Agronomy for Sustainable Development

, Volume 30, Issue 2, pp 359–365 | Cite as

Biogeography of soil microbial communities: a review and a description of the ongoing french national initiative

  • Lionel Ranjard
  • Samuel Dequiedt
  • Claudy Jolivet
  • Nicolas P. A. Saby
  • Jean Thioulouse
  • Jérome Harmand
  • Patrice Loisel
  • Alain Rapaport
  • Saliou Fall
  • Pascal Simonet
  • Richard Joffre
  • Nicolas Chemidlin-Prévost Bouré
  • Pierre-Alain Maron
  • Christophe Mougel
  • Manuel P. Martin
  • Benoît Toutain
  • Dominique Arrouays
  • Philippe Lemanceau
Review article

Abstract

Microbial biogeography is the study of the distribution of microbial diversity on large scales of space and time. This science aims at understanding biodiversity regulation and its link with ecosystem biological functioning, goods and services such as maintenance of productivity, of soil and atmospheric quality, and of soil health. Although the initial concept dates from the early 20th century (Beijerinck (1913) De infusies en de ontdekking der backterien, in: Jaarboek van de Knoniklijke Akademie van Wetenschappen, Muller, Amsterdam), only recently have an increasing number of studies have investigated the biogeographical patterns of soil microbial diversity. A such delay is due to the constraints of the microbial models, the need to develop relevant molecular and bioinformatic tools to assess microbial diversity, and the non-availability of an adequate sampling strategy. Consequently, the conclusions from microbial ecology studies have rarely been generally applicable and even the fundamental power-laws differ because the taxa-area relationship and the influence of global and distal parameters on the spatial distribution of microbial communities have not been examined. In this article we define and discuss the scientific, technical and operational limits and outcomes resulting from soil microbial biogeography together with the technical and logistical feasibility. The main results are that microbial communities are not stochastically distributed on a wide scale and that biogeographical patterns are more influenced by local parameters such as soil type and land use than by distal ones, e.g. climate and geomorphology, contrary to plants and animals. We then present the European soil biological survey network, focusing on the French national initiative and the „ECOMIC-RMQS” project. The objective of the ECOMIC-RMQS project is to characterise the density and diversity of bacterial communities in all soils in the RMQS library in order to assess, for the first time, not only microbial biogeography across the whole of France but also the impact of land use on soil biodiversity (Réseau de Mesures de la Qualité des Sols = French Soil Quality Monitoring Network, 2200 soils covering all the French territory with a systematic grid of sampling). The scientific, technical and logistical outputs are examined with a view to the future prospects needed to develop this scientific domain and its applications in sustainable land use.

soil biogeography microbial communities soil survey microbial ecology diversity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann R.I., Ludwig W., Scheider K.H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev. 59, 143–169.Google Scholar
  2. Bass Becking L.G.M. (1934) Geobiologie of inleiding tot de milieukunde, Van Stockum & Zoon, The Hague.Google Scholar
  3. Beijerinck M.W. (1913) De infusies en de ontdekking der backterien, in: Jaarboek van de Knoniklijke Akademie van Wetenschappen, Muller, Amsterdam.Google Scholar
  4. Brown J.H., Lomolino M.V. (1998) Biogeography, Sinauer, Sunderland.Google Scholar
  5. Cho J.C., Tiedje J. (2000) Biogeography and degree of endemicity of Fluorescent Pseudomonas strains in soil, Appl. Environ. Microbiol. 66, 5448–5456.PubMedCrossRefGoogle Scholar
  6. Christen R. (2008) Global sequencing: a review of current molecular data and new methods available to assess microbial diversity, Microb. Environ. 23, 253–268.CrossRefGoogle Scholar
  7. Curtis T.P., Sloan W.T. (2005) Exploring microbial diversity — A vast below, Science 309, 1331–1333.PubMedCrossRefGoogle Scholar
  8. de Wit R., Bouvier T. (2006) ‚Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ. Microbiol. 8, 755–758.PubMedCrossRefGoogle Scholar
  9. Dequiedt S., Thioulouse J., Jolivet C., Saby N.P.A., Lelievre M., Maron P.A., Martin M.P., Chemidlin-Prévost-Bouré N., Toutain B., Arrouays D., Lemanceau P., Ranjard L. (2009) Biogeographical patterns of soil bacterial communities, Environ. Microbiol. Report 1, 251–255.CrossRefGoogle Scholar
  10. Fenchel T. (2003) Biogeography for bacteria, Science 301, 925–926.PubMedCrossRefGoogle Scholar
  11. Fierer N., Jackson R.B. (2006) The diversity and biogeography of soil bacterial communities, Proc. Natl Acad. Sci. (USA) 103, 626–631.CrossRefGoogle Scholar
  12. Gans J., Wolinsky M., Dunbar J. (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil, Science 309, 1387–1390.PubMedCrossRefGoogle Scholar
  13. Green J.L., Bohannan B.J.M. (2006) Spatial scaling of microbial diversity, Trends Ecol. Evol. 21, 501–507.PubMedCrossRefGoogle Scholar
  14. Green J.L., Holmes A.J., Westoby M., Oliver I., Briscoe D., Dangerfield M., Gillings M., Beatlle A.J. (2004) Spatial scaling of microbial eukaryote diversity, Nature 432, 747–750.PubMedCrossRefGoogle Scholar
  15. Horner-Devine M.C., Lage M., Hughes J.B., Bohannan B.J.M. (2004) A taxa-area relationship for bacteria, Nature 432, 750–753.PubMedCrossRefGoogle Scholar
  16. Isaksen M.F., Bak F., Jorgensen B.B. (1994) Thermophilic sulfate reducing bacteria in cold marine sediment, FEMS Microbiol. Ecol. 14, 1–8.CrossRefGoogle Scholar
  17. Johnson M.J., Lee K.Y., Scow K.M. (2003) DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities, Geoderma 114, 279–303.CrossRefGoogle Scholar
  18. Jones R.T., Robeson M.S., Lauber C.L., Hamady M., Knight R., Fierer N. (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses, ISME J. 17, 1–12.Google Scholar
  19. Kibblewhite M.G., Jones R.J.A, Montanarella L., Baritz R., Huber S., Arrouays D., Micheli E., Stephens M. (2008) Environmental Assessment of Soil for Monitoring: Volume VI. Soil Monitoring System for Europe, EUR 23490 EN/6, Office for the Official Publications of the European Communities, Luxembourg, 188 p.Google Scholar
  20. Lacarce E., Le Bas C., Cousin J.-L., Pesty B., Toutain B., Houston Durrant T., Montanarella L. (2009) Data management for monitoring forest soils in Europe for the Biosoil project, Soil Use Manage. 25, 57–65.CrossRefGoogle Scholar
  21. Martiny J.B.H., Bohannan B.J.M., Brown J.H., Colwell R.K., Furhman J.A., Green J.L., Horner-devine M.C., Kane M., Krumins 6J.A., Kuske C.R., Morin P.J., Naeem S., Ovreas L., Reysenbach A.L., Smith V.H., Staley J.T. (2006) Microbial biogeography: putting microorganisms on the map, Nature 4, 102–112.Google Scholar
  22. Morvan X.P.P., Saby N.P.A., Arrouays D., Le Bas C., Jones R.J.A., Verheijen F.G.A., Bellamy P.H., Stephens M., Kibblewhite M.G. (2008) Soil monitoring in Europe: a review of existing systems and requirements for harmonisation, Sci. Total Environ. 391, 1–12.PubMedCrossRefGoogle Scholar
  23. Papke R.T., Ward D.M. (2004) The importance of physical isolation to microbial diversification, FEMS Microbiol. Ecol. 48, 293–303.PubMedCrossRefGoogle Scholar
  24. Ranjard L., Dequiedt S., Lelievre M., Maron P.A., Mougel C., Morin F., Lemanceau P. (2009) Platform GenoSol: a new tool for conserving and exploring soil microbial diversity, Environ. Microbiol. Report 1, 97–99.CrossRefGoogle Scholar
  25. Ranjard L., Poly F., Nazaret S. (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment, Res. Microbiol. 151, 167–177.PubMedCrossRefGoogle Scholar
  26. Ranjard L., Richaume A. (2001) Quantitative and qualitative microscale distribution of bacteria in soil, Res. Microbiol. 152, 707–716.PubMedCrossRefGoogle Scholar
  27. Roesch L., Fulthorpe R.R., Riva A., Casella G., Hadwin A., Kent A. (2007) Pyrosequencing enumerates and contrast soil biodiversity, ISME J. 1, 283–290.PubMedGoogle Scholar
  28. Saby N., Arrouays D., Jolivet C., Boulonne L., Pochot A. (2006) Geostatistical assessment of lead in soil around Paris, France, Sci. Total Environ. 367, 212–221.CrossRefGoogle Scholar
  29. Torsvik V., Øvreås L. (2002) Microbial diversity and function in soil: from genes to ecosystems, Curr. Opin. Microbiol. 5, 240–245.PubMedCrossRefGoogle Scholar

Copyright information

© INRA, EDP Sciences 2009

Authors and Affiliations

  • Lionel Ranjard
    • 1
    • 2
  • Samuel Dequiedt
    • 1
    • 2
  • Claudy Jolivet
    • 3
  • Nicolas P. A. Saby
    • 3
  • Jean Thioulouse
    • 4
    • 9
  • Jérome Harmand
    • 6
    • 7
  • Patrice Loisel
    • 6
  • Alain Rapaport
    • 6
  • Saliou Fall
    • 5
  • Pascal Simonet
    • 5
  • Richard Joffre
    • 8
  • Nicolas Chemidlin-Prévost Bouré
    • 1
    • 2
  • Pierre-Alain Maron
    • 1
    • 2
  • Christophe Mougel
    • 1
    • 2
  • Manuel P. Martin
    • 3
  • Benoît Toutain
    • 3
  • Dominique Arrouays
    • 3
  • Philippe Lemanceau
    • 1
    • 2
  1. 1.UMR Microbiologie du Sol et de l’Environnement, CMSEINRA-Université de BourgogneDijon CedexFrance
  2. 2.Platform GenoSolINRA-Université de Bourgogne, CMSEDijon CedexFrance
  3. 3.Unité INFOSOLINRA Orléans — US 1106Olivet CedexFrance
  4. 4.Université de LyonLyonFrance
  5. 5.Équipe „Génomique Microbienne Environnementale” (Environmental Microbial Genomics Group), UMR CNRS 5005Laboratoire Ampère, École Centrale de LyonEcully CedexFrance
  6. 6.INRA-INRIA MERE research project, UMR ASBMontpellier CedexFrance
  7. 7.LBE-INRAUR050NarbonneFrance
  8. 8.Équipe DREAM — Centre d’Écologie Fonctionnelle et ÉvolutiveUMR 5175 CNRSMontpellier Cedex 5France
  9. 9.Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon 1, CNRS, UMR 5558VilleurbanneFrance

Personalised recommendations