Agronomy for Sustainable Development

, Volume 30, Issue 3, pp 689–699 | Cite as

Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application

  • M. T. Gómez-Casero
  • I. L. Castillejo-González
  • A. García-Ferrer
  • J. M. Peña-Barragán
  • M. Jurado-Expósito
  • L. García-Torres
  • F. López-Granados
Research Article

Abstract

Wheat, Triticum durum L, is a major cereal crop in Spain with over five million ha grown annually. Wild oat, Avena sterilis L., and canary grass, Phalaris spp., are distributed only in patches in wheat fields but herbicides are applied over entire fields, thus leading to over-application and unnecessary pollution. To reduce herbicide application, site-specific management techniques based on weed maps are being developed to treat only weed patches. Intensive weed scouting from the ground is time-consuming and expensive, and it relies on estimates of weeds at unsampled points. Remote sensing of weed canopies has been shown to be a more efficient alternative. The principle of weed remote sensing is that there are differences in the spectral reflectance between weeds and crops. To test this principle, we studied spectral signatures taken on the ground in the visible and near-infrared windows for discriminating wheat, wild oat and canary grass at their last phenological stages. Late-season phenological stages included initial seed maturation through advanced maturation for weeds, and initial senescence to senescent for wheat. Spectral signatures were collected on eight sampling dates from April 28 through May 26 using a handheld field spectroradiometer. A stepwise discriminant analysis was used to detect differences in reflectance and to determine the accuracy performance for a species classification as affected by their phenological stage. Four scenarios or classification sets were considered: wheat-wild oat-canary grass, with each species represented by a different group of spectra; wheat and grass weeds, combining the two weed species into one spectral group; wheat and wild oat with each represented as a single group, and finally, wheat and canary grass. Our analysis achieved 100% classification accuracy at the phenological stages of initial seed maturation, and green and advanced seed maturation and partly green for weeds and wheat, respectively, between the dates of April 28 and May 6. Furthermore, we reduced the number of hyperspectral wavelengths to thirteen out of 50. Multispectral analysis also showed that broad wavebands corresponding to those of QuickBird satellite imagery discriminated wild oat, canary grass and wheat at the same phenological stages and dates. Our findings are very useful for determining the timeframe during which future multispectral QuickBird satellite images will be obtained and the concrete wavelengths that should be used in case of using airborne hyperspectral imaging. Accurate and timely mapping of the spatial distribution of weeds is a key element in achieving site-specific herbicide applications for reducing spraying volume of herbicides and costs.

hyperspectral multispectral remote late-season weed detection precision agriculture vegetation indices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barroso J., Fernández-Quintanilla C., Maxwell B.D., Rew L. (2004a) Simulating the effects of spatial weed pattern and resolution of mapping and spraying on economics of site-specific management, Weed Res. 44, 460–468.CrossRefGoogle Scholar
  2. Barroso J., Fernández-Quintanilla C., Ruiz D., Hernaiz P., Rew L. (2004b) Spatial stability of Avena sterilis ssp. ludoviciana under annual applications of low rates of imazamethabenz, Weed Res. 44, 178–186.CrossRefGoogle Scholar
  3. Blanco-Moreno J.M., Chamorro L., Sans X. (2006) Spatial and temporal patterns of Lolium rigidum-Avena sterilis mixed populations in a cereal field, Weed Res. 46, 207–218.CrossRefGoogle Scholar
  4. Borregaard T., Nielsen H., Norgaard L., Have H. (2000) Crop-weed discrimination by line imaging spectroscopy, J. Agr. Eng. Res. 75, 389–400.CrossRefGoogle Scholar
  5. Brown R.B., Noble S.D. (2005) Site-specific weed management: sensing requirements-what do we need to see? Weed Sci. 53, 252–258.CrossRefGoogle Scholar
  6. Burks T.F., Shearer S.A., Green J.D., Heath J.R. (2002) Influence of weed maturity levels on species classification using machine vision, Weed Sci. 50, 802–811.CrossRefGoogle Scholar
  7. Chang J., Clay S.A., Clay D.E., Dalsted K. (2004) Detecting weed-free and weed-infested areas of a soybean field using near-infrared spectral data, Weed Sci. 52, 642–646.CrossRefGoogle Scholar
  8. Cochrane M.A. (2000) Using vegetation reflectance variability for species level classification of hyperspectral data, Int. Remote Sens. 21, 2075–2087.CrossRefGoogle Scholar
  9. Curran P.J. (1985) Aerial photography for the assessment of crop condition: a review, Appl. Geogr. 5, 347–360.CrossRefGoogle Scholar
  10. Cussans, G. (1995) Machine vision for weed identification. Informal Weed Detection Workshop, Silsoe Research Institute, Bedford, UK.Google Scholar
  11. Elmore A.J., Mustard J.F., Manning S.J., Lobell D.B. (2000) Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index, Remote Sens. Environ. 73, 87–102.CrossRefGoogle Scholar
  12. Everitt J.H., Villarreal R. (1987) Detecting huisache (Acacia farnesiana) and Mexican palo-verde (Parkinsonia aculeata) by aerial photography, Weed Sci. 35, 427–432.Google Scholar
  13. Felton W.L., Alston C.L., Haigh C.B.M., Nash P.G., Wicks G.A., Hanson G.E. (2002) Using reflectance sensors in agronomy and weed science, Weed Technol. 16, 520–527.CrossRefGoogle Scholar
  14. Friedl M.A., Brodley C.E. (1997) Decision tree classification of land cover from remotely sensed data, Remote Sens. Environ. 61, 399–409.CrossRefGoogle Scholar
  15. Friedl M.A., Brodley C.E., Strahler A.H. (1999) Maximizing land cover classification accuracies produced by decision trees at continental to global scales, IEEE T. Geosci. Remote 37, 969–977.CrossRefGoogle Scholar
  16. Girma K.J., Mosali J., Raun W.R., Freeman K.W., Martin K.L., Solie J.B., Stone M.L. (2005) Identification of optical spectral signatures for detecting cheat and ryegrass in winter wheat, Crop Sci. 45, 477–485.CrossRefGoogle Scholar
  17. Goel P.K., Prasher S.O., Patel R.M., Landry J.A., Bonnel R.B., Viau A.A. (2003) Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn, Comput. Electron. Agr. 39, 67–93.CrossRefGoogle Scholar
  18. Hansen P.M., Schjoerring J.K. (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression, Remote Sens. Environ. 86, 325–337.CrossRefGoogle Scholar
  19. Hatfield J.L., Pinter J.R. (1993) Remote sensing for crop protection, Crop Prot. 12, 403–413.CrossRefGoogle Scholar
  20. Jackson R.D., Huete A.R. (1991) Interpreting vegetation indices, Prev. Vet. Med. 11, 185–200.CrossRefGoogle Scholar
  21. Jordan C.F. (1969) Derivation of leaf area index from quality of light on the forest floor, Ecology 50, 663–666.CrossRefGoogle Scholar
  22. Jurado-Expósito M., López-Grabados F., Atenciano S., García-Torres L. González-Andújar J.L., (2003) Discrimination of weed seedlings, wheat (Triticum aestivum) stubble and sunflower (Helianthus annuus) by near-infrared reflectance spectroscopy (NIRS), Crop Prot. 22, 1177–1180.CrossRefGoogle Scholar
  23. Jurado-Expósito M., López-Granados F., González-Andújar J.L., García-Torres L. (2004) Spatial and temporal analysis of Convolvulus arvensis L. populations over four growing seasons, Eur. J. Agron. 21, 287–296.CrossRefGoogle Scholar
  24. Jurado-Expósito M., López-Granados F., González-Andújar J.L., García-Torre L. (2005) Characterizing population growth rate of Convolvulus arvensis L. in wheat-sunflower no-tillage systems, Crop Sci. 45, 2106–2112.CrossRefGoogle Scholar
  25. Karimi Y., Prasher S.O., McNaim H., Bonnell R.B., Dutilleul P., Goel P.K. (2005a) Discriminant analysis of hyperspectral data for assessing water and nitrogen stresses in corn, T. ASAE 48, 805–813.Google Scholar
  26. Karimi Y., Prasher S.O., McNaim H., Bonnell R.B., Dutilleul P., Goel P.K. (2005b) Classification accuracy of discriminant analysis, neural networks and decision trees for weed and nitrogen stress detection in corn, T. ASAE 48, 1261–268.Google Scholar
  27. Kavdir I. (2004) Discrimination of sunflower, weed and soil by artificial neural network, Comput. Electron. Agr. 44, 153–160.CrossRefGoogle Scholar
  28. Koger H.K., Shaw D.R., Reddy K.N., Bruce L.M. (2004) Detection of pitted morningglory (Ipomea lacunosa) with hyperspectral remote sensing. II. Effects of vegetation ground cover and reflectance properties, Weed Sci. 52, 230–235.CrossRefGoogle Scholar
  29. Koger H.K., Shaw D.R., Watson C.E., Reddy K.N. (2003) Detecting late-season weed infestations in soybean (Glycine max), Weed Technol. 17, 696–704.CrossRefGoogle Scholar
  30. Lamb D.W., Weedon M.M., Rew L.J. (1999) Evaluating the accuracy of mapping weeds in seedling crops using airborne digital imaging: Avena spp. in seedling triticale, Weed Res. 39, 481–492.CrossRefGoogle Scholar
  31. Lancashire P.D., Bleiholder H., Van Den Doom T., Langelüddeke P., Srauss R., Weber E., Witzenberger A. (1991) A uniform decimal code for growth stages of crops and weeds, Ann. Appl. Biol. 119, 561–601.CrossRefGoogle Scholar
  32. Lass L.W., Callihan R.H. (1997) The effect of phenological stage on detectability of yellow hawkweed (Hieracium pratense) and oxeye daisy (Chrysanthemum leucanthemum) with remote multispectral digital imagery, Weed Technol. 11, 248–256.Google Scholar
  33. López-Granados F., Peña-Barragán J.M., Jurado-Expósito M., Francisco-Fernández M., Cao R., Alonso-Betanzos A., Fontenla-Romero O. (2008) Multispectral classification of grass weeds and wheat (Triticum durum) crop using linear and nonparametric functional discriminant analysis, and neural networks, Weed Res. 48, 28–37.CrossRefGoogle Scholar
  34. López-Granados F., Peña-Barragán J.M., Jurado-Expósito M., García-Torres L. (2006) Using remote sensing for identification of late-season grassy weeds patches in wheat (Triticum durum) for precision agriculture, Weed Sci. 54, 346–353.Google Scholar
  35. Munden R., Curran P.J., Catt A. (1994) The relationship between red edge and chlorophyll concentration in the Broadbalk winter wheat experiment at Rothamsted, Int. J. Remote Sens. 15, 705–709.CrossRefGoogle Scholar
  36. Noble, S.D., Brown, R.B., Growe T.G. (2002) The use of spectral properties for weed detection and identification — a review, AIC Meeting, In: Saskatoon, S.K. (Ed.), Canada. CSAE Paper No. 02-208, CSAE/SCGR, Mansonville, QC, Canada.Google Scholar
  37. Peña-Barragán J.M., López-Granados F., Jurado-Expósito M., García-Torres L. (2006) Spectral discrimination of Ridolfia segetum and sunflower as affected by phenological stage, Weed Res. 46, 10–21.CrossRefGoogle Scholar
  38. Peña-Barragán J.M., López-Granados F., Jurado-Expósito, M., García-Torres L. (2007) Mapping Ridolfia segetum patches in sunflower crop using remote sensing, Weed Res. 47, 164–172.CrossRefGoogle Scholar
  39. Price J.C. (1994) How unique are spectral signatures? Remote Sens. Environ. 49, 181–186.CrossRefGoogle Scholar
  40. Radhakrishnan J., Liang S., Teasdale J.R., Shuey C.J. (2002) Remote sensing of weed canopies, in: Ranjan S. Mittriah (Ed.), From laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystem, Kluwer, Dordrecht, pp. 175–202.Google Scholar
  41. Rew L.J., Cousens R.D. (2000) Spatial distribution of weeds in arable crops: are current samplings and analytical methods appropriate? Weed Res. 41, 1–18.CrossRefGoogle Scholar
  42. Rew L.J., Cussans G.W., Mugglestone A.M., Miller P.C.H. (1996) A technique for mapping the spatial distribution of Elymus repens, with estimates of the potential reduction in herbicide usage from patch spraying, Weed Res. 4, 283–292.CrossRefGoogle Scholar
  43. Rose J.W., Haas R.H., Schell J.A., Deering D.W. (1973) Monitoring vegetation systems in the Greant Plains with ERTS, in: Proceedings of the Earth Resources Technology Satellite Symposium NASA SP-351, Washington DC, USA, Vol. 1, pp. 309–317.Google Scholar
  44. Ruiz D., Escribano C., Fernández-Quintanilla C. (2006) Assessing the opportunity for site-specific management of Avena sterilis in winter barley fields in Spain, Weed Res. 46, 379–387.CrossRefGoogle Scholar
  45. Saavedra M., Cuevas J., Mesa-García J., García-Torres L. (1989) Grassy weeds in winter cereals in southern Spain, Crop Prot. 8, 181–187.CrossRefGoogle Scholar
  46. Salisbury J.W. (1999) Spectral measurements field guide, Report No. ADA362372, Washington, DC: Defense Technology Information Center.Google Scholar
  47. Schmidt K.S., Skidmore A.K. (2003) Spectral discrimination of vegetation types in a coastal wetland, Remote Sens. Environ. 85, 92–108.CrossRefGoogle Scholar
  48. Slaughter D.C., Lanini W.T., Giles D.K. (2004) Discriminating weeds from processing tomato plants using visible and near-infrared reflectance, T. ASAE 47, 1907–1911.Google Scholar
  49. Smith A.M., Blackshaw R.E. (2003) Weed-crop discrimination using remote sensing: a detached leaf experiment, Weed Technol. 17, 811–820.CrossRefGoogle Scholar
  50. Thenkabail P.S., Enclona E.A., Ashton M.S., Van Der Meer B. (2004) Accuracy assessments of hyperspectral wavebands performance of vegetation analysis applications, Remote Sens. Environ. 91, 354–376.CrossRefGoogle Scholar
  51. Thompson J.F., Stafford J.V., Miller P.C.H. (1991) Potential for automatic weed detection and selective application, Crop Prot. 10, 254–259.CrossRefGoogle Scholar
  52. Thorp K.R., Tian L.F. (2004) A review of remote sensing of weeds in agriculture, Precis. Agric. 5, 477–508.CrossRefGoogle Scholar
  53. Timmermann C., Gerhards R., Kuehbauch W. (2003) The economic impact of the site specific weed control, Precis. Agric. 4, 241–252.CrossRefGoogle Scholar
  54. Tsai F., Chou M.-J. (2006) Texture augmented analysis of high resolution satellite imagery in detecting invasive plant species, J. Chin. Inst. Eng. 29, 581–592.CrossRefGoogle Scholar
  55. Visauta B., Martori J.C. (2003) Análisis estadístico con SPSS para Windows, Volumen II: Estadística multivariante, 2a Edición, McGraw-Hill Interamericana de España, S.A.U., 348 p.Google Scholar
  56. Vrindts E., De Baerdemaeker J., Ramon H. (2000) Using spectral information for weed detection in field circumstances, in: Proceedings of the Third Millennium AgEng2000. Paper 00-PA-010, Eur. Soc. Agr. Eng. Warwick, UK.Google Scholar
  57. Wang N., Dowel F.E., Lacey R.E. (1999) Single wheat kernel colour classification using neural networks, T. ASAE. 42, 233–240.Google Scholar
  58. Wilson B.J., Brain P. (1991) Long-term stability of distribution of Alopecurus myosuroides Huds. within cereal fields, Weed Res. 31, 367–373.CrossRefGoogle Scholar
  59. Yang C.-C., Prasher S.O., Landry J.A. (1999) Use of artificial neural networks to recognize weeds in a corn field, Journée d’information Scientifique et Technique en génie agroalimentaire, Canada (March 3), 60–65, Saint-Hyacinthe, Québec: Conseil des production végétales du Québec, Inc.Google Scholar
  60. Yang C.C., Prasher S.O., Landry J., Ramaswamy H.S. (2002) Development of Neural Network for weed recognition in corn fields, T. ASAE 42, 147–152.Google Scholar
  61. Zwiggelaar R. (1998) A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops, Crop Prot. 17, 189–205.CrossRefGoogle Scholar

Copyright information

© INRA, EDP Sciences 2010

Authors and Affiliations

  • M. T. Gómez-Casero
    • 1
  • I. L. Castillejo-González
    • 2
  • A. García-Ferrer
    • 2
  • J. M. Peña-Barragán
    • 1
  • M. Jurado-Expósito
    • 1
  • L. García-Torres
    • 1
  • F. López-Granados
    • 1
  1. 1.Crop Protection DepartmentInstitute for Sustainable Agriculture/CSICCórdobaSpain
  2. 2.Remote Sensing DepartmentUniversity of CórdobaCórdobaSpain

Personalised recommendations