Regnault-Roger C. (2009a) Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields, Crop Prot. 28, 302–308.CrossRefGoogle Scholar
  14. Folcher L., Jarry M., Weissenberger A., Eychenne N., Delos M., Regnault-Roger C. (2009b) Biocontrol of Ostrinia nubilalis and Sesamia nonagrioides by Bt maize in Southwestern France: Search of biological indicators by model-based approach for managing mycotoxin risks, OIBC/wsp Bull 45, 487–490.Google Scholar
  15. Hammond B.G., Campbell K.W., Pilcher C.D., Degooyer T.A., Robinson A.E., McMillen B.L., Spangler S.M., Riordan S.G., Rice L.G., Richard J.L. (2004) Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000–2002, J. Agric. Food Chem. 52, 1390–1397.PubMedCrossRefGoogle Scholar
  16. Instanes C., Hetland G. (2004) Deoxynivalenol (DON) is toxic to human colonic, lung and monocytic cell lines, but does not increase the IgE response in a mouse model for allergy, Toxicology 204, 13–21.PubMedCrossRefGoogle Scholar
  17. Ioos R., Belhadj A., Menez M. (2004) Occurrence and distribution of Microdochium nivale and Fusarium species isolated from barley, durum and soft wheat grains in France from 2000 to 2002, Mycopathologia 158, 351–362.PubMedCrossRefGoogle Scholar
  18. Magg T., Melchinger A.E., Klein D., Bohn M. (2002) Relationship between European Corn Borer resistance and concentration of mycotoxins produced by Fusarium spp. in grains of transgenic Bt maize hybrids, their isogenic counterparts, and commercial varieties, Plant Breed. 121, 146–154.CrossRefGoogle Scholar
  19. Marin S., Sanchis V., Magan N. (1995) Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize, Can. J. Microbiol. 41, 1063–1070.PubMedCrossRefGoogle Scholar
  20. Miller J.D. (2008) Mycotoxins in small grains and maize: Old problems, new challenges, Food Addit. Contam. 25, 219–230.CrossRefGoogle Scholar
  21. Munkvold G.P., Hellmich R.L., Showers W.B. (1997) Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance, Phytopathology 87, 1071–1077.PubMedCrossRefGoogle Scholar
  22. Pieters M.N., Bakker M., Slob W. (2004) Reduced intake of deoxynivalenol in The Netherlands: a risk assessment update, Toxicol. Lett. 153, 145–153.PubMedCrossRefGoogle Scholar
  23. Rasmussen P.H., Petersen A., Ghorbani, F. (2007) Annual variation of deoxynivalenol in Danish wheat flour 1998–2003 and estimated daily intake by the Danish population, Food Addit. Contam. 24, 315–325.PubMedCrossRefGoogle Scholar
  24. Raymond S.L., Smith T.K., Swamy H.L.V.N. (2005) Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on feed intake, metabolism, and indices of athletic performance of exercised horses, J. Anim. Sci. 83, 1267–1273.PubMedGoogle Scholar
  25. Reid L.M., Nicol R.W., Ouellet T., Savard M., Miller J.D., Young J.C., Stewart D.W., Schaafsma A.W. (1999) Interaction of Fusarium graminearum and F. moniliforme in maize ears: disease progress, fungal biomass, and mycotoxin accumulation, Phytopathology 89, 1028–1037.PubMedCrossRefGoogle Scholar
  26. Sanchis V., Bourguet D. (2008) Bacillus thuringiensis: applications in agriculture and insect resistance management. A review, Agron. Sustain. Dev. 28, 11–20.CrossRefGoogle Scholar
  27. Schaafsma A.W., Hooker D.C., Baute T.S., Tamburic-Illinic L. (2002) Effect of Bt corn hybrids on deoxynivalenol content in grain at harvest, Plant Dis. 86, 1123–1126.CrossRefGoogle Scholar
  28. Shapiro S.S., Wilk M.B. (1965) An analysis of variance test for normality (complete samples), Biometrika 52, 591–611.Google Scholar
  29. Siegel S., Castellan N.J. (1998) Non parametric statistics for the behavioral sciences, Mc Graw-Mill international edition, New-York.Google Scholar
  30. Sobek E.A., Munkvold G.P. (1999) European Corn Borer (Lepidoptera: Pyralidae) larvae as vectors of Fusarium moniliforme, causing kernel rot and symptomless infection of maize kernels, J. Ecol. Entomol. 92, 503–509.Google Scholar
  31. Velluti A., Marýn S., Bettucci L., Ramos A.J., Sanchis V. (2000) The effect of fungal competition on colonization of maize grain by Fusarium moniliforme, F. proliferatum and F. graminearum and on fumonisin B1 and zearalenone formation, Int. J. Food Microbiol. 59, 59–66.PubMedCrossRefGoogle Scholar
  32. Weidenbörner M. (2007) Mycotoxins in Feedstuffs, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  33. Wild C.P., Hall A.J. (1996) Epidemiology of mycotoxin-related diseases, in: Howard J.D., Miller D. (Eds.), The Mycota VI: Human and animal relationships, Springer-Verlag, Berlin, Heidelberg, pp. 213–227.Google Scholar
  34. Yates I.E., Sparks D. (2008) Fusarium verticillioides dissemination among maize ears of field-grown plants, Crop Prot. 27, 606–613.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • L. Folcher
    • 1
  • M. Delos
    • 2
  • E. Marengue
    • 3
  • M. Jarry
    • 4
    • 7
  • A. Weissenberger
    • 5
  • N. Eychenne
    • 6
  • C. Regnault-Roger
    • 1
  1. 1.UMR CNRS 5254, IPREM - EEM - IBEASUniversité de Pau et des Pays de l’AdourPauFrance
  2. 2.Service Régional de la Protection des Végétaux, “Midi-Pyrénées”Ministère de l’Agriculture et de la PêcheToulouseFrance
  3. 3.Laboratoire de Développement et d’Analyse des Côtes D’Armor (L.D.A 22)ZoopoleFrance
  4. 4.UMR 1224, ECOBIOP, IBEASUniversité de Pau et des Pays de l’AdourPauFrance
  5. 5.Chambre d’Agriculture du Bas-RhinFilières végétalesSchiltigheimFrance
  6. 6.Fédération Régionale de Défense contre les Organismes NuisiblesFREDEC Midi-PyrénéesCastanet TolosanFrance
  7. 7.UMR 1224 ECOBIOPINRASaint-Pée sur NivelleFrance

Personalised recommendations