Biofuels, greenhouse gases and climate change. A review

  • Cécile BessouEmail author
  • Fabien Ferchaud
  • Benoît Gabrielle
  • Bruno Mary
Review Article


Biofuels are fuels produced from biomass, mostly in liquid form, within a time frame sufficiently short to consider that their feedstock (biomass) can be renewed, contrarily to fossil fuels. This paper reviews the current and future biofuel technologies, and their development impacts (including on the climate) within given policy and economic frameworks. Current technologies make it possible to provide first generation biodiesel, ethanol or biogas to the transport sector to be blended with fossil fuels. Still under-development 2nd generation biofuels from lignocellulose should be available on the market by 2020. Research is active on the improvement of their conversion efficiency. A ten-fold increase compared with current cost-effective capacities would make them highly competitive. Within bioenergy policies, emphasis has been put on biofuels for transportation as this sector is fast-growing and represents a major source of anthropogenic greenhouse gas emissions. Compared with fossil fuels, biofuel combustion can emit less greenhouse gases throughout their life cycle, considering that part of the emitted CO2 returns to the atmosphere where it was fixed from by photosynthesis in the first place. Life cycle assessment (LCA) is commonly used to assess the potential environmental impacts of biofuel chains, notably the impact on global warming. This tool, whose holistic nature is fundamental to avoid pollution trade-offs, is a standardised methodology that should make comparisons between biofuel and fossil fuel chains objective and thorough. However, it is a complex and time-consuming process, which requires lots of data, and whose methodology is still lacking harmonisation. Hence the life-cycle performances of biofuel chains vary widely in the literature. Furthermore, LCA is a site- and time-independent tool that cannot take into account the spatial and temporal dimensions of emissions, and can hardly serve as a decision-making tool either at local or regional levels. Focusing on greenhouse gases, emission factors used in LCAs give a rough estimate of the potential average emissions on a national level. However, they do not take into account the types of crop, soil or management practices, for instance. Modelling the impact of local factors on the determinism of greenhouse gas emissions can provide better estimates for LCA on the local level, which would be the relevant scale and degree of reliability for decision-making purposes. Nevertheless, a deeper understanding of the processes involved, most notably N2O emissions, is still needed to definitely improve the accuracy of LCA. Perennial crops are a promising option for biofuels, due to their rapid and efficient use of nitrogen, and their limited farming operations. However, the main overall limiting factor to biofuel development will ultimately be land availability. Given the available land areas, population growth rate and consumption behaviours, it would be possible to reach by 2030 a global 10% biofuel share in the transport sector, contributing to lower global greenhouse gas emissions by up to 1 GtCO2 eq · year−1 (IEA, 2006), provided that harmonised policies ensure that sustainability criteria for the production systems are respected worldwide. Furthermore, policies should also be more integrative across sectors, so that changes in energy efficiency, the automotive sector and global consumption patterns converge towards drastic reduction of the pressure on resources. Indeed, neither biofuels nor other energy source or carriers are likely to mitigate the impacts of anthropogenic pressure on resources in a range that would compensate for this pressure growth. Hence, the first step is to reduce this pressure by starting from the variable that drives it up, i.e. anthropic consumptions.


biofuels energy crops perennials LCA greenhouse gases climate change political and economic frameworks bioenergy potential land-use change nitrous oxide carbon dioxide agricultural practices 


  1. ADEME (2006) Programme national Bois-Énergie 2000–2006 (National Wood Energy Programme), Rapport d’activités 2000–2005 (Activities Report), Collection: Données et références, ©ADEME Editions, 5853, ISBN 978-2-86817-844-8, Paris, 114 p.Google Scholar
  2. ADEME/DIREM (2002) Bilans énergétiques et gaz à effet de serre des filières de production de biocarburants, Rapports techniques, Version définitive novembre 2002, Ecobilan, Pricewaterhouse Coopers, 132 p.Google Scholar
  3. Agard J., Alcamo J., Ash N., Arthurton R., Barker S., Barr J., Baste I., Chambers W.B., Dent D., Fazel A., Gitay H., Huber M., Jäger J., Kuylenstiema J.C.I., King P.N., Kok M.T.J., Levy M.A., Mafuta G., Martino D., Panwar T.S., Rast W., Rothman D.S., Varughese G.C., Zommers Z. (2007) Global Environment Outlook GEO4 Environment for Development, UNEP, ISBN: 978-92-807-2836-1, 572 p.Google Scholar
  4. Anton A., Castells F., Montero J.I. (2007) Land use indicators in life cycle assessment. Case study: The environmental impact of Mediterranean greenhouses, J. Cleaner Prod. 1, 432–438.Google Scholar
  5. Antoni V., Arrouays D. (2007) Le stock de carbone dans les sols agricoles, IFEN 121, 4 p.Google Scholar
  6. Arrouays D., Balesdent J., Germon J.C., Jayet P.A., Soussana J.F., Stengel P. (2002) Mitigation of the greenhouse effect Increasing carbon stocks in French agricultural soils? Scientific Assessment Unit for Expertise, Synthesis of an Assessment Report by the French Institute for Agriculture Research (INRA) on request of the French Ministry for Ecology and Sustainable Development, October 2002, 33 p.Google Scholar
  7. Arrouays D., Deslais W., Badeau V. (2001) The carbon content of topsoil and its geographical distribution in France, Soil Use Manage. 17, 7–11.Google Scholar
  8. ASPO (2008) Newsletter February 2008, online:
  9. Bai Z.G., Dent D.L., Olsson L., Schaepman M.E. (2007) Global Assessment of Land Degradation and Improvement, FAO LADA working paper, Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  10. Bai Z.G., Dent D.L., Olsson L., Schaepman M.E. (2008) Global Assessment of Land Degradation and Improvement. 1 Identification by remote sensing, Report 2008/01(GLADA Report 5), ISRIC — World Soil Information, Wageningen, 70 p.Google Scholar
  11. Balat M, Balat H., Ö C. (2008) Progress in bioethanol processing, Progress in Energy Combustion Science, DOI: 10.1016/j.pecs.2007.11.001.Google Scholar
  12. Balesdent J., Chenu C., Balabane M. (2000) Relationship of soil organic matter dynamics to physical protection and tillage, Soil Till. Res. 53, 215–230.Google Scholar
  13. Ball B.C., Crichton I., Horgan G.W. (2008) Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence, Soil Till. Res. 101, 20–30.Google Scholar
  14. Bange H.W. (2006) New directions: The importance of oceanic nitrous oxide emissions, Atmos. Environ. 40, 198–199.Google Scholar
  15. Barbier C., Baron R., Colombier M., Boemare C. (2004) Climate change policies; Analysis of sectoral changes in Europe, IDDRI/CIRED with the support of ADEME, Paris, 37 p.Google Scholar
  16. Bare J.C., Hofstetter P., Pennington D., Udo de Haes H.A. (2000) Life Cycle Impact Assessment Workshop Summary: Midpoints vs Endpoints — The Sacrifices and Benefits, Int. J. LCA 5, 319–326.Google Scholar
  17. Baserga U. (2000) Fermentation de déchets organiques dans les installations agricoles de biogaz, Station fédérale de recherches en économie et technologie agricoles (FAT) CH-8356 Tänikon, FAT Rapports no 546, 12 p.Google Scholar
  18. Basset-Mens C., Anibar A., Durand P., van der Werf H. M.G. (2006a) Spatialised fate factors for nitrate in catchments: Modelling approach and implication for LCA results, Sci. Total Environ. 367, 367–382.PubMedGoogle Scholar
  19. Basset-Mens C., Van der Werf H.M.G., Durnad P., Leterme P. (2006b) Implications of Uncertainty and Variability in the Life Cycle Assessment of Pig Production Systems, Int. J. LCA 11, 298–304.Google Scholar
  20. Baumert K.A., Herzog T., Pershing J. (2005) Navigating the Numbers; Greenhouse Gas Data and International Climate Policy. © World Resources Institute, ISBN: 1-56973-599-9, USA, 132 p.Google Scholar
  21. Beheydt D., Boeckx P., Sleutel S., Li C., van Cleemput O. (2007) Validation of DNDC for 22 long-term N2O field emission measurements, Atmos. Environ. 41, 6196–6211.Google Scholar
  22. Berndes G., Hoogwijk M., Van den Broek R. (2003) The contribution of biomass in the future global energy supply: a review of 17 studies, Biomass Bioenerg. 25, 1–28.Google Scholar
  23. Bioenergy Business (2007) Markets and finance for biomass and biofuels, Volume 1,Issue 3, 23 p.Google Scholar
  24. BIOFRAC (2006) Biofuels in the European Union: a vision for 2030 and beyond, Final draft report of the BIOFRAC, European Biofuels Research Advisory Council, 30 p.Google Scholar
  25. Björklund A. (2002) Survey of approaches to improve reliability in LCA, Int. J. LCA 7, 64–72.Google Scholar
  26. Blottnitz von H., Curran M.A. (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective, J. Cleaner Prod. 15, 607–619.Google Scholar
  27. Boer de I.J.M. (2003) Environmental impact assessment of conventional and organic milk production, Livest. Prod. Sci. 80, 69–77.Google Scholar
  28. Boeters S., Veenendaal P., van Leeuwen N., Rojas-Romagoza H. (2008) The potential for biofuels alongside the EU-ETS, Paper for presentation at the Eleventh Annual GTAP Conference ‘Future of Global Economy’, Helsinki, June 12–14 2008, 39 p.Google Scholar
  29. Boizard H., Richard G., Roger-Estrade J., Dürr C., Boiffin J. (2002) Cumulative effects of cropping systems on the structure of the tilled layer in northern France, Soil Till. Res. 64, 149–164.Google Scholar
  30. Bouwman A.F. (1994) Method to estimate direct nitrous oxide emissions from agricultural soils, Report 773004004, National Institute of Public Health and Environmental Protection, Bilthoven, the Netherlands, 28 p.Google Scholar
  31. BRDI (2006) Vision: for bioenergy and biobased products in the United States, Bioeconomy for a sustainable future, Biomass Research and Development Initiative, 27 p.Google Scholar
  32. Brentrup F., Küsters J., Kuhlmann H., Lammel J. (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment methodology. I. Theoretical concept of a LCA method tailored to crop production, Eur. J. Agron. 20, 247–264.Google Scholar
  33. Cardona C.A., Sanchez O.J. (2007) Fuel ethanol production: Process design trends and integration opportunities, Bioresource Technol. 98, 2415–2457.Google Scholar
  34. CEA (2004) L’hydrogène, les nouvelles technologies de l’énergie, Commissariat de l’énergie Atomique, Clefs no 50/51, 156 p.Google Scholar
  35. CEC (1997) Commission of the European Communities, Energy for the Future: Renewable Sources of Energy, White Paper for a Community Strategy and Action Plan, COM(97) 599 final (26/11/1997) Brussels, 55 p.Google Scholar
  36. CEC (2005) Commission of the European Communities, Biomass Action Plan, COM(2005) 628 final, {SEC(2005) 1573} Brussels, 47 p.Google Scholar
  37. CEC (2006a) Commission of the European Communities, EU Strategy for Biofuels, COM(2006) 34 final, {SEC(2006) 142} Brussels, 30 p.Google Scholar
  38. CEC (2006b) Commission of the European Communities, a European Strategy for Sustainable, Competitive and Secure Energy, GreenGoogle Scholar
  39. Paper COM (2006) 105 final, {SEC(2006) 317} Brussels, 20 p.Google Scholar
  40. CEC (2008) Commission of the European Communities, Proposal for a Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources; (presented by the Commission) {COM(2008) 19 final} 2008/2016 (COD), Brussels, 61 p.Google Scholar
  41. Chapple C., Ladisch M., Meilan R. (2007) Loosening lignin’s grip on biofuel production, Nat. Biotechnol. 25, 746–748.PubMedGoogle Scholar
  42. Chapuis-Lardy L., Wrage N., Metay A., Chottes J.L., Bernoux M. (2007) Soils, a sink for N2O? A review, Global Change Biol. 13, 1–17.Google Scholar
  43. Chatskikh D., Olesen J. (2007) Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley, Soil Till. Res. 97, 5–18.Google Scholar
  44. Chenu C., Le Bissonnais Y., Arrouays D. (2000) OrganicMatter Influence on ClayWettability and Soil Aggregate Stability, Soil Sci. Soc. Am. J. 64, 1479–1486.Google Scholar
  45. Clem A. (1985) Commodity price volatility: trends during 1975–1984, Monthly Labor Review, 5 p.Google Scholar
  46. Clifton-Brown J.C., Breuer J., Jones M.B. (2007) Carbon mitigation by the energy crop, Miscanthus, Global Change Biol. 13, 2296–2307.Google Scholar
  47. Conen F., Dobbie K.E., Smith K.A., (2000) Predicting N2O emissions from agricultural land through related soil parameters, Global Change Biol. 6, 417–426.Google Scholar
  48. Conrad R. (1990) Flux of NOx between soil and atmosphere: importance and soil microbial metabolism, in: Revsbech N.P., Sörensen J. (Eds.), Denitrification in soil and sediment, Plenum Press, New York, 1990.Google Scholar
  49. Conrad R. (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO), Microbiol. Rev. 60, 609–640.PubMedGoogle Scholar
  50. Cowie A.L., Smith P., Johnson D. (2006) Does soil carbon loss in biomass production systems negate the greenhouse benefits of bioenergy? Mitigation and Adaptation Strategies for Global Change 11, 979–1002.Google Scholar
  51. Croezen H., Kampman B., Van de Vreede G., Sevenster M. (2007) ETBE and ethanol: a comparison of CO2 savings, Delft, CE, 63 p.Google Scholar
  52. Crutzen P.J., Mosier A.R., Smith K.A., Winiwarter W. (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels, Atmos. Chem. Phys. 8, 389–395.Google Scholar
  53. Del Grosso S.J., Parton W.J., Mosier A.R., Hartman M.D., Brenner J., Ojima D.S., Schimel D.S. (2001) Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model, in: Schaffer M., Ma L., Hansen S. (Eds.), Modeling Carbon and Nitrogen Dynamics for Soil Management, CRC Press, Boca Raton, Florida, pp. 303–332.Google Scholar
  54. Delucchi M.A. (2004) Conceptual and methodological issues in life cycle analyses of transportation fuels, Does Research and Research Scientist Institute of transportation Studies University of California, prepared for the U.S. Environmental Protection Agency Office of Transportation and Air Quality, p. 22.Google Scholar
  55. Demirbas A. (2007) Progress and recent trends in biofuels, Prog. Energ. Combust. 33, 1–18.Google Scholar
  56. Denman K.L., Brasseur G., Chidthaisong A., Ciais P., Cox P.M., Dickinson R.E., Hauglustaine D., Heinze C., Holland E., Jacob D., Lohmann U., Ramachandran S., da Silva Dias P.L., Wofsy S.C., Zhang X. (2007) Couplings Between Changes in the Climate System and Biogeochemistry, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  57. Dornburg V., van Dam J., Faaij A. (2007) Estimating GHG emission mitigation supply curves of large-scale biomass use on a country level, Biomass Bioenerg. 31, 46–65.Google Scholar
  58. Duxbury J.M., Mosier A.R. (1993) Status and issues concerning agricultural emissions of greenhouse gases, in: Agricultural Dimension of Global Climate Change, Chap. 12, Sainte Lucie Press, pp. 229–258.Google Scholar
  59. EEA (2006a) Greenhouse gas emission trends and projections in Europe 2006, Environmental Energy Agency, Report 9, ISBN 92-9167-885-6 © EEA, Copenhagen, 63 p.Google Scholar
  60. EEA (2006b) How much bioenergy can Europe produce without harming the environment? Environmental Energy Agency, Report 7, ISBN 92-9167-849-X © EEA, Copenhagen, 72 p.Google Scholar
  61. EEA (2008) Climate for a transport change, TERM 2007: indicators tracking transport and environment in the European Union, EEA Report No. 1, ISSN 1725-9177, DOI 10.2800/3320 © EEA, Copenhagen, 56 p.Google Scholar
  62. ENERS (2009) Biofuels Platform, Online:
  63. Engel Th., Priesack E. (1993) Expert-N, a building block system of nitrogen models as a resource for advice, research, water management and policy, Integral Soil and Sediment Research: a Basis for Proper Protection, in: Eijsackers H.J.P., Hamers T (Eds.), Kluwer, Dordrecht, pp. 503–507.Google Scholar
  64. EU (2001) Directive 2001/77/EC of the European Parliament and of the Council, 27 September 2001, on the promotion of electricity produced from renewable energy sources in the internal electricity market, Official Journal of the European Union 27.10.2001, L 283/33, 8 p.Google Scholar
  65. EU (2003) Directive 2003/30/EC of the European Parliament and of the Council, 8 May 2003, on the promotion of the use of biofuels or other renewable fuels for transport, Official Journal of the European Union 17.5.2003, L 123/42, 5 p.Google Scholar
  66. EU (2007a) Brussels European Council 8/9 March 2007, Presidency conclusions.Google Scholar
  67. EU DG-TREN (2005) European Commission, Directorate-General for Energy and Transport, 20% energy savings by 2020, Green Paper on energy efficiency, Memo, 7 p.Google Scholar
  68. EU DG-TREN (2006a) European Commission, Directorate-General for Energy and Transport Fact sheet: EU-25, Energy Fiches, TREN C1, Online:
  69. EU DG-TREN (2006b) European Commission, Directorate-General for Energy and Transport, Fuelling our future, Green Paper for a European strategy for sustainable, competitive and secure energy, Memo, 6 p.Google Scholar
  70. EU DG-TREN (2007) Energy and transport in figures: statistical pocket book. Online:
  71. Eurobarometer (2007) Attitudes on issues related to EU Transport Policy: Analytical report, The Gallup Organization, European Commission, 82 p.Google Scholar
  72. EurObserv’ER (2006) Biofuels Barometer, in: Systèmes Solaires no 173, pp. 57–66.Google Scholar
  73. EuroCare (2004) Outlooks on selected agriculture variables for the 2005 State of the Environment and the Outlook Report, EEA/RNC/03/016.Google Scholar
  74. European Commission (2007) Report on the hearing of the Biofuels European Technology Platform, Joint Research Center Directorate-General, Institute for Energy, Energy Systems Evaluation Unit. Petten, 5 p.Google Scholar
  75. Fagernäs L., Johansson A.N, Wilen C., Sipilä K., Mäkinen T., Satu H., Daugherty E., Den Uil H., Vehlow J., Kåberger T.S., Rogulska M. (2006) Bioenergy in Europe: Opportunities and Barriers, Bioenergy NoE, VTT Research Notes 2352, Espoo 2006, ISBN 951-38-6815-X, Valopaino Oy, Helsinki 2006, 122 p.Google Scholar
  76. FAO (2001) Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land, ISBN 92-5-104698-1, International Fertilizer Industry Association, Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  77. FAO (2002) World agriculture: toward 2015/2030, Summary report, ISBN 92-5-104761-8, Rome, 95 p.Google Scholar
  78. FAO (2003) FAO stat database on, Food and Agriculture Organization of the United Nations: Rome.Google Scholar
  79. FAO (2007) Food Outlook, Global market analysis, GIEWS Global Information and Early Warning System on Food and Agriculture, 91 p.Google Scholar
  80. FAO (2008a) The state of food and agriculture. Biofuels: prospects, risks and opportunities, ISBN 978-92-5-105980-7, Rome, 138 p.Google Scholar
  81. FAO (2008b) Current world fertilizer trends and outlook to 2012, Rome, 34 p.Google Scholar
  82. Fargione J., Hill J., Tilman D., Polasky S., Hawthorne P. (2008) Land clearing and the biofuel carbon debt, Science 319, 1235–1238.PubMedGoogle Scholar
  83. Farquharson R., Baldock J. (2008) Concepts in modelling N2O emissions from land use, Plant Soil 309, 147–167.Google Scholar
  84. Farrell A.E., Plevin R.J., Turner B.T., Jones A.D., O’Hare M., Kammen D.M. (2006) Ethanol can contribute to energy and environmental goals, Science 311, 506–508.PubMedGoogle Scholar
  85. Firestone M.K., Davidson E.A. (1989) Microbiological basis of NO and N2O production and consumption in soil, in: Exchange of trace gases between terrestrial ecosystems and the atmosphere, ISBN 0-471-92551-9, pp. 7–21.Google Scholar
  86. Fischedick M., Esken A., Luhmann H.-J., Schüwer D., Supersberger N. (2007) CO2-Capture and Geological Storage as a Climate Policy Option: technologies, Concepts, Perspectives, Wuppertal Spezial 35, 34 p.Google Scholar
  87. Fischer G., Schrattenholzer L. (2001) Global bioenergy potentials through 2050, Biomass Bioenerg. 20, 151–159.Google Scholar
  88. Fisher M.J., Rai I.M., Ayarza M.A., Lascano C.E., Sanz J.I., Thomas R.J., Vera R.E. (1994) Carbon storage by introduced deep-rooted grasses in the South American savannas, Nature 371, 236–238.Google Scholar
  89. FNR (2007) Biokraftstoffe, Pflanzen, Rohstoffe, Produkte, Stand: März 2008, Fachagentur Nachwachsende Rohstoffe e.v. (FNR), 22 p.Google Scholar
  90. FNR (2008) Biogas Basisdaten Deutschland. Stand: Oktober 2008, Fachagentur Nachwachsende Rohstoffe e.v. (FNR), 7 p.Google Scholar
  91. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M. Van Dorland R. (2007) Changes in Atmospheric Constituents and in Radiative Forcing, in: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  92. France Betteraves/Passion Céréales (2007) La filière bioéthanol, états des lieux et perspectives, 36 p.Google Scholar
  93. Frank A.B., Berdahl J.D., Hanson J.D., Liebig M.A., Johnson H.A. (2004) Biomass and carbon partitioning in switchgrass, Crop Sci. 44, 1391–1396.Google Scholar
  94. Fritsche U.R., Hünecke K., Hermann A., Schulze F., Wiegmann K., Adolphe M. (2006) Sustainability Standards for Bioenergy, in: Lübbeke I. (Ed.), Published by WWF Germany, Frankfurt am Main and Öko-Institut e.V., Darmstadt, 80 p.Google Scholar
  95. Frolking S.E., Mosier A.R., Ojima D.S., Li C., Parton W.J., Potter C.S., Priesack E., Stenger R., Haberbosch C., Dörsch P., Flessa H., Smith K.A. (1998) Comparison of N2O emissions from soils at three temperate agricultural sites: simulation of year-round measurements by four models, Nutr. Cycl. Agroecosys. 52, 77–105.Google Scholar
  96. Fulton L., Howes T., Hardy J. (2004) Biofuels for transport, an international perspective, IEA study undertaken by the Office of Energy Efficiency, Technology and RandD, Paris, 210 p.Google Scholar
  97. Gabrielle B., Gagnaire N. (2008) Life-cycle assessment of straw use in bio-ethanol production: a case-study based on deterministic modelling, Biomass Bioenerg. 32, 431–441.Google Scholar
  98. Gabrielle B., Da-Silveira J., Houot S., Michelin J. (2005) Field-scale modelling of carbon and nitrogen dynamics in soils amended with urban waste composts, Agr. Ecosys. Environ. 110, 289–299.Google Scholar
  99. Gabrielle B., Laville P., Hénault C., Nicoullaud B., Germon J.C. (2006) Simulation of nitrous oxide emissions from wheat-cropped soils using CERES, Nutr. Cycl. Agroecosys. 74, 133–146.Google Scholar
  100. Galloway J.N., Aber J.D., Erisman J.W., Seitzinger S.P., Howarth R.W., Cowling E.B., Cosby B.J. (2003) The nitrogen cascade, BioScience, 53, 341–356.Google Scholar
  101. Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions, Science 320, 889–892.PubMedGoogle Scholar
  102. Garten C.T., Wullschleger S.D. (1999) Soil carbon inventories under a bioenergy crop (switchgrass): Measurement limitations, J. Environ. Qual. 28, 1359–1365.Google Scholar
  103. Germon J.C., Arrouays D., Deseau S., Félix I., Gabrielle B., Ganteil A., Gallienne J., Lellahi A., Lecorre N., Martin M., Mary B., Métay A., Nicolardot B., Quéré L., Reau R. (2007) évaluation des impacts environnementaux des Techniques Culturales Sans Labour en France, Synthèse du groupe de travail sur le “bilan effet de serre”, ADEME-ARVALIS Institut du végétal-INRA-APCAAREAS-ITB-CETION-IFVV, 400 p.Google Scholar
  104. Goedkoop M. (1995) NOH report 9523, The Eco-Indicator 95, Final Report, Pre’ Consultants, Amersfoort.Google Scholar
  105. Goedkoop M., Spriensma R. (2000) The Eco-indicator 99: a damage oriented method for life cycle assessment, methodology report, second edition, Amersfoort, Netherlands: Pré Consultants, 132 p, online:
  106. Goldberg S.D., Gebauer G. (2008) Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink, Glob. Change Biol., DOI:10.1111/j.1365-2486.2008.01752.x.Google Scholar
  107. Goodrum J.W., Geller D.P. (2005) Influence of fatty acid methyl esters frm hydoxylated vegetable oils on diesel fuel lubricity, Bioresource Technol. 96, 851–855.Google Scholar
  108. Graboski M.S. (2002) Fossil Energy Use in the Manufacture of Corn Ethanol, Colorado School ofMines, prepared for the National Corn Growers Association, 122 p.Google Scholar
  109. Graboski M.S, McCormick R.L. (1998) Combustion of fat and vegetable oil derived fuels in diesel engines, Prog. Energ. Combust. 24, 125–164.Google Scholar
  110. Grainger A. (1988) Estimating areas of degraded tropical lands requiring replenishment of forest cover, Int. Tree Crops J. 5, 31–61.Google Scholar
  111. Grainger A. (1991) Constraints on Increasing Tropical Forest Area to Combat Global Climate Change, in: Howlett D., Sargent C. (Eds.), Proceedings of the Technical Workshop to Explore Options for Global Forestry Management, Bangkok, 20–30 April, International Institute for Environment and Development, London, pp. 196–208.Google Scholar
  112. Granli T., Bøckman O.C. (1994) Nitrous oxide from Agriculture, Norwegian J. Agric. Sci. Suppl. 12, 1–128.Google Scholar
  113. Grant B., Smith W.N., Desjardins R., Lemke R., Li C.S. (2004) Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada, Climatic Change 65, 315–332.Google Scholar
  114. Gregorich E.G., Rochette P., Hopkins D.W., McKim U.F., St-Georges P. (2006) Tillage-induced environmental conditions in soil and substrate limitation determine biogenic gas production, Soil Biol. Biochem. 38, 2614–2628.Google Scholar
  115. Guinée J.B. (2002) Handbook on LCA; Operational Guide to the ISO Standards, ISBN 1-4020-0228-9, Kluwer Academic Publishers, Dordrecht, The Netherlands, 692 p.Google Scholar
  116. Guo L.B., Gifford R.M. (2002) Soil carbon stocks and land use change: a meta analysis, Global Change Biol. 8, 345–360.Google Scholar
  117. Hahn-Hägerdal B., Galbe M., Gorwa-Grauslund M.F., Lidén G., Zacchi G. (2006) Bio-ethanol — the fuel of tomorrow from the residues of today, Review Trends Biotechnol. 24, 549–556.Google Scholar
  118. Hansen E.M., Christensen B.T., Jensen L.S, Kristensen K. (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by C-13 abundance, Biomass Bioenerg. 26, 97–105.Google Scholar
  119. Hansen J.E. (2006) Declaration of James E. Hansen, the Director of NASA Goddard Institute for Space Studies, The Earth Institute at Columbia University, on the 14th of August 2006 in front of the United States District Court for the District of Vermont Case Nos. 2:05-CV-302, and 2:05-CV-304 (Consolidated) retrieved (05/2007) from the web page:
  120. Hansen J.E. (2007) Scientific reticence and sea level rise, Environ. Res. Lett. 2, 1–6. online: Scholar
  121. Harijan K., Memon M., Uqaili M.A., Mirza U.K. (2009) Potential contribution of ethanol fuel to the transport sector of Pakistan, Renew. Sust. Energ. Rev. 13, 291–295.Google Scholar
  122. Heaton E.A. Clifton-Brown J. Voigt T.B. Jones M.B., Long S.P. (2004) Miscanthus for renewable energy generation: European union experience and projections for Illinois. Review, Mitigation and Adaptation Strategies for Global Change 9, 433–451.Google Scholar
  123. Hector R., Hughes S., Liang-Li X. (2008) Developing yeast strain for biomass-to-ethanol production, Ethanol Producer Magazine, June 2008 Issue, online:
  124. Heijungs R., Goedkoop M., Struijs J., Effting S., Sevenster M., Huppes G. (2003) Towards a life cycle impact assessment method which comprises category indicators at the midpoint and the endpoint level, Report of the first project phase: Design of the new method VROM report, online:
  125. Heijungs R., Guinée J.B., Huppes G., Lnakreijer R.M., Udo de Haes H.A., Wegener Sleeswijk A., Ansems A.M.M., Eggels P.G., van Duin R., de Goede H.P. (1992) Environmental Life Cycle Assessment of Products, Center of Environmental Science (CML), Leiden University, The Netherlands.Google Scholar
  126. Heinen M. (2006a) Simplified denitrification models: Overview and properties, Geoderma 133, 444–463.Google Scholar
  127. Heinen M. (2006b) Application of a widely used denitrification model to Dutch data sets, Geoderma 133, 464–473.Google Scholar
  128. Henao J., Baanante C. (2006) Agricultural Production and Soil Nutrient Mining in Africa — Implications for Resource Conservation and Policy Development, IFDC, Muscle Shoals, AL.Google Scholar
  129. Hénault C., Germon J.C. (2000) NEMIS, a predictive model of denitrification on the field scale, Eur. J. Soil Sci. 51, 257–270.Google Scholar
  130. Hénault C., Bizouard F., Laville P., Gabrielle B., Nicoullaud B., Germon J.C., Cellier P. (2005) Predicting in situ soil N2O emission using NOE algorithm and soil database, Global Change Biol. 11, 115–127.Google Scholar
  131. Higgins T. (2007) Study on relative CO2 savings comparins ethanol and EtBE as a gasoline component, Final report, Hart Energy Consulting, 31 p.Google Scholar
  132. Himmel M.E., Ding S.-Y., Johnson D.K., Adney W.S., Nimlos M.R., Brady J.W., Foust T.D. (2007) Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production, Science 315, 804–807.PubMedGoogle Scholar
  133. Holmgren P. (2006) Global Land Use Area Change Matrix: Input to the Fourth Global Enviromental Outlook (Geo-4), Forest Resources Assessment, Working Paper 134, FAO, Rome, p. 9.Google Scholar
  134. Hoogwijk M., Faaij A., Eickhout B., de Vries B., Turkenburg W. (2005) Potential of biomass energy out to 2100, for four IPCC SRES landuse scenarios, Biomass Bioenerg. 29, 225–257.Google Scholar
  135. Hoogwijk M., Faaij A., Van den Broek R., Berndes G., Gielen D., Turkenburg W. (2003). Exploration of the ranges of the global potential of biomass for energy, Biomass Bioenerg. 25, 119–133.Google Scholar
  136. Houghton R.A. (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus 55B, 378–390.Google Scholar
  137. Houghton R.A. (2008) Carbon Flux to the Atmosphere from Land-Use Changes: 1850–2005, in: TRENDS: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A., online: Scholar
  138. Houghton R.A, Unruh J., Lefebvre P.A. (1991) Current land use in the tropics and its potential for sequestering carbon, in: Howlett D., Sargent C. (Eds.), Proc. Tech. Workshop to Explore Options for Global Forest Management, Bangkok, Thailand, London, IIED.Google Scholar
  139. Huijbregts M.A., Seppälä J.(2000) Towards region-specific, European fate Factors for airborne nitrogen compounds causing aquatic eutrophication, Int. J. LCA 5, 65–67.Google Scholar
  140. IEA (2005) World Energy Outlook 2005, Middle East and North Africa Insights, © OECD/IEA, IEA Publications (61 2005 26 1P1), ISBN 92-64-1094-98, Paris, 634 p.Google Scholar
  141. IEA (2006) World Energy Outlook 2006, © OECD/IEA, IEA Publications (61 2006 231P1), ISBN 92-64-10989-7-2006, Paris, 601 p.Google Scholar
  142. IEA (2007a) Key World Energy Statistics 2007, ©OECD/IEA, 2007, IEA Publications, Paris, 82 p.Google Scholar
  143. IEA (2007b) Good practice guidelines, Bioenergy Project Development and Biomass Supply, © OECD/IEA, Paris, 62 p.Google Scholar
  144. IEA Bioenergy (2007) Potential Contribution of Bioenergy to theWorld’s Future Energy Demand, IEA Bioenergy: ExCo, 12 p.Google Scholar
  145. IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme, in: Eggleston H.S., Buendia L., Miwa K., Ngara T., Tanabe K. (Eds.), IGES, Japan.Google Scholar
  146. IPCC (2007) Summary for Policymakers, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 18 p.Google Scholar
  147. ITDG (2000) Biogas and Biofuels: Technical Brief,
  148. Jimenez-Gonzalez C., Overcash M. (2000) Life cycle assessment of refineryproducts: review and comparison of commercially available databases, Environ. Sci. Technol. 34, 4789–4796.Google Scholar
  149. Jolliet O., Müller-Wenk R., Bare J., Brent A., Goedkoop M., Heijungs R., Itsubo N., Peña C., Pennington D., Potting J., Rebitzer G., Stewart M., Udo De Haes H., Weidema B. (2004) The LCIA Midpointdamage Framework of the UNEP/SETAC Life Cycle Initiative, Int. J. LCA 9, 394–404.Google Scholar
  150. Jørgensen R., Jørgensen B.J., Nielsen N.E., Maag M., Lind A.M. (1997) N2O emission from energy crop fields of Miscanthus giganteus and winter rye, Atmos. Environ. 31–18, 2899–2904.Google Scholar
  151. JRC/EUCAR/CONCAWE (2006) JEC Well-to-Wheels study Version 2b, May 2006,
  152. JRC/EUCAR/CONCAWE (2008) JEC Well-to-Wheels study Version 3, year 2008,
  153. Jug A., Makeschin F., Rehfuess K.E., Hofmann-Schielle C. (1999) Shortrotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects, Forest Ecol. Manag. 121, 85–99.Google Scholar
  154. Kadam K.L. (2000) Environmental life cycle implications of using bagasse-derived ethanol as a gasoline oxygenate in Mumbai (Bombay), NREL/TP-580-28705, 89 p.Google Scholar
  155. Kahle P., Beuch S., Boelcke B., Leinweber P., Schulten H.R. (2001) Cropping ofMiscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter, Eur. J. Agron. 15, 171–184.Google Scholar
  156. Kaiser E.A., Kohrs K., Kucke M., Schnug E., Heinemeyer O., Munch C. (1998) Nitrous oxide release from arable soil: importance of N fertilization, crops and temporal variation, Soil Biol. Biochem. 30, 1553–1563.Google Scholar
  157. Kaylen M., Van Dyne D.L., Choi Y.-S., Blase M. (2000) Economis feasbility of producing ethanol from lignocellulosic feedstock, Bioresource Technol. 72, 19–32.Google Scholar
  158. Khalifa K. (1999) Analyse du Cycle de Vie. Problématique de l’évaluation des impacts, in: Techniques de l’ingénieur, G 5610, 1999.Google Scholar
  159. Kim S., Dale B.E. (2002) Allocation procedure in ethanol production system from corn grain. I. System expansion, Int. J. LCA 7, 237–243.Google Scholar
  160. Kodera K. (2007) Analysis of allocation methods of bioethanol LCA, Internship report, Faculty of Earth and Life Science, MSc in Environmental Resource and Management, Amsterdam, 54 p.Google Scholar
  161. Kojima M., Johnson T. (2005) Potential for biofuels for transport in developing countries, Energy Sector Management Assistance Programme (ESMAP), The World Bank Group, USA, 182 p.Google Scholar
  162. Köllner T. (2001) Land use in product life cycles and its consequences for ecosystem quality, PhD thesis.Google Scholar
  163. Kram J.W. (2007) Waste management commits to landfill gas expansion, in: Biomass Magazine 9/2007, Volume I issue 4: Back to basics, BBI International, 54 p.Google Scholar
  164. Lal R. (2004a) Soil carbon sequestration to mitigate climate change, Geoderma 123, 1–22.Google Scholar
  165. Lal R. (2004b) Soil carbon sequestration impacts on global climate change and food security, Science 304, 1623–1627.PubMedGoogle Scholar
  166. Lal R. (2004c) Agricultural activities and the global carbon cycle, Nutr. Cycl. Agroecosys. 70, 103–116.Google Scholar
  167. Lang X., Dalai A.K., Bakhshi N.N., Reaney M.J., Hertz P.B. (2001) Preparation and characterization of bio-diesels from various biooils, Bioresource Technol. 80, 53–62.Google Scholar
  168. Larson E.D. (2006) A review of life-cycle analysis studies on lisuid biofuel systems for the transport sector, Energy for Sustainable Development X, 109–126.Google Scholar
  169. Larsson L., Ferm M., Kasimir-Klemedtsson A., Klemedtsson L. (1998) Ammonia and nitrous oxide emissions from grass and alfalfa mulches, Nutr. Cycl. Agroecosys. 51, 41–46.Google Scholar
  170. Latner K., O’Kray C., Jiang J. (2006) China, Peoples Republic of Bio-Fuels An Alternative Future for Agriculture 2006, USDA Foreign Agriculture Service, Global Agriculture Information Network (GAIN), Report number: CH6049, 29 p.Google Scholar
  171. Latner K., Wagner O., Jiang J. (2007) China, Peoples Republic of Bio-Fuels An Alternative Future for Agriculture 2006, USDA Foreign Agriculture Service, Global Agriculture Information Network (GAIN), Report number: CH7039, 14 p.Google Scholar
  172. Laville P., Hénault C., Renault P., Cellier P., Oriol A., Devis X., Flura D., Germon J.C. (1997) Field comparison of N2O measurements using micrometeorological and chamber methods, Agronomie 17, 375–388.Google Scholar
  173. Lemus R., Lal R. (2005) Bioenergy crops and carbon sequestration, Crit. Rev. Plant Sci. 24, 1–21.Google Scholar
  174. Levelton (1999) Alternative and Future Fuels and Energy Sources for Road Vehicles, Levelton Engineering Ltd, prepared for Canadian Transportation Issue Table, National Climate Change Process.Google Scholar
  175. Lewandowski I. Scurlock J.M.O. Lindvall E., Christou M. (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe, Biomass Bioenerg. 25, 335–361.Google Scholar
  176. Li C.S. (2000) Modelling trace gas emissions from agricultural ecosystems, Nutr. Cycl. Agroecosys. 58, 259–276.Google Scholar
  177. Li C.S. (2007) Quantifying greenhouse gas emissions from soils: scientific basis and modeling approach, Soil Sci. Plant Nutr. 53, 344–352.Google Scholar
  178. Li C.S, Frolking S., Frolking T.A. (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity, J. Geophys. Res. 97, 9759–9776.Google Scholar
  179. Lo S.C., Ma H.W., Lo S.L. (2005) Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method, Sci. Total Environ. 340,1–3; 23–33.PubMedGoogle Scholar
  180. Luneau G., Fayet S. (2007) Les biocarburants, présentation des principales filières et impacts environnementaux-qualité de l’air, Synthèse bibliographique pour AtmoPACA, Qualité de l’Air, France, mars 2007, 23 p.Google Scholar
  181. Ma F., Hanna M.A. (1999) Biodiesel production: a review, Bioresource Technol. 70, 1–15.Google Scholar
  182. Ma Z., Wood C.W., Bransby D.I. (2000a) Soil management impacts on soil carbon sequestration by switchgrass, Biomass Bioenerg. 18, 469–477.Google Scholar
  183. Ma Z., Wood C.W., Bransby D.I. (2000b) Carbon dynamics subsequent to establishment of switchgrass, Biomass Bioenerg. 18, 93–104.Google Scholar
  184. MacDonald T., Perez P., Mizutani C., Therkelsen R. (2004) Ethanol Fuel Incentives Applied in the US. Reviewed from California’s Perspective, California Energy Commission, Staff report, USDOE, P600-04-001, 36 p.Google Scholar
  185. Malą J., Freire F. (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl ertiary butyl ether (bioETBE): Assessing the implications of allocation, Energy 31, 3362–3380.Google Scholar
  186. Mattsson B., Cederberg C., Blix L. (2000) Agricultural land use in LCA: case studies of three vegetable oil crops, J. Cleaner Prod. 8, 283–292.Google Scholar
  187. Milà I Canals L., Müller-Wenk R., Bauer C., Depestele J., Dubreuil A., Freiermuth K.R., Gaillard G., Michelsen O. Rydgren B. (2007) Key Elements in a Framework for Land Use Impact Assessment Within LCA, Int. J. LCA 12-1, 5–15.Google Scholar
  188. Möller R., Pauly M., Hake S. (2006) Cell wall saccharification, Outputs from the EPOBIO project, CPLpress Science Publishers © CNAP, University of York, ISBN 10: 1-872691-04-8, ISBN 13: 978-1-872691-04-6, 67 p.Google Scholar
  189. Möller R., Pauly M., Hake S., Bowles D. (2007) Crop platforms for cell wall saccharification: lignocellulose feedstock, Outputs from the EPOBIO project, CPLpress Science Publishers © CNAP, University of York, ISBN 10: 1-872691-13-7, ISBN 13: 978-1-872691-13-8, 176 p.Google Scholar
  190. Moras S. (2007) Analyse comparée du cycle de vie des filières de production d’énergie renouvelable issue de la biomasse, Thèse de doctorat, Gemblou, Faculté universitaire des Sciences agronomiques, 344 p., 80 tabl., 100 fig.Google Scholar
  191. Moreira J.S. (2000) Sugarcane for energy — recent results and progress in Brazil, Energy for Sustainable Development 6, 43–54.Google Scholar
  192. Mosier A.R., Duxbury J.M., Freney J.R., Heinemeyer O., Minami K. (1996) Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation, Plant Soil 181, 95–108.Google Scholar
  193. Mosier A.R., Kroeze C., Nevison C., Oenema O., Seitzinger S., van Cleemput O. (1998) Closing the global N2O budget: nitrous oxide emissions through the Agricultural nitrogen cycle, Nutr. Cycl. Agroecosys. 52, 225–248.Google Scholar
  194. Murugesan A., Umarani C., Subramanian R., Nedunchezhian N. (2009) Bio-diesel as an alternative fuel for diesel engines — A review, Renew. Sust. Energ. Rev. 13, 653–662.Google Scholar
  195. Naylor R., Liska A.J., Burke M.B., Falcon W.P., Gaskell J.C., Rozelle S.D., Cassman K.G. (2007) The ripple effect: biofuels, food security, and the environment, Environment 49, 31–43.Google Scholar
  196. NDRC (2007) China’s National Climate Change Programme, prepared under the Auspices of National Development and Reform Commission (NDRC), People’s Republic of China, 63 p.Google Scholar
  197. Nguyen T.L.T., Gheewala S.H. (2008) Fuel ethanol from cane molasses in Thailand: Environmental and cost performance, Energy Policy 36, 1589–1599.Google Scholar
  198. Nguyen T.L.T., Gheewala S.H., Garivait S. (2007) Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand, Energy Policy 35, 4585–4596.Google Scholar
  199. OECD (2005) Agricultural Policies in OECD Countries: Monitoring and Evaluation 2005, Catalogue no 512005021P, Paris, DEFRA, UK, 314 p.Google Scholar
  200. OECD (2006) Agricultural market impacts of future growth in the production of biofuels, Working party on Agricultural Policies and Markets, OECD Directorate for Food, Agriculture and Fisheries Committee for Agriculture, AGR/CA/APM(2005)24/final, 55 p.Google Scholar
  201. OECD (2008) Environmental performances of agriculture in OECD countries since 1990, ISBN 978-92-64-04092-2, 62 p.Google Scholar
  202. OECD/FAO (2007) Agricultural Outlook 2007–2016, © OECD/FAO, 88 p.Google Scholar
  203. Oenema O., Wrage N., Velthof G.L., Van Groenigen J.W., Dolfing J., Kuikman P.J. (2005) Trends in global nitrous oxide emissions from animal production systems, Nutr. Cycl. Agroecosys. 72, 51–65.Google Scholar
  204. Öhgren K., Bura R., Lesnicki G., Saddler J., Zacchi G. (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover, Process Biochem. 42, 834–839.Google Scholar
  205. Öko-Institut (2004) Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse, Uwe R. Fritsche u.a., Öko-Institut (Projektleitung) in Kooperation mit FhI-UMSICHT, IE, IFEU, IZES, TU Braunschweig, TU München; Endbericht zum Verbundforschungsvorhaben, gefördert vom BMU, Darmstadt usw. (Bezug als pdf unter
  206. Oorts K., Merckx R., Gréhan E., Germon J.C., Nicolardot N. (2007) Determinants of annual fluxes of CO2 and N2O in long-term notillage systems in northern France, Soil Till. Res. 95, 133–148.Google Scholar
  207. Parikka M. (2004) Global biomass fuel resource, Biomass Bioenerg. 27, 613–620.Google Scholar
  208. Parkin T.B. (1987) Soil microsites as a source of denitrification variability, Soil Sci. Soc. Am. J. 51, 1194–1199.Google Scholar
  209. Parton W.J., Holland E.A., Del Grosso S.J., Hartman M.D., Martin R.E., Mosier A.R., Ojima D.S., Schimel D.S. (2001) Generalized model for NOx and N2O emissions from soils, J. Geophys. Res.-Atmos. 106, 17403–17419.Google Scholar
  210. Parton W.J., Mosier A.R., Ojima D.S., Valentine D.W., Schimel D.S., Weier K., Kulmala A.E. (1996) Generalized model for N2 and N2O production from nitrification and denitrification, Global Biogeochem. Cycles 10, 401–412.Google Scholar
  211. Pattey E., Edwards G.C., Desjardins R.L., Pennock D.J., Smith W., Grant B., MacPherson J.I. (2007) Tools for quantifying N2O emissions from agroecosystems, Agr. Forest Meteorol. 142, 103–119.Google Scholar
  212. Pelkmans L. Portouli E. Papageorgiou A., Georgopoulos P. (2006) Impact assessment of measures towards the introduction of biofuels in the European Union, PREMIA WP4 report, 133 p.Google Scholar
  213. Pennington D.W., Potting J., Finnveden G., Lindeijer E., Jolliet O., Rydberg T., Rebitzer G. (2004) Life cycle assessment Part 2: Current impact assessment practice, Environ. Int. 30, 721–739.PubMedGoogle Scholar
  214. Perlack R.D., Wright L.L., Turhollow A.F., Graham R.L., Stokes B.J., Erbach D.C. (2005) Biomass as Feedstock for a Bioenergy and Bioproducts Inductry: The Technical Feasability of a Bilion-Ton Annual Supply, prepared by Oak Ridge National Laboratory, Tennessee, USDOE/USDA, 78 p.Google Scholar
  215. Plassat G. (2005), TOME 1 Les technologies des moteurs de véhicules lourds et leurs carburants, Collection: Données et références, © ADEME Editions, Paris, 216 p.Google Scholar
  216. Poiret M. (1996) Evolution des cultures et impacts sur l’environnement, Eurostat. 01/01/2009.
  217. Pons E. (2008) Sustainable biofuels certification: compatibility of the European Directive on biofuels with WTO trade rules, Ministère de l’écologie, de l’énergie, du Développement Durable et de l’Aménagement du Territoire, MPRA, Munich Personal RePEc Archive, Paper No. 16015 posted 01. July 2009, online:
  218. Potter C.S., Riley R.H., Klooster S.A. (1997) Simulation modelling of nitrogen trace gas emissions along an age gradient of tropical forest soils, Ecol. Model. 97, 179–196.Google Scholar
  219. Potting J., Hauschild M. (2005) Background for spatial differentiation in LCA impact assessment — The EDIP2003 methodology, Danish Ministry of the Environment, Environmental Project No. 996 2005, 293 p.Google Scholar
  220. Potting J., Schöpp W., Blok K., Hauschild M. (1998) Site-dependent lifecycle impact assessment of acidification, J. Ind. Ecol. 2, 63–87.Google Scholar
  221. Powlson D.S., Riche A.B., Shield I. (2005) Biofuels and other approaches for decreasing fossil fuel emissions from agriculture, Ann. Appl. Biol. 146, 193–201.Google Scholar
  222. Prasertsri P. (2006) Thailand sugar annual 2006, USDA Foreign Agricultural Service, Gain Report, Global Agriculture Information Network,
  223. Prieur A., Bouvart F. (2006) IFP, Rapport de projet ANABIO, PNRB, Tache 2: définition du cadre d’étude, Working paper not published, Paris, 29 p.Google Scholar
  224. Quirin M., Gärtner S.O., Pehnt M., Reinhardt G. (2004) CO2 Mitigation through Biofuels in the Transport Sector, Status and Perspectives, Main report, IFEU, Heidelberg, Germany, 66 p.Google Scholar
  225. Rabl A., Benoist A., Dron D., Peuportier B., Spadaro J.V., Zoughaib A. (2007) How to Account for CO2 Emissions from Biomass in an LCA, Int. J. LCA 12, 281.Google Scholar
  226. Radich A. (2004) Biodiesel Performance, Costs, and Use, Analysis report, Energy Information Administration, USDOE.Google Scholar
  227. Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick W.J. Jr., Hallett J.P., Leak D.J., Liotta C.L., Mielenz J.R., Murphy R., Templer R., Tschaplinski T. (2006) The Path Forward for Biofuels and Biomaterial, Science 311, 484–489.PubMedGoogle Scholar
  228. Rajagopal D., Sexton S.E., Roland-Host D., Zilberman D. (2007) Challenge of biofuel: filling the tank without emptying the stomach? Environ. Res. Lett. 2, 1–9.Google Scholar
  229. Reap J., Roman F., Duncan S., Bras B. (2008) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation, Int. J. LCA 13, 374–388.Google Scholar
  230. Rebitzer G., Ekvall T., Frischknecht R., Hunkeler D., Norris G., Rydberg T., Schmidt W.-P., Suh S., Weidema B.P., Pennington D.W. (2004) Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications, Environ. Int. 30, 701–720.PubMedGoogle Scholar
  231. Recous S. (2001) Dynamics of soil and fertilizer nitrogen in arable systems, paper presented at the International Fertilizer Society at a Symposium in Lisbon, 4 March 2001, Proceedings — International Fertilizer Society, Issue: 463, pp. 1–16.Google Scholar
  232. Recous S., Machet J.M., Mary B. (1988) The fate of labelled 15Nurea and ammonium nitrate applied to a winter wheat crop. II Plant uptale and N efficiency, Plant Soil 112, 215–224.Google Scholar
  233. REFUEL (2008) Eyes on the track, mind on the horizon. From inconvenient rapeseed to clean wood: a European roadmap for biofuels, Intelligent Energy Europe, 52 p.Google Scholar
  234. Reinhardt G., Gärtner S., Retenmaier N., Münch J., Falkenstein E. v. (2007) Screening Life Cycle Assessment of Jatropha Biodiesel, IFEU Commissioned by Daimler AG Stuttgart, 62 p.Google Scholar
  235. REN21 (2008) Renewables 2007 Global Status Report (Paris: REN21 Secretariat and Washington, DC:Worldwatch Institute), Copyright © 2008 Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH.Google Scholar
  236. Ribeiro K.S., Kobayashi S., Beuthe M., Gasca J., Greene D., Lee D.S., Muromachi Y., Newton P.J., Plotkin S., Sperling D., Wit R., Zhou P.J. (2007) Transport and its infrastructure, Climate Change 2007: Mitigation, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  237. Richard G., Cellier P. (1998) Effect of tillage on bare soil energy balances and thermal regime: an experimental study, Agronomie 18, 163–180.Google Scholar
  238. Robertson G.P., Paul E.A., Harwood R.R. (2000) Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere, Sciences 289, 1922–1925.Google Scholar
  239. Roby F. (2006) Vers la voiture sans pétrole ? Collection Bulles de Sciences, EDP Sciences, ISBN: 2-86883-874-X.Google Scholar
  240. Rosegrant M.W. (2008) Biofuels and Grain Prices: Impacts and Policy Responses, Testimony for the U.S. Senate Committee on Homeland Security and Governmental Affairs, 4 p.,
  241. Roy R.N., Misra R.V., Lesschen J.P., Smaling E.M. (2003) Assessment of soil nutrient balance, Approaches and Methodologies, FAO Fertilizer and plant nutrition bulletin 14, ISBN 92-5-105038-4, Rome, 101 p.Google Scholar
  242. Russi D. (2008) An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone? Energy Policy 36, 1169–1180.Google Scholar
  243. Saffih-Hdadi K., Mary B. (2008). Modeling consequences of straw residues export on soil organic carbon, Soil Biol. Biochem. 40, 594–607.Google Scholar
  244. Schenck R.C., Vickerman S. (2001) Developing a Land Use/Biodiversity Indicator for Agricultural Products LCA’s, oral presentation at the International Conference on LCA in Foods, Gothenburg, Sweden, 26–27 April 2001, 6 p.Google Scholar
  245. SCIO (2007) China’s Energy Conditions and Policies; White Paper. Information Office of the State Council of the People’s Republic of China, 46 p.Google Scholar
  246. Seguin B., Arrouays D., Balesdent J., Soussana J.F., Bondeau A., Smith P., Zaehle S., de Noblet N., Viovy N. (2007) Moderating the impact of agriculture on climate, Agr. Forest Meteorol. 142, 278–287.Google Scholar
  247. Shahid E.M., Jamal Y. (2008) A review of biodiesel as vehicular fuel, Renew. Sust. Energ. Rev. 12, 2484–2494.Google Scholar
  248. Six J., Ogle S.M., Breidt F.J., Conant R.T., Mosier A.R., Paustian K. (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term, Global Change Biol. 10, 155–160.Google Scholar
  249. Skiba U.M., Mctaggart I.P., Smith K.A., Hargreaves K.J., Fowler D. (1996) Estimates of nitrous oxide emissions from soil in the UK, Energ. Convers. Manage. 37, 1303–1308.Google Scholar
  250. Smeets E.M.W., Faaij A.P.C., Lewandowski I., Turkenburg W.C. (2007) A bottom-up assessment and review of global bio-energy potentials to 2050, Prog. Energ. Combust. 33-1, 56–106.Google Scholar
  251. Smil V. (1999) Long-range perspectives on inorganic fertilizers in global agriculture, Travis P. Hignett Lecture, International Fertilizer Development Center, Lecture Series LS-2, 3C, 40 p.Google Scholar
  252. Smith P. (2004) Carbon sequestration in croplands: the potential in Europe and the global context, Eur. J. Agron. 20, 229–236.Google Scholar
  253. Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O. (2007) Agriculture, Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in:Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  254. Smith P., Martino D., Zucong C., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G., Romanenkov V., Schneider U., Towprayoon S., Wattenbach M., Smith J. (2008) Greenhouse gas mitigation in agriculture, Philos. T. Roy. Soc. B 363, 789–813.Google Scholar
  255. Solomon B.D., Barnes J.R., Halvorsen K.E. (2007) Grain and cellulosic ethanol: History, economics, and energy policy, Biomass Bioerneg. 31, 416–425.Google Scholar
  256. Sourie J.-C., Tréguer D., Rozakis S. (2005), Ambivalence of biofuel chains in France, in: INRA Sciences Sociales: Research in economics and rural sociology, INRA Social Sciences, Agriculture and Food, Space and Environment, ISSN 1778-4379, Grignon, France, 5 p.Google Scholar
  257. Soussana J.F., Loiseau P., Vuichard N., Ceschia E., Balesdent J., Chevallier T., Arrouays A. (2004) Carbon cycling and sequestration opportunities in temperate grasslands, Soil Use Manage. 20, 219–230.Google Scholar
  258. Stanway D. (2008) China needs new policies to kickstart biofuel sector — expert, in: Thomson Financial News, online (06.03.08).
  259. Stead D. (2007) Transport energy efficiency in Europe: Temporal and geographical trends and prospects, J. Transport Geography 15, 343–353.Google Scholar
  260. Steen B. (1999) A Systematic Approach to Environmental Priority Strategies in Product Development (EPS). Version 2000 — a) General System Characteristics. b) — Models and Data, Chalmers University of Technology, Centre for Environmental Assessment of Products and material Systems (CPM), Report 1999:4 and 5, Gothenburg, online:
  261. Stehfest E., Bouwman L. (2006) N2O and NO emissions from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions, Nutr. Cycl. Agroecosys. 74, 207–228.Google Scholar
  262. Stern N. (2006) Stern Review on the Economics of Climate Change, online:
  263. Sticklen M. (2007) Spartans tailor maize for cellulosic ethanol, in: Biomass magazine 7/2007: Volume I issue 2: Powering up with poultry litter, BBI International, 50 p.Google Scholar
  264. Strege J.R. — EERC (2007) A road Map for Biofuels Research-part II, in Biomass Magazine 9/2007, Volume Iissue 4: Back to basics, BBI International, 54 p.Google Scholar
  265. Sutton M.A., Nemitz E., Erisman J.W., Beier C., Butterbach Bahl K., Cellier P., de Vries W., Cotrufo F., Skiba U., Di Marco C., Jones S., Laville P., Soussana J.F., Loubet B., Twigg M., Famulari D., Whitehead J., Gallagher M.W., Neftel A., Flechard C.R., Herrmann B., Calanca P.L., Schjoerring J.K., Daemmgen U., Horvath L., Tang Y.S., Emmett B.A., Tietema A., Pñuelas J., Kesik M., Brueggemann N., Pilegaard K., Vesala T., Campbell C.L., Olesen J.E., Dragosits U., Theobald M.R., Levy P., Mobbs D.C., Milne R., Viovy N., Vuichard N., Smith J.U., Smith P., Bergamaschi P., Fowler D., Reis S. (2007) Challenges in quantifying biosphereatmosphere exchange of nitrogen species, Environ. Pollut. 150, 125–139.PubMedGoogle Scholar
  266. Thomsen I.K., Christensen B.T. (2004) Yields of wheat and soil carbon and nitrogen contents following long-term incorporation of barley straw and ryegrass catch crops, Soil Use Manage. 20, 432–438.Google Scholar
  267. Tolan J.S. (2006) Iogen’s demonstration process for producing ethanol from cellulosic biomass, in: Biorefineries-Industrial Processes and Products, Vol. 1, in: Kamm B., Gruber P.R., Kamm M. (Eds.), Wiley-VCH Weinheim, Germany, pp. 193–208.Google Scholar
  268. Tripartite Task Force (2007) White paper on internationally compatible biofuel standards, Tripartite Task Force Brazil, European Union & United State of America, 94 p.Google Scholar
  269. Trossero M.A. (2002) Wood energy: the way ahead, Unasylva 211-53, 10 p.Google Scholar
  270. Tubiello F., Fischer G. (2007) Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080, Technol. Forecasting Soc. Change 74, 1030–1056.Google Scholar
  271. Udo de Haes H.A., Lindeijer E. (2001) The conceptual structure of Life Cycle Impact Assessment. Final draft for the Second Working Group on Impact Assessment of SETAC-Europe (WIA-2), Brussels.Google Scholar
  272. Udo de Haes H.A, Jolliet O., Finnveden G., Hauschild M., Krewitt W., Müller-Wenk (1999) Best Available Practice Regarding Impact Categories and Category Indicators in Life Cycle Assessment, SETAC-Europe: Second Working Group on LCIA (WIA-2), Int. J. LCA 4, 66–74.Google Scholar
  273. UN (2006) World population prospects: The 2006 revision, Population database, online: (26.02.2008).
  274. UNDP (2000) World Energy Assessment: Energy and the challenge of sustainability, World Energy Assessment of the United Nations, UNDP, UNDESA/WEC, New York, 506 p.Google Scholar
  275. UNEP (2003) Evaluation of Environment Impacts in Life Cycle Assessment, Meeting report, Brussels 29–30 November 1998 and Brighton 25–26 May 2000, UN Publication, ISBN: 92-807-2144-5, 108 p.Google Scholar
  276. UNFCCC (2006) CDM Executive Board, EB 23 Report, Annex 18, p. 1.Google Scholar
  277. Ugarte D., Walsh M. (2002) Synergism between Agricultural and Energy Policy: The Case of Dedicated Bioenergy Crops, Agricultural Policy Analysis Center, University of Tennessee, 18 p. online:
  278. US DOE (2006a) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095, US Department of Energy Office of Science and Offie of Energy Efficiency and Renewable Energy, 216 p.Google Scholar
  279. US DOE (2006b) On the Road to Energy Security, Implementing a Comprehensive Energy Strategy: A Status Report, A message from the Secretary of Energy, USA, 12 p.Google Scholar
  280. US GAO (2000) Tax Incentives for Petroleum and Ethanol Fuels, GAO/RCED-00-301R. B-286311, United States General Accounting Office/Resources, Community, and Economic Development Division, Washington, DC 20548, September 25, 25 p.Google Scholar
  281. US Government (2008) figures retrieved from the webpage on the 25/04/2008.
  282. Van Camp L., Bujarrabal B., Gentile A.-R., Jones R.J.A., Montanarella L., Olazabal C., Selvaradjou S.-K. (2004) Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection, EUR 21319 EN/3, 872 p., Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  283. Van der Drift A., Boerrigter H. (2006) Synthesis gas from biomass for fuels and chemicals, ECN-C-06-001, Report following the workshop “Hydrogen and synthesis gas for fuels and chemicals” organized by IEA bioenergy Task 33 in conjunction with the SYNBIOS conference held in May 2005 in Stockholm, 30 p.Google Scholar
  284. Velthof G.L., Kuikman P.J., Oenema O. (2002) Nitrous oxide emission from soils amended with crop residues, Nutr. Cycl. Agroecosys. 62, 249–261.Google Scholar
  285. Von Braun J. (2007) The World Food Situation: New Driving Fores and Required Actions, IFPRI’s Bi-Annual Overview of the World Food Situation presented to the CGIAR Annual General Meeting, Beijing, December 3, 2007, 25 p., online:
  286. Wagner-Riddle C., Furon A., Mclaughlin N.L., Lee I., Barbeau J., Jayasundara S., Parkin G., Bertold P. von, Warland J. (2007) Intensive measurement of nitrous oxide emissions from a cornsoybean-wheat rotation under two contrasting management systems over 5 years, Global Change Biol. 13, 1722–1736.Google Scholar
  287. Weidema B.P., Lindeijer E. (2001) Physical impacts of land use in product life cycle assessment, Technical University of Denmark, 2001.Google Scholar
  288. Weidema B.P., Wesnaes M.S. (1996) Data quality management for life cycle inventories-an example of using data quality indicators, J. Cleaner Prod. 4, 167–174.Google Scholar
  289. Wenzel H., Hauschild M., Alting L. (1997): Environmental assessment of products, Volume 1, Methodology, tools and case studies in product development, Chapman and Hall.Google Scholar
  290. Wiesenthal T., Schade B., Chritidis P., Leduc G., Pelkmans L. (2007) Analysis of biofuel support policies, Proceedings of the 15th Biomass Conference and Exhibition, 7–11 May 2007, Berlin, Germany.Google Scholar
  291. Worldwatch Institute (2007) Biofuels for Transport: Global Potential and Implications for Energy and Agriculture, prepared by Worldwatch Institute for the German Ministry of Food, Agriculture and Consumer Protection (BMELV) in coordination with the German Agency for Technical Cooperation (GTZ) and the German Agency of Renewable Resources (FNR), ISBN: 1844074226, Earthscan, London, 452 p.Google Scholar
  292. Wrage N., Velthof G.L., van Beusichem M.L., Oenema O. (2001) Role of nitrifier denitrification in the production of nitrous oxide, Soil Biol. Biochem. 33, 1723–1732.Google Scholar
  293. Wu M., Wang M., Huo H. (2006) Fuel-Cycle Assessment of Selected Bioethanol Production Pathways in the United States, Energy Systems division, Argonne National Laboratory, 65 p.Google Scholar
  294. Xavier M.R. (2007) The Brazilian sugarcane ethanol experience, Competitive Enterprise Institute CEI Issue Analysis, Advancing Liberty from the Economy to Ecology 3, 13 p.Google Scholar
  295. Yi I., Itsubo N., Inaba A., Matsumoto K. (2007) Development of the interregional I/O based LCA method considering Region-specifics of indirect effects in regional evaluation, Input-output and hybrid LCA, Int. J. LCA 12, 353–364.Google Scholar
  296. Zan C.S., Fyles J.W., Girouard P., Samson R.A. (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec, Agr. Ecosys. Environ. 86, 135–144.Google Scholar
  297. Zeman N. (2007) Shell partner to make hydrogen from glycerine, in: Biomass Magazine 8/2007, Volume I issue 3: Learning from firstgeneration biomass power producers, BBI International, 50 p.Google Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cécile Bessou
    • 1
    Email author
  • Fabien Ferchaud
    • 2
  • Benoît Gabrielle
    • 3
  • Bruno Mary
    • 2
  1. 1.INRA Environment and agricultural crop research unitThiverval-GrignonFrance
  2. 2.INRA, US1158 Agro-ImpactLaon-MonsFrance
  3. 3.AgroParisTech, INRAUMR Environment & Grandes Cultures 1091Thiverval-GrignonFrance

Personalised recommendations